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Text S1. Simulation of the North Pacific Subtropical Mode Water 32 

In order to examine the possible mechanism of the subducted CANT, the characteristics of 33 

the North Pacific Subtropical Mode water (STMW) are simulated by a three-dimensional, 34 

primitive equation, numerical ocean circulation model MASNUM. This model adopts most of 35 

the numerical schemes of the Princeton Ocean Model (POM) but uses a two-time-level 36 

algorithm for time stepping. This modification helps remove the computational mode inherent 37 

in the three-time-level scheme such as the leapfrog one adopted by POM and many other ocean 38 

circulation models (Kantha & Clayson, 2000). It was exemplified that the MASNUM model, 39 

besides inheriting the numerical features of POM in other aspects, exhibited better performance 40 

in numerical stability. Details of the MASNUM model in both global and regional simulations, 41 

comparisons with other mainstream models and its ensuring development can be found in Han 42 

(2014) and Zhuang et al. (2016, 2018).  43 

In this case, a global simulation with horizontal resolution of 0.250.25 degrees and 31 44 

sigma levels with MASNUM is run under the GEBCO 08 topography (www.gebco.net). The 45 

simulation is started from rest with an initial temperature and salinity distribution from WOA09 46 

(Locarnini et al., 2010; Antonov et al., 2010) and forced by surface fluxes of the NCEP-DOE 47 

AMIP-II Reanalysis (Kanamitsu et al., 2002). The model is integrated until the total kinetic 48 

energy of the global ocean reaches a quasi-equilibrium state (Han, 2014).  49 

An example of how different criterions (, , potential vorticity) work to define the 50 

STMW is demonstrated for a snapshot in August 2018 from the simulation by MASNUM along 51 

the 147°E transect in the North Pacific (Figure 1a; Figure S1a in Supporting Information S1; 52 

Li et al., 2022a). This water mass appears around 30°N at the depths of 100−400 m, in good 53 

agreement with that inferred from Argo data (Cerovečki and Giglio, 2016). From the annual 54 

mean perspective, the STMW is well reproduced by the numerical model along the 147°E 55 

transect in the North Pacific (Figure S1b). 56 
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Taxt S2. Sampling and analytical analyses 58 

The August 2018 cruise was made in the western North Pacific onboard R/V Tan Kah Kee 59 

from 16 August to 15 September 2018. Depth profiles of temperature and salinity (practical 60 

salinity scale of 1978) were determined with a calibrated conductivity-temperature-61 

depth/pressure (CTD) recorder (SBE911 plus, Sea-Bird Scientific, USA). Discrete water 62 

samples for dissolved oxygen (DO), dissolved inorganic carbon (DIC), total alkalinity (TA), 63 

carbon isotope of DIC (14C and 13C), and nutrients (nitrate, nitrite, phosphate and silicate) 64 

were collected mainly at depths of 5, 30, 50, 75, 100, 150, 200, 300, 500 and 1000 m using 10-65 

L Niskin bottles mounted with the CTD recorders, whereas samples from up to 2000-m depth 66 

were collected at only three stations.  67 

Water samples for DO analyses were collected, fixed, and titrated aboard following the 68 

classic Winkler procedure. Any possible nitrite interference in the DO titration was removed 69 

by adding 0.01% NaN3 during subsample fixation (Wong, 2012).  70 

For some DIC samples obtained in August 2018, radiocarbon measurement of DIC (14C) 71 

was performed using the Accelerator Mass Spectrometry (AMS) at the Center for Isotope 72 

Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and 73 

Technology in Qingdao, China. For 14C analysis, we used a DIC extraction method (Ge et al. 74 

2016) modified from McNichol et al. (1994), with an extraction efficiency >96%. Values of 75 

14C are reported as the modern fraction based on modern reference material, and the precision 76 

of 14C analysis was 4‰ or better (Ge et al., 2016). For 13C measurements, a water sample (2 77 

mL) was transferred into a 30 ml prevacuumed LABCO vial, acidified and equilibrated, and 78 

then automatically analyzed using a Thermo Delta-V Isotope Ratio Mass Spectrometer (IRMS) 79 

coupled with a Thermo Gasbench II system. The 13C values are reported in ‰ relative to the 80 

VPDB standard for DIC with a total uncertainty of ≤0.2‰. After 62 mL (60 mL for 14C and 81 

2 mL for 13C) seawater was taken from the DIC bottle using syringe, the DIC samples were 82 

immediately analysed to avoid the effect of gas exchange. 83 

Water samples for DIC and TA analyses were collected and stored in 250 mL borosilicate 84 

glass bottles following the procedure recommended by Dickson et al. (2007), Before sealed 85 

with greased (Apiezon-L) ground-glass stoppers, 1 mL of seawater was removed from each 86 

sample bottle to allow for thermal expansion, and 100 µL saturated HgCl2 was mixed into the 87 

water samples to halt biological activity. They were preserved at room temperature until 88 

determination. DIC was measured by an infrared CO2 detector-based DIC analyzer (AS-C3, 89 

Apollo SciTech Inc., United States), and TA was determined at 25C by the Gran acidimetric 90 



titration using a semi-automated titrator (AS-ALK2, Apollo SciTech Inc., United States). 91 

Reproducibility of DIC and TA measurements was at the 0.1% level (Li et al., 2022b). DIC and 92 

TA measurements were referred to certified reference materials from Andrew G. Dickson's lab 93 

(Scripps Institute of Oceanography, USA) at a precision of ±2 µmol kg−1. Methods for nutrient 94 

sampling and measurement are presented in details in Zheng and Zhai (2021). 95 
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Text S3. Crossover checks in 1993, 2005 and 2018 97 

Murata et al. (2009) suggested that the NTA value in 1993 had a systematic difference of 98 

~6 µmol kg−1 with the value in 2005, e.g., 2311±5 µmol kg−1 in 1993 and 2304±2 in 2005 in 99 

the layers of 150−300 m depth. In addition, the NTA values are nearly uniform with an average 100 

of 2299 ± 7 in upper 300 m in 2018 (Figure S6), in agreement with previously values reported 101 

by Millero et al. (1998) (2300±6 μmol kg−1) and Ono et al. (2019) (2297±5 μmol kg−1) in the 102 

western North Pacific. Therefore, we perform a systematic adjustment of the NTA in 1993 by 103 

subtracting 6 µmol kg−1. This adjustment may induce the CANT uncertainty of 3 µmol kg−1. 104 

To explore whether systematic adjustments of the AOU, DIC and TA in 1993, 2005 and 105 

2018 are necessary, we made crossover checks in deep water in the KR regime (25−34N, 106 

147−149E). The result shows that they were generally consistent with each other in the deep 107 

waters (Table S1). These comparisons suggest that the measured results of the carbonate system 108 

parameters are comparable with each other. 109 
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Text S4. Calculations of carbonate-related parameters 111 

Seawater Ωarag and total hydrogen ion scale pH (pHT; for simplicity, ‘pH’ in the following 112 

text refers to total scale) values were calculated from the concentrations of DIC, TA, 113 

temperature, salinity, phosphate, silicate and pressure data using the CO2SYS.xls program 114 

(Version 24) (Pelletier et al., 2015). Here Ωarag is defined as the product of calcium and 115 

carbonate ion concentrations divided by the stoichiometric solubility product for aragonite 116 

(Ksp*arag), i.e., arag = [Ca2+]×[CO3
2−]/Ksp*arag. The dissociation constant of HSO4

− was taken 117 

from Dickson (1990). The carbonic acid dissociation constants of Millero et al. (2006) and the 118 

total boron/salinity of Uppström (1974) were used to compute carbonate properties. The 119 

Ksp*arag values were taken from Mucci (1983), and Ca2+ concentrations were assumed to be 120 

proportional to salinity (Millero, 1979).  121 

To eliminate the effects of precipitation and evaporation on the seawater carbonate system, 122 

the salinity-normalized parameters NTA and NDIC were calculated using the expression NTA 123 

= TA/salinity × 35 and NDIC = DIC/salinity × 35, respectively. Apparent oxygen utilization 124 

(AOU) was calculated by subtracting the observed DO concentration from the saturated DO 125 

concentration (Benson and Krause, 1984), revealing the amount of oxygen consumed since 126 

seawater was last under the air–sea equilibrium.  127 

 128 

 129 

130 



Text S5. Comparison of anthropogenic CO2 using different methods 131 

The TrOCA method defines a quasi-conservative tracer, TrOCA (Tracer combining O2, 132 

DIC and TA). TrOCA is a reasonable tracer of water masses where changes in TrOCA over 133 

time are independent of biology and can be attributed to CANT penetration. The CANT can be 134 

estimated from the difference between current and pre-industrial TrOCA (TrOCA) divided by 135 

a stoichiometric coefficient. The simplicity of the TrOCA method relies on the fact that a simple 136 

formulation for TrOCA has been proposed based on θ and TA and thus an estimation of CANT 137 

using O2, DIC, TA and θ. The formulation proposed in Touratier et al. (2007) is used to estimate 138 

CANT as follows: 139 

 CANT = [O2+1.279(DIC−0.5TA)−exp(7.511−0.01087 − 7.81×105/TA2)]/1.279  (1) 140 

The overall uncertainty of the approach is 3−6 μmol kg−1 due to the random propagation 141 

of the uncertainties in the parameters (O2, DIC, TA and θ) and coefficients (Touratier et al., 142 

2007). 143 

To evaluate the validaty and precision of the TrOCA method in relation to the North 144 

Pacific, we compared it with the C* method used for calculating CANT (Sabine et al., 2002), 145 

which is updated from the original C* method developed by Gruber et al. (1996). In brief, the 146 

C* method can be expressed as follows:  147 

               CANT = C* − Cdiseq ,                             (2) 148 

               C* = Cm − C280 − Cbio ,                           (3) 149 

where the quasiconservative tracer (C*) is defined as the difference between the measured 150 

DIC (Cm) corrected for biology (Cbio) and the air-equilibrated DIC with a preindustrial 151 

atmosphere level of CO2 of 280 µatm at the water surface (C280); Cdiseq is the air−sea CO2 152 

disequilibrium expressed in terms of DIC, and the mean value of −6 ± 3 µmol kg−1 for the 153 

North Pacific taken from Sabine et al. (2002), was used to calculate the CANT; Cbio is the DIC 154 

change due to remineralization of organic matter and the dissolution of calcium carbonate 155 

particles and denitrification: 156 

Cbio = 117/170  AOU + 0.5 (TA − TA + 16/170  AOU)−106/104  (N*−N*mean), 157 

  (4) 158 

where 117/170 and 16/170 are the C/O2 and N/O2 ratios, respectively (Anderson and Sarmiento, 159 

1994); The denitrification term of 106/104  (N* − N*mean), where N* = (N − 16P + 2.90), was 160 

taken from Deutsch et al. (2001), whereas the mean N* (N*mean) value for our dataset was 0 161 

µmol kg−1; The preformed alkalinity (TA) is an estimate of the TA that the water had when it 162 



was last at the surface (Gruber et al., 1996). The TA is necessary to determine the C280 and is 163 

estimated for the North Pacific using a multiple linear regression of the surface alkalinity values 164 

to conservative tracers: 165 

TA = 148.7 + 61.36  Salinity + 16/170  (O2 + 170  P) − 0.582   ,   (5) 166 

where 170 is the O2/P ratio and  is potential temperature.  167 

The result showed that the CANT values using the two methods were consistent with each 168 

other at deviation levels of ±6 µmol kg−1 below 100 m (Figure S4), within the uncertainty of 169 

the TrOCA method (±6 μmol kg−1).  170 

171 



Text S6. Calculation of AOU-corrected pH and Ωarag 172 

To remove the effects from biological processes that might interrupt the decadal trends of 173 

pH and Ωarag, we conducted the calculation of AOU-corrected pH and Ωarag. First, we calculated 174 

the AOU-corrected DIC (DICAOU-corrected) as follows: 175 

DICAOU-corrected = DICobs − (AOUobs − AOUmean) × 117/170  176 

where DICobs and AOUobs are the observed DIC and AOU, respectively; AOUmean is the mean 177 

AOU value of 24 ± 11 mol kg−1 during 1993-2020, and 117/170 is the C/O2 ratio (Anderson 178 

and Sarmiento, 1994). AOU-corrected pH and Ωarag values were calculated from the DICAOU-179 

corrected, TA, temperature, salinity, phosphate, silicate and pressure data using the CO2SYS.xls 180 

program (Version 24) (Pelletier et al., 2015). 181 

 182 
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Text S7. Decomposing decadal changes in arag and pH 184 

To evaluate and quantify whether anthropogenic or natural sources were responsible for 185 

the progressive OA, we decomposed the decadal changes of STMW Ωarag (ΔΩarag) and pH (ΔpH) 186 

values during the two periods. Similar to the procedure of Murata & Shu (2012) and Murata et 187 

al. (2015), ΔΩarag was firstly decomposed into contributions of individual water chemistry 188 

parameter changes of NDIC (ΔNDIC), NTA (ΔNTA), temperature (ΔT) and salinity (ΔS). We 189 

further decomposed ΔNDIC into changes in CANT (ΔNDICAnth) and organic matter production 190 

and remineralization (ΔNDICOrg). Here ΔNDICAnth was the difference of CANT between two 191 

surveys based on Eq. (1) in Text S4; ΔNDICOrg was calculated as ΔNDICOrg = AOU×117/170, 192 

where AOU is the difference in AOU between two surveys. Therefore, we used this method 193 

to decompose Ω as follows, 194 

 ΔΩarag = (əΩ/əNDIC)ΔNDIC + (əΩ/əNTA)ΔNTA + (əΩ/əT)ΔT + (əΩ/əS)ΔS,    (6) 195 

                     ΔΩNDIC = (əΩ/əNDIC)ΔNDIC,                    (7) 196 

  ΔΩNDIC = (ΔNDICAnth/ΔNDIC)ΔΩNDIC + (ΔNDICOrg/ΔNDIC)ΔΩNDIC,      (8) 197 

                 ΔΩAnth = (ΔNDICAnth/ΔNDIC)ΔΩNDIC,                  (9) 198 

                   ΔΩOrg = (ΔNDICOrg/ΔNDIC)ΔΩNDIC.                  (10) 199 

Therefore,  200 

           ΔΩarag = ΔΩAnth + ΔΩOrg + ΔΩNTA + ΔΩΔT +ΔΩΔS+ residual.       (11) 201 

In Eq. (6), where the ΔΩarag, ΔT, ΔS ΔNDIC, and ΔNTA were calculated based on the 202 

differences in average water chemistry parameters between two surveys; the four partial 203 

derivative terms represent the contributions of changes of average water chemistry parameters 204 

on ΔΩarag, while keeping the other three parameters constant. In Eq. (7−10), we represent these 205 

contributions using the terms: ΔΩNDIC = (əΩ/əNDIC)ΔNDIC, ΔΩAnth =  206 

(ΔNDICAnth/ΔNDIC)ΔΩNDIC, ΔΩOrg = (ΔNDICOrg/ΔNDIC)ΔΩNDIC, ΔΩNTA = 207 

(əΩ/əNTA)ΔNTA, ΔΩΔT = (əΩ/əT)ΔT, and ΔΩΔS = (əΩ/əS)ΔS. We applied this procedure to 208 

the values of each property averaged in the STMW layers of 150 m (25.1σθ), 200 m (25.2σθ) 209 

and 300 m (25.4σθ) in the KR region during 1993-2005 and 2005-2018. In a similar manner to 210 

the decomposition of ΔΩarag, we also decomposed ΔpH. Note that, the effects of precipitation 211 

and dissolution of CaCO3 on Ωarag
 and pH were generally considered minor in the upper ~400 212 



m of the western subtropical gyre (Murata & Shu, 2012; Murata et al., 2015) and were 213 

attributed to the residual. 214 

 215 

216 



Table S1. Crossover checks in deep water (~1000 m) in the Kuroshio Recirculation regime (25−32N, 217 
147−149E). TA values in 1993 have been adjusted according to Text S3. 218 

Time 
AOU 

(µmol kg−1) 

DIC 

(µmol kg−1) 

TA 

(µmol kg−1) 

NTA 

(µmol kg−1) 

14C 

(‰) 

13C 

(‰) 

Aug 2018 269 ± 7 2332 ± 13 2346 ± 11 2398 ± 8 −169 ± 37 −0.38 ± 0.04 

May 2005 266 ± 9 2327 ± 13 2344 ± 10 2396 ± 7 −171 ± 24 −0.44 ± 0.04 

Ocotber 1993 266 ± 14 2327 ± 16 2344 ± 11 2395 ± 8 −167 ± 27 −0.41 ± 0.06 

 219 
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Table S2. Rates of the decadal trends in CANT, pH and Ωarag when using 3 cruises (1993, 2005 and 2018) 222 
or 124 cruises (26-year GLODAP and JMA datasets during 1993-2020) regularly conducted in the North 223 
Pacific subtropical mode water.  224 

Periods Dataset 

Rate of CANT 

increase (µmol 

kg−1 yr−1) 

Rate of Ωarag 

decrease (yr−1) 

Rate of pH 

decrease (yr−1) 

1993-2005 1993 and 2005 0.76 ± 0.07 -0.0078 ± 0.0024 -0.0011 ± 0.0002 

1993-2005  GLODAP 0.68 ± 0.31 -0.0074 ± 0.0067 -0.0015 ± 0.0008 

2005-2018 2005 and 2018 1.76 ± 0.06 -0.0242 ± 0.002 -0.0050 ± 0.0003 

2005-2020 GLODAP and JMA 1.51 ± 0.06 -0.0176 ± 0.0029 -0.0028 ± 0.0005 

 225 

  226 



Table S3. Rates of the NDIC, CANT, Ωarag and pH changes for different periods in KR surface waters 227 
and STMW. Note that the rates of NDIC, Ωarag and pH in KR surface waters are from Ono et al. (2019), 228 
and the rate of NDIC change is entirely attributed to the CANT change. The rates in the STMW refer to 229 
Figure 4 and Figure S7. p <0.05 indicates statistical significance at the 95% confidence level. 230 

Periods Water 

Rate of NDIC 

increase 

(µmol kg−1 yr−1) 

Rate of CANT 

increase 

(µmol kg−1 

yr−1) 

Rate of Ωarag 

decrease 

(yr−1) 

Rate of pH 

decrease 

(yr−1) 

1993-2005 Surface 0.8 (p  0.05) / -0.008 (p  0.05) -0.0014 (p  0.05) 

1993-2005 STMW 0.8 (p = 0.19) 0.7 (p  0.05) -0.0074 (p = 0.29) -0.0015 (p = 0.12) 

2005-2017 Surface 1.6 (p  0.05) / -0.018 (p  0.05) -0.0028 (p  0.05) 

2005-2017/2020 STMW 1.8 (p  0.01) 1.5 (p  0.05) -0.0176 (p  0.01) -0.0028 (p  0.01) 

 231 

232 



 233 
 234 

 235 
Figure S1. (a) Different criterions to define the STMW along the 147°E transect in the North Pacific. 236 
Color fills denote the vertical derivative of the potential temperature, dT/dz. Pink, purple and green 237 
lines represent contour lines of potential temperature, density and PV, respectively. White lines denote 238 
the dT/dz criterion adopted in Tsubouchi et al. (2016). The data is produced by a global run of the 239 
MASNUM model detailed in text. (b) Latitudinal variations of the annual mean potential density () and 240 
the PV contours of 2  10-10 m-1 s-1 (white contours) along the 147°E transect in the North Pacific produced 241 
by the MASNUM model. 242 
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 247 

Figure S2. Latitudinal distributions of the potential density () in the STMW layers of 150m, 248 

200m and 300m (24.8−25.5σθ) along the 147−149E sections. 249 
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 252 

 253 
Figure S3. (a−b) All stations of CANT data in the two STMW distribution regions mainly along 149E 254 
(145E−155E, 25N−34N) and 137E (135E−140E, 24N−32N) during 1993−2018 from 255 
GLODAPv2.2021 and during 2019−2020 from the Japan Meteorological Agency (JMA) website 256 
(https://www.data.jma.go.jp). (c−d) Depths of STMW CANT data in 150−300m in the two regions. (e−f) 257 
Potential density (σθ) of STMW CANT data within 150−300m and 24.8−25.5σθ in the two regions. 258 
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 261 
 262 
 263 
Figure S4. Comparison of CANT values calculated from TrOCA method (TrOCA_CANT) and C* method 264 
(C*_CANT) below 100 m in August 2018, May 2005 and October 1993 along 147−149E (20−40N) in 265 
the western North Pacific. 266 
 267 
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 270 
 271 
 272 
Figure. S5. Latitudinal variations in potential temperature (), salinity, AOU and TA along the 147E transect 273 
in August 2018, drawn with Ocean Data View software (Schlitzer, R., 2015, Ocean Data View 4, 274 
http://odv.awi.de). Black contours represent the potential density. KF = Kuroshio front, SF = subtropical 275 
front, KR = Kuroshio Recirculation, STMW = subtropical mode water. 276 
 277 

278 



 279 

 280 
 281 
Figure S6. (a−d) Vertical profiles of water AOU, DIC, TA and salinity-normalized TA (NTA) in August 2018 282 
(red circles), May 2005 (Cyan rectangles) and October 1993 (yellow triangles) in upper 2000 m depth south 283 
of the Kuroshio Extention (147−149E, 20N−34N). 284 
 285 
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 288 
 289 
Figure S7. Temporal changes in salinity, AOU, and salinity-normalized TA (NTA) and DIC (NDIC) in the 290 
STMW (200−250 m and 24.8−25.5σθ) during 1993−2020 around the 149E section (25−34N, 145−155E) 291 
and 137E section (24−32N, 135−140E). The grey dots represent the raw data, and the blue and red dots 292 
indicate the annual means. The black lines represent linear regression to all annual mean data during 293 
1993−2005 and 2005−2020; slopes (mean ± standard errors) indicate rates of change; p <0.05 indicates 294 
statistical significance at the 95% confidence level. 295 
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 298 
 299 
Figure S8. Same as Figure S7 but for the AOU-corrected (to the mean AOU value of 24±11 mol kg-1 300 

during 1993−2020) Ωarag and pH based on Text S7. 301 
 302 
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 306 
 307 
Figure S9. Same as Figure S7 but for the STMW within 150−300 m and 24.8−25.5σθ. 308 
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 311 

 312 
Figure S10. Wintertime (February) sea surface temperature in the main STMW formation region south of 313 
Kuroshio Extention (Kuroshio Recirculation region: 30−34N, 145−160E) during 1993−2017. The 314 
NOAA Extended Reconstructed Sea Surface Temperature (ERSST) v4 is obtained from the website 315 
(http://www.ncdc.noaa.gov). 316 
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