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Text S1. Simulation of the North Pacific Subtropical Mode Water

In order to examine the possible mechanism of the subducted Canr, the characteristics of
the North Pacific Subtropical Mode water (STMW) are simulated by a three-dimensional,
primitive equation, numerical ocean circulation model MASNUM. This model adopts most of
the numerical schemes of the Princeton Ocean Model (POM) but uses a two-time-level
algorithm for time stepping. This modification helps remove the computational mode inherent
in the three-time-level scheme such as the leapfrog one adopted by POM and many other ocean
circulation models (Kantha & Clayson, 2000). It was exemplified that the MASNUM model,
besides inheriting the numerical features of POM in other aspects, exhibited better performance
in numerical stability. Details of the MASNUM model in both global and regional simulations,
comparisons with other mainstream models and its ensuring development can be found in Han
(2014) and Zhuang et al. (2016, 2018).

In this case, a global simulation with horizontal resolution of 0.25x0.25 degrees and 31
sigma levels with MASNUM is run under the GEBCO 08 topography (www.gebco.net). The
simulation is started from rest with an initial temperature and salinity distribution from WOAO09
(Locarnini et al., 2010; Antonov et al., 2010) and forced by surface fluxes of the NCEP-DOE
AMIP-II Reanalysis (Kanamitsu et al., 2002). The model is integrated until the total kinetic
energy of the global ocean reaches a quasi-equilibrium state (Han, 2014).

An example of how different criterions (6, ce, potential vorticity) work to define the
STMW is demonstrated for a snapshot in August 2018 from the simulation by MASNUM along
the 147°E transect in the North Pacific (Figure 1a; Figure Sla in Supporting Information S1;
Li et al., 2022a). This water mass appears around 30°N at the depths of 100-400 m, in good
agreement with that inferred from Argo data (Cerovecki and Giglio, 2016). From the annual
mean perspective, the STMW is well reproduced by the numerical model along the 147°E
transect in the North Pacific (Figure S1b).
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Taxt S2. Sampling and analytical analyses

The August 2018 cruise was made in the western North Pacific onboard R/V Tan Kah Kee
from 16 August to 15 September 2018. Depth profiles of temperature and salinity (practical
salinity scale of 1978) were determined with a calibrated conductivity-temperature-
depth/pressure (CTD) recorder (SBE911 plus, Sea-Bird Scientific, USA). Discrete water
samples for dissolved oxygen (DO), dissolved inorganic carbon (DIC), total alkalinity (TA),
carbon isotope of DIC (A'*C and §'3C), and nutrients (nitrate, nitrite, phosphate and silicate)
were collected mainly at depths of 5, 30, 50, 75, 100, 150, 200, 300, 500 and 1000 m using 10-
L Niskin bottles mounted with the CTD recorders, whereas samples from up to 2000-m depth
were collected at only three stations.

Water samples for DO analyses were collected, fixed, and titrated aboard following the
classic Winkler procedure. Any possible nitrite interference in the DO titration was removed
by adding 0.01% NaNz during subsample fixation (Wong, 2012).

For some DIC samples obtained in August 2018, radiocarbon measurement of DIC (C)
was performed using the Accelerator Mass Spectrometry (AMS) at the Center for Isotope
Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and
Technology in Qingdao, China. For '*C analysis, we used a DIC extraction method (Ge et al.
2016) modified from McNichol et al. (1994), with an extraction efficiency >96%. Values of
AM™C are reported as the modern fraction based on modern reference material, and the precision
of A'C analysis was 4%o or better (Ge et al., 2016). For §'3C measurements, a water sample (2
mL) was transferred into a 30 ml prevacuumed LABCO vial, acidified and equilibrated, and
then automatically analyzed using a Thermo Delta-V Isotope Ratio Mass Spectrometer (IRMS)
coupled with a Thermo Gasbench II system. The §!°C values are reported in %o relative to the
VPDB standard for DIC with a total uncertainty of <0.2%o. After 62 mL (60 mL for A'*C and
2 mL for §'3C) seawater was taken from the DIC bottle using syringe, the DIC samples were
immediately analysed to avoid the effect of gas exchange.

Water samples for DIC and TA analyses were collected and stored in 250 mL borosilicate
glass bottles following the procedure recommended by Dickson et al. (2007), Before sealed
with greased (Apiezon-L) ground-glass stoppers, 1 mL of seawater was removed from each
sample bottle to allow for thermal expansion, and 100 pL saturated HgCl> was mixed into the
water samples to halt biological activity. They were preserved at room temperature until
determination. DIC was measured by an infrared CO» detector-based DIC analyzer (AS-C3,
Apollo SciTech Inc., United States), and TA was determined at 25°C by the Gran acidimetric
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titration using a semi-automated titrator (AS-ALK2, Apollo SciTech Inc., United States).
Reproducibility of DIC and TA measurements was at the 0.1% level (Li et al., 2022b). DIC and
TA measurements were referred to certified reference materials from Andrew G. Dickson's lab
(Scripps Institute of Oceanography, USA) at a precision of £2 pmol kg '. Methods for nutrient

sampling and measurement are presented in details in Zheng and Zhai (2021).
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Text S3. Crossover checks in 1993, 2005 and 2018

Murata et al. (2009) suggested that the NTA value in 1993 had a systematic difference of
~6 pmol kg~! with the value in 2005, e.g., 2311£5 pmol kg™! in 1993 and 230442 in 2005 in
the layers of 150—300 m depth. In addition, the NTA values are nearly uniform with an average
0f 2299 £ 7 in upper 300 m in 2018 (Figure S6), in agreement with previously values reported
by Millero et al. (1998) (2300+6 pmol kg™!) and Ono et al. (2019) (229745 umol kg ') in the
western North Pacific. Therefore, we perform a systematic adjustment of the NTA in 1993 by
subtracting 6 pmol kg~!. This adjustment may induce the Cant uncertainty of 3 pmol kg™'.

To explore whether systematic adjustments of the AOU, DIC and TA in 1993, 2005 and
2018 are necessary, we made crossover checks in deep water in the KR regime (25°-34°N,
147°-149°E). The result shows that they were generally consistent with each other in the deep
waters (Table S1). These comparisons suggest that the measured results of the carbonate system

parameters are comparable with each other.
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Text S4. Calculations of carbonate-related parameters

Seawater Qarg and total hydrogen ion scale pH (pHr; for simplicity, ‘pH’ in the following
text refers to total scale) values were calculated from the concentrations of DIC, TA,
temperature, salinity, phosphate, silicate and pressure data using the CO2SYS.xls program
(Version 24) (Pelletier et al., 2015). Here Qarng is defined as the product of calcium and
carbonate ion concentrations divided by the stoichiometric solubility product for aragonite
(Ksp*arag), 1.€., Qarag = [Ca? ]X[CO3% |/Ksp*arae. The dissociation constant of HSO4~ was taken
from Dickson (1990). The carbonic acid dissociation constants of Millero et al. (2006) and the
total boron/salinity of Uppstrom (1974) were used to compute carbonate properties. The
Kep*arag values were taken from Mucci (1983), and Ca®" concentrations were assumed to be
proportional to salinity (Millero, 1979).

To eliminate the effects of precipitation and evaporation on the seawater carbonate system,
the salinity-normalized parameters NTA and NDIC were calculated using the expression NTA
= TA/salinity x 35 and NDIC = DIC/salinity x 35, respectively. Apparent oxygen utilization
(AOU) was calculated by subtracting the observed DO concentration from the saturated DO
concentration (Benson and Krause, 1984), revealing the amount of oxygen consumed since

seawater was last under the air—sea equilibrium.
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Text S5. Comparison of anthropogenic CO2 using different methods

The TrOCA method defines a quasi-conservative tracer, TrOCA (Tracer combining Oz,
DIC and TA). TrOCA is a reasonable tracer of water masses where changes in TrOCA over
time are independent of biology and can be attributed to Cant penetration. The Cant can be
estimated from the difference between current and pre-industrial TrOCA (TrOCA®) divided by
a stoichiometric coefficient. The simplicity of the TrOCA method relies on the fact that a simple
formulation for TrOCAZ® has been proposed based on & and TA and thus an estimation of Cant
using O2, DIC, TA and 6. The formulation proposed in Touratier et al. (2007) is used to estimate
Canr as follows:

Cant = [02+1.279(DIC-0.5TA)—exp(7.511-0.01087 0 — 7.81x10°/TA?)]/1.279 (1)

The overall uncertainty of the approach is 3—6 umol kg ! due to the random propagation
of the uncertainties in the parameters (O2, DIC, TA and 6) and coefficients (Touratier et al.,
2007).

To evaluate the validaty and precision of the TrOCA method in relation to the North
Pacific, we compared it with the AC* method used for calculating Canr (Sabine et al., 2002),
which is updated from the original AC* method developed by Gruber et al. (1996). In brief, the
AC* method can be expressed as follows:

Cant = AC* — ACliseq , 2

AC* = Ciy — Cas0 — AChio 3)
where the quasiconservative tracer (AC*) is defined as the difference between the measured
DIC (Cn) corrected for biology (AChio) and the air-equilibrated DIC with a preindustrial
atmosphere level of CO; of 280 patm at the water surface (Caso); ACdiseq 1s the air—sea CO2
disequilibrium expressed in terms of DIC, and the mean value of =6 + 3 pumol kg! for the
North Pacific taken from Sabine et al. (2002), was used to calculate the Cant; AChio is the DIC
change due to remineralization of organic matter and the dissolution of calcium carbonate

particles and denitrification:

AChio = 117/170 x AOU + 0.5 (TA — TA° + 16/170 x AOU)—106/104 x (N*~N*can),
(4)
where 117/170 and 16/170 are the C/O2 and N/O; ratios, respectively (Anderson and Sarmiento,
1994); The denitrification term of 106/104 x (N* — N*ean), where N* = (N — 16P + 2.90), was
taken from Deutsch et al. (2001), whereas the mean N* (N*nean) value for our dataset was 0

umol kg™!; The preformed alkalinity (TA®) is an estimate of the TA that the water had when it
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was last at the surface (Gruber et al., 1996). The TA® is necessary to determine the Cago and is
estimated for the North Pacific using a multiple linear regression of the surface alkalinity values
to conservative tracers:
TA°=148.7 + 61.36 x Salinity + 16/170 x (O2+ 170 x P) = 0.582 x 8,  (5)

where 170 is the O2/P ratio and € is potential temperature.

The result showed that the Cant values using the two methods were consistent with each
other at deviation levels of +£6 pmol kg™' below 100 m (Figure S4), within the uncertainty of
the TrOCA method (£6 umol kg ™).
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Text S6. Calculation of AOU-corrected pH and Qarag

To remove the effects from biological processes that might interrupt the decadal trends of
pH and Qarag, we conducted the calculation of AOU-corrected pH and Qarag. First, we calculated
the AOU-corrected DIC (DICACU-correctedy a5 follows:

DICAOU-corrected — DI C s — (AOUgps — AOU™) x 117/170

where DICops and AOUgps are the observed DIC and AOU, respectively; AOU™" is the mean
AOU value of 24 £ 11 umol kg™! during 1993-2020, and 117/170 is the C/O; ratio (Anderson
and Sarmiento, 1994). AOU-corrected pH and Qarg values were calculated from the DICACY-
corected ' TA ' temperature, salinity, phosphate, silicate and pressure data using the CO2SYS.xls

program (Version 24) (Pelletier et al., 2015).
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Text S7. Decomposing decadal changes in Qarag and pH

To evaluate and quantify whether anthropogenic or natural sources were responsible for
the progressive OA, we decomposed the decadal changes of STMW Qarag (AQuarag) and pH (ApH)
values during the two periods. Similar to the procedure of Murata & Shu (2012) and Murata et
al. (2015), AQuarg was firstly decomposed into contributions of individual water chemistry
parameter changes of NDIC (ANDIC), NTA (ANTA), temperature (AT) and salinity (AS). We
further decomposed ANDIC into changes in Cant (ANDICA™™) and organic matter production
and remineralization (ANDIC®™®). Here ANDICA"" was the difference of Cant between two
surveys based on Eq. (1) in Text S4; ANDIC®™ was calculated as ANDIC® = AAOUx117/170,
where AAOU is the difference in AOU between two surveys. Therefore, we used this method
to decompose AQ as follows,

AQurae = (5Q/oNDIC)ANDIC + (5Q/oNTA)ANTA + (oQUaT)AT + (0Q/2S)AS,  (6)

AQANPIC = (50/5NDIC)ANDIC, (7)
AQANDIC — (ANDICA™™/ANDIC)AQANPIC 4+ (ANDICO"/ANDIC)AQANPIC, (8)
AQAM = (ANDICAM/ANDIC)AQANPIC, )
AQO"E = (ANDICO"¢/ANDIC)AQANDIC, (10)
Therefore,
AQarag = AQAM™ + AQO™ + AQANTA + AQAT +AQAS+ residual. (11)

In Eq. (6), where the AQang, AT, AS ANDIC, and ANTA were calculated based on the
differences in average water chemistry parameters between two surveys; the four partial
derivative terms represent the contributions of changes of average water chemistry parameters
on AQarg, while keeping the other three parameters constant. In Eq. (7-10), we represent these
contributions  using the terms: AQMPIC = (GQ/HNDIC)ANDIC, AQA™ =
(ANDICA"™/ANDIC)AQANPIC AQO® = (ANDICO®/ANDIC)AQANPIC  AQANTA  —
(0Q/oNTA)ANTA, AQAT = (0Q/5T)AT, and AQ”S = (2Q/2S)AS. We applied this procedure to
the values of each property averaged in the STMW layers of 150 m (25.166), 200 m (25.204)
and 300 m (25.400) in the KR region during 1993-2005 and 2005-2018. In a similar manner to
the decomposition of AQuarg, we also decomposed ApH. Note that, the effects of precipitation

and dissolution of CaCO3 on Qarag and pH were generally considered minor in the upper ~400



213
214
215
216

m of the western subtropical gyre (Murata & Shu, 2012; Murata et al., 2015) and were

attributed to the residual.



217  Table S1. Crossover checks in deep water (~1000 m) in the Kuroshio Recirculation regime (25—32°N,
218  147-149°E). TA values in 1993 have been adjusted according to Text S3.

Time AOU DIC TA NTA A¥C e
(umol kg™") (umolkg™)  (umolkg™)  (pmolkg™) (%o0) (%o)
Aug 2018 269 +7 2332 +13 2346 +11 2398 +8 ~ —169+37  -0.38+0.04
May 2005 266 +9 2327 +13 2344 +10 2396 +x7  —171+24  -0.44+0.04
Ocotber 1993 266 +14 2327 +16 2344 +11 2395 +8  —167+27  -0.41+0.06
219
220

221



222 Table S2. Rates of the decadal trends in Cant, pH and Qarag When using 3 cruises (1993, 2005 and 2018)
223 or 124 cruises (26-year GLODAP and JMA datasets during 1993-2020) regularly conducted in the North
224  Pacific subtropical mode water.

Rate of Cant

Periods Dataset increase (umol ~_ate Of Carag Rate of pH
o decrease (yr!) decrease (yr!)
kg™ yr)
1993-2005 1993 and 2005 0.76 =0.07 -0.0078 £0.0024 -0.0011 +0.0002
1993-2005 GLODAP 0.68 +£0.31 -0.0074 £0.0067 -0.0015 +0.0008
2005-2018 2005 and 2018 1.76 £0.06 -0.0242 £0.002  -0.0050 £0.0003

2005-2020  GLODAP and JMA 1.51 +0.06 -0.0176 +0.0029 -0.0028 +-0.0005

225
226
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Table S3. Rates of the NDIC, Cant, @ g and pH changes for different periods in KR surface waters
and STMW. Note that the rates of NDIC, Q.. and pH in KR surface waters are from Ono et al. (2019),
and the rate of NDIC change is entirely attributed to the Cant change. The rates in the STMW refer to
Figure 4 and Figure S7. p <0.05 indicates statistical significance at the 95% confidence level.

Rate of CanNT

Rate of NDIC : Rate of Q arag Rate of pH
. . Increase
Periods Water increase (umol kg decrease decrease
(umol kg yr) TR (yr™h) (yr™h)
1993-2005  Surface 0.8 (p < 0.05) / -0.008 (p < 0.05)  -0.0014 (p < 0.05)
1993-2005  STMW  0.8(p=0.19)  0.7(p<0.05) -0.0074(p=0.29) -0.0015 (p=0.12)
2005-2017  Surface 1.6 (p < 0.05) / -0.018 (p < 0.05)  -0.0028 (p < 0.05)

2005-2017/2020 STMW  1.8(p<001)  15(p<0.05) -0.0176 (p<0.01) -0.0028 (p < 0.01)
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Figure S1. (a) Different criterions to define the STMW along the 147°E transect in the North Pacific.
Color fills denote the vertical derivative of the potential temperature, dT/dz. Pink, purple and green
lines represent contour lines of potential temperature, density and PV, respectively. White lines denote
the dT/dz criterion adopted in Tsubouchi et al. (2016). The data is produced by a global run of the
MASNUM model detailed in text. (b) Latitudinal variations of the annual mean potential density (ce) and
the PV contours of 2 x 101 m! s”! (white contours) along the 147°E transect in the North Pacific produced
by the MASNUM model.



Kuroshio Recirculation ~ Kuroshio Front

< Vl

27
01993_150m  A1993_200m [11993_300m
L ©2005_150m  A2005_200m  [32005_300m Aégé
02018 150m  A2018_200m  [312018_300m ééo
o~ 26
£
[o14]
¥ 888
: [T auB ey g% :
25 AA
AA O o
L @ o) STMW in 150-300m
o and 24.8-25.50,
24 . 1 I
20 25 30 35 40
Latitude (°N)
245
246
247

248  Figure S2. Latitudinal distributions of the potential density (ce) in the STMW layers of 150m,
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Figure S3. (a—b) All stations of Canr data in the two STMW distribution regions mainly along 149°E
(145°E—155°E, 25°N-34°N) and 137°E (135°E-140°E, 24°N-32°N) during 1993-2018 from
GLODAPv2.2021 and during 2019-2020 from the Japan Meteorological Agency (JMA) website
(https://www.data.jma.go.jp). (c—d) Depths of STMW Canr data in 150-300m in the two regions. (e—f)
Potential density (o) of STMW Canr data within 150-300m and 24.8—-25.50¢ in the two regions.
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indicate the annual means. The black lines represent linear regression to all annual mean data during
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statistical significance at the 95% confidence level.
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313  Figure S10. Wintertime (February) sea surface temperature in the main STMW formation region south of
314  Kuroshio Extention (Kuroshio Recirculation region: 30°-34°N, 145°-160°E) during 1993-2017. The
315 NOAA Extended Reconstructed Sea Surface Temperature (ERSST) v4 is obtained from the website
316  (http://www.ncdc.noaa.gov).
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