

1

2 *Geophysical Research Letters*

3 Supporting Information for

4 **Accelerated accumulation of anthropogenic CO₂ drives rapid acidification
5 in the North Pacific subtropical mode water during 1993–2020**6 Cheng-long Li^{1,2,3}, Yingxu Wu¹, Xuchen Wang⁴, Richard A. Feely⁵, Wei-Jun Cai⁶, Lei Han⁷,
7 Xiaopei Lin^{8,9}, Di Qi^{1,3*}8 ¹Polar and Marine Research Institute, Jimei University, Xiamen, China.9 ²Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China.10 ³Third Institute of Oceanography, Ministry of Natural Resources (MNR), Xiamen, China11 ⁴Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean
12 University of China, Qingdao 266100, China.13 ⁵Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric
14 Administration, Seattle, WA 98115–6349, USA.15 ⁶School of Marine Science and Policy, University of Delaware, Newark, DE, USA16 ⁷China-ASEAN College of Marine Science and Technology, Xiamen University Malaysia,
17 Selangor, Malaysia18 ⁸Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and
19 Physical Oceanography Laboratory, Ocean University of China, Qingdao, China20 ⁹Qingdao National Laboratory for Marine Science and Technology, Qingdao, China21 *Corresponding author. Di Qi: qidi@jmu.edu.cn

22

23 **Contents of this file**

24 Text S1 to S7

25 Table S1 to S3

26 Figure S1 to S10

27

28 **Introduction**29 The supporting information includes 7 text, 3 table, and 10 figures presenting supporting
30 analyses of data from the relevant dataset.

31

32 **Text S1. Simulation of the North Pacific Subtropical Mode Water**

33 In order to examine the possible mechanism of the subducted C_{ANT} , the characteristics of
34 the North Pacific Subtropical Mode water (STMW) are simulated by a three-dimensional,
35 primitive equation, numerical ocean circulation model MASNUM. This model adopts most of
36 the numerical schemes of the Princeton Ocean Model (POM) but uses a two-time-level
37 algorithm for time stepping. This modification helps remove the computational mode inherent
38 in the three-time-level scheme such as the leapfrog one adopted by POM and many other ocean
39 circulation models (Kantha & Clayson, 2000). It was exemplified that the MASNUM model,
40 besides inheriting the numerical features of POM in other aspects, exhibited better performance
41 in numerical stability. Details of the MASNUM model in both global and regional simulations,
42 comparisons with other mainstream models and its ensuring development can be found in Han
43 (2014) and Zhuang et al. (2016, 2018).

44 In this case, a global simulation with horizontal resolution of 0.25×0.25 degrees and 31
45 sigma levels with MASNUM is run under the GEBCO 08 topography (www.gebco.net). The
46 simulation is started from rest with an initial temperature and salinity distribution from WOA09
47 (Locarnini et al., 2010; Antonov et al., 2010) and forced by surface fluxes of the NCEP-DOE
48 AMIP-II Reanalysis (Kanamitsu et al., 2002). The model is integrated until the total kinetic
49 energy of the global ocean reaches a quasi-equilibrium state (Han, 2014).

50 An example of how different criterions (θ , σ_0 , potential vorticity) work to define the
51 STMW is demonstrated for a snapshot in August 2018 from the simulation by MASNUM along
52 the 147°E transect in the North Pacific (Figure 1a; Figure S1a in Supporting Information S1;
53 Li et al., 2022a). This water mass appears around 30°N at the depths of 100–400 m, in good
54 agreement with that inferred from Argo data (Cerovečki and Giglio, 2016). From the annual
55 mean perspective, the STMW is well reproduced by the numerical model along the 147°E
56 transect in the North Pacific (Figure S1b).

58 **Text S2. Sampling and analytical analyses**

59 The August 2018 cruise was made in the western North Pacific onboard R/V *Tan Kah Kee*
60 from 16 August to 15 September 2018. Depth profiles of temperature and salinity (practical
61 salinity scale of 1978) were determined with a calibrated conductivity-temperature-
62 depth/pressure (CTD) recorder (SBE911 plus, Sea-Bird Scientific, USA). Discrete water
63 samples for dissolved oxygen (DO), dissolved inorganic carbon (DIC), total alkalinity (TA),
64 carbon isotope of DIC ($\Delta^{14}\text{C}$ and $\delta^{13}\text{C}$), and nutrients (nitrate, nitrite, phosphate and silicate)
65 were collected mainly at depths of 5, 30, 50, 75, 100, 150, 200, 300, 500 and 1000 m using 10-
66 L Niskin bottles mounted with the CTD recorders, whereas samples from up to 2000-m depth
67 were collected at only three stations.

68 Water samples for DO analyses were collected, fixed, and titrated aboard following the
69 classic Winkler procedure. Any possible nitrite interference in the DO titration was removed
70 by adding 0.01% NaN_3 during subsample fixation (Wong, 2012).

71 For some DIC samples obtained in August 2018, radiocarbon measurement of DIC ($\Delta^{14}\text{C}$)
72 was performed using the Accelerator Mass Spectrometry (AMS) at the Center for Isotope
73 Geochemistry and Geochronology, Qingdao National Laboratory for Marine Science and
74 Technology in Qingdao, China. For ^{14}C analysis, we used a DIC extraction method (Ge et al.
75 2016) modified from McNichol et al. (1994), with an extraction efficiency >96%. Values of
76 $\Delta^{14}\text{C}$ are reported as the modern fraction based on modern reference material, and the precision
77 of $\Delta^{14}\text{C}$ analysis was 4‰ or better (Ge et al., 2016). For $\delta^{13}\text{C}$ measurements, a water sample (2
78 mL) was transferred into a 30 ml prevacuumed LABCO vial, acidified and equilibrated, and
79 then automatically analyzed using a Thermo Delta-V Isotope Ratio Mass Spectrometer (IRMS)
80 coupled with a Thermo Gasbench II system. The $\delta^{13}\text{C}$ values are reported in ‰ relative to the
81 VPDB standard for DIC with a total uncertainty of $\leq 0.2\text{‰}$. After 62 mL (60 mL for $\Delta^{14}\text{C}$ and
82 2 mL for $\delta^{13}\text{C}$) seawater was taken from the DIC bottle using syringe, the DIC samples were
83 immediately analysed to avoid the effect of gas exchange.

84 Water samples for DIC and TA analyses were collected and stored in 250 mL borosilicate
85 glass bottles following the procedure recommended by Dickson et al. (2007). Before sealed
86 with greased (Apiezon-L) ground-glass stoppers, 1 mL of seawater was removed from each
87 sample bottle to allow for thermal expansion, and 100 μL saturated HgCl_2 was mixed into the
88 water samples to halt biological activity. They were preserved at room temperature until
89 determination. DIC was measured by an infrared CO_2 detector-based DIC analyzer (AS-C3,
90 Apollo SciTech Inc., United States), and TA was determined at 25°C by the Gran acidimetric

91 titration using a semi-automated titrator (AS-ALK2, Apollo SciTech Inc., United States).
92 Reproducibility of DIC and TA measurements was at the 0.1% level ([Li et al., 2022b](#)). DIC and
93 TA measurements were referred to certified reference materials from Andrew G. Dickson's lab
94 (Scripps Institute of Oceanography, USA) at a precision of $\pm 2 \mu\text{mol kg}^{-1}$. Methods for nutrient
95 sampling and measurement are presented in details in [Zheng and Zhai \(2021\)](#).

96

97 **Text S3. Crossover checks in 1993, 2005 and 2018**

98 [Murata et al. \(2009\)](#) suggested that the NTA value in 1993 had a systematic difference of
99 $\sim 6 \text{ } \mu\text{mol kg}^{-1}$ with the value in 2005, e.g., $2311 \pm 5 \text{ } \mu\text{mol kg}^{-1}$ in 1993 and 2304 ± 2 in 2005 in
100 the layers of 150–300 m depth. In addition, the NTA values are nearly uniform with an average
101 of 2299 ± 7 in upper 300 m in 2018 ([Figure S6](#)), in agreement with previously values reported
102 by [Millero et al. \(1998\)](#) ($2300 \pm 6 \text{ } \mu\text{mol kg}^{-1}$) and [Ono et al. \(2019\)](#) ($2297 \pm 5 \text{ } \mu\text{mol kg}^{-1}$) in the
103 western North Pacific. Therefore, we perform a systematic adjustment of the NTA in 1993 by
104 subtracting $6 \text{ } \mu\text{mol kg}^{-1}$. This adjustment may induce the C_{ANT} uncertainty of $3 \text{ } \mu\text{mol kg}^{-1}$.

105 To explore whether systematic adjustments of the AOU, DIC and TA in 1993, 2005 and
106 2018 are necessary, we made crossover checks in deep water in the KR regime (25° – 34°N ,
107 147° – 149°E). The result shows that they were generally consistent with each other in the deep
108 waters ([Table S1](#)). These comparisons suggest that the measured results of the carbonate system
109 parameters are comparable with each other.

110

111 **Text S4. Calculations of carbonate-related parameters**

112 Seawater Ω_{arag} and total hydrogen ion scale pH (pH_T ; for simplicity, ‘pH’ in the following
113 text refers to total scale) values were calculated from the concentrations of DIC, TA,
114 temperature, salinity, phosphate, silicate and pressure data using the CO2SYS.xls program
115 (Version 24) ([Pelletier et al., 2015](#)). Here Ω_{arag} is defined as the product of calcium and
116 carbonate ion concentrations divided by the stoichiometric solubility product for aragonite
117 ($K_{\text{sp}}^*_{\text{arag}}$), i.e., $\Omega_{\text{arag}} = [\text{Ca}^{2+}] \times [\text{CO}_3^{2-}] / K_{\text{sp}}^*_{\text{arag}}$. The dissociation constant of HSO_4^- was taken
118 from [Dickson \(1990\)](#). The carbonic acid dissociation constants of [Millero et al. \(2006\)](#) and the
119 total boron/salinity of [Uppström \(1974\)](#) were used to compute carbonate properties. The
120 $K_{\text{sp}}^*_{\text{arag}}$ values were taken from [Mucci \(1983\)](#), and Ca^{2+} concentrations were assumed to be
121 proportional to salinity ([Millero, 1979](#)).

122 To eliminate the effects of precipitation and evaporation on the seawater carbonate system,
123 the salinity-normalized parameters NTA and NDIC were calculated using the expression NTA
124 = TA/salinity $\times 35$ and NDIC = DIC/salinity $\times 35$, respectively. Apparent oxygen utilization
125 (AOU) was calculated by subtracting the observed DO concentration from the saturated DO
126 concentration ([Benson and Krause, 1984](#)), revealing the amount of oxygen consumed since
127 seawater was last under the air-sea equilibrium.

128

129

130

131 **Text S5. Comparison of anthropogenic CO₂ using different methods**

132 The TrOCA method defines a quasi-conservative tracer, TrOCA (Tracer combining O₂,
133 DIC and TA). TrOCA is a reasonable tracer of water masses where changes in TrOCA over
134 time are independent of biology and can be attributed to C_{ANT} penetration. The C_{ANT} can be
135 estimated from the difference between current and pre-industrial TrOCA (TrOCA°) divided by
136 a stoichiometric coefficient. The simplicity of the TrOCA method relies on the fact that a simple
137 formulation for TrOCA° has been proposed based on θ and TA and thus an estimation of C_{ANT}
138 using O₂, DIC, TA and θ . The formulation proposed in [Touratier et al. \(2007\)](#) is used to estimate
139 C_{ANT} as follows:

140
$$C_{ANT} = [O_2 + 1.279(DIC - 0.5TA) - \exp(7.511 - 0.01087\theta - 7.81 \times 10^5/TA^2)]/1.279 \quad (1)$$

141 The overall uncertainty of the approach is 3–6 $\mu\text{mol kg}^{-1}$ due to the random propagation
142 of the uncertainties in the parameters (O₂, DIC, TA and θ) and coefficients ([Touratier et al.,](#)
143 [2007](#)).

144 To evaluate the validity and precision of the TrOCA method in relation to the North
145 Pacific, we compared it with the ΔC^* method used for calculating C_{ANT} ([Sabine et al., 2002](#)),
146 which is updated from the original ΔC^* method developed by [Gruber et al. \(1996\)](#). In brief, the
147 ΔC^* method can be expressed as follows:

148
$$C_{ANT} = \Delta C^* - \Delta C_{diseq}, \quad (2)$$

149
$$\Delta C^* = C_m - C_{280} - \Delta C_{bio}, \quad (3)$$

150 where the quasiconservative tracer (ΔC^*) is defined as the difference between the measured
151 DIC (C_m) corrected for biology (ΔC_{bio}) and the air-equilibrated DIC with a preindustrial
152 atmosphere level of CO₂ of 280 μatm at the water surface (C_{280}); ΔC_{diseq} is the air-sea CO₂
153 disequilibrium expressed in terms of DIC, and the mean value of $-6 \pm 3 \mu\text{mol kg}^{-1}$ for the
154 North Pacific taken from [Sabine et al. \(2002\)](#), was used to calculate the C_{ANT}; ΔC_{bio} is the DIC
155 change due to remineralization of organic matter and the dissolution of calcium carbonate
156 particles and denitrification:

157
$$\Delta C_{bio} = 117/170 \times AOU + 0.5 (TA - TA^\circ + 16/170 \times AOU) - 106/104 \times (N^* - N^*_{mean}), \quad (4)$$

159 where 117/170 and 16/170 are the C/O₂ and N/O₂ ratios, respectively ([Anderson and Sarmiento,](#)
160 [1994](#)); The denitrification term of 106/104 \times (N* – N*_{mean}), where N* = (N – 16P + 2.90), was
161 taken from [Deutsch et al. \(2001\)](#), whereas the mean N* (N*_{mean}) value for our dataset was 0
162 $\mu\text{mol kg}^{-1}$; The preformed alkalinity (TA°) is an estimate of the TA that the water had when it

163 was last at the surface (Gruber et al., 1996). The TA° is necessary to determine the C_{280} and is
164 estimated for the North Pacific using a multiple linear regression of the surface alkalinity values
165 to conservative tracers:

166
$$\text{TA}^\circ = 148.7 + 61.36 \times \text{Salinity} + 16/170 \times (\text{O}_2 + 170 \times \text{P}) - 0.582 \times \theta, \quad (5)$$

167 where 170 is the O_2/P ratio and θ is potential temperature.

168 The result showed that the C_{ANT} values using the two methods were consistent with each
169 other at deviation levels of $\pm 6 \mu\text{mol kg}^{-1}$ below 100 m (Figure S4), within the uncertainty of
170 the TrOCA method ($\pm 6 \mu\text{mol kg}^{-1}$).

171

172 **Text S6. Calculation of AOU-corrected pH and Ω_{arag}**

173 To remove the effects from biological processes that might interrupt the decadal trends of
174 pH and Ω_{arag} , we conducted the calculation of AOU-corrected pH and Ω_{arag} . First, we calculated
175 the AOU-corrected DIC ($\text{DIC}^{\text{AOU-corrected}}$) as follows:

176
$$\text{DIC}^{\text{AOU-corrected}} = \text{DIC}_{\text{obs}} - (\text{AOU}_{\text{obs}} - \text{AOU}^{\text{mean}}) \times 117/170$$

177 where DIC_{obs} and AOU_{obs} are the observed DIC and AOU, respectively; AOU^{mean} is the mean
178 AOU value of $24 \pm 11 \mu\text{mol kg}^{-1}$ during 1993-2020, and 117/170 is the C/O₂ ratio ([Anderson
179 and Sarmiento, 1994](#)). AOU-corrected pH and Ω_{arag} values were calculated from the $\text{DIC}^{\text{AOU-}}$
180 corrected , TA, temperature, salinity, phosphate, silicate and pressure data using the CO2SYS.xls
181 program (Version 24) ([Pelletier et al., 2015](#)).

182

183

184 **Text S7. Decomposing decadal changes in Ω_{arag} and pH**

185 To evaluate and quantify whether anthropogenic or natural sources were responsible for
 186 the progressive OA, we decomposed the decadal changes of STMW Ω_{arag} ($\Delta\Omega_{\text{arag}}$) and pH (ΔpH)
 187 values during the two periods. Similar to the procedure of [Murata & Shu \(2012\)](#) and [Murata et](#)
 188 [al. \(2015\)](#), $\Delta\Omega_{\text{arag}}$ was firstly decomposed into contributions of individual water chemistry
 189 parameter changes of NDIC (ΔNDIC), NTA (ΔNTA), temperature (ΔT) and salinity (ΔS). We
 190 further decomposed ΔNDIC into changes in C_{ANT} ($\Delta\text{NDIC}^{\text{Anth}}$) and organic matter production
 191 and remineralization ($\Delta\text{NDIC}^{\text{Org}}$). Here $\Delta\text{NDIC}^{\text{Anth}}$ was the difference of C_{ANT} between two
 192 surveys based on Eq. (1) in Text S4; $\Delta\text{NDIC}^{\text{Org}}$ was calculated as $\Delta\text{NDIC}^{\text{Org}} = \Delta\text{AOU} \times 117/170$,
 193 where ΔAOU is the difference in AOU between two surveys. Therefore, we used this method
 194 to decompose $\Delta\Omega$ as follows,

195
$$\Delta\Omega_{\text{arag}} = (\partial\Omega/\partial\text{NDIC})\Delta\text{NDIC} + (\partial\Omega/\partial\text{NTA})\Delta\text{NTA} + (\partial\Omega/\partial T)\Delta T + (\partial\Omega/\partial S)\Delta S, \quad (6)$$

196
$$\Delta\Omega^{\Delta\text{NDIC}} = (\partial\Omega/\partial\text{NDIC})\Delta\text{NDIC}, \quad (7)$$

197
$$\Delta\Omega^{\Delta\text{NDIC}} = (\Delta\text{NDIC}^{\text{Anth}}/\Delta\text{NDIC})\Delta\Omega^{\Delta\text{NDIC}} + (\Delta\text{NDIC}^{\text{Org}}/\Delta\text{NDIC})\Delta\Omega^{\Delta\text{NDIC}}, \quad (8)$$

198
$$\Delta\Omega^{\text{Anth}} = (\Delta\text{NDIC}^{\text{Anth}}/\Delta\text{NDIC})\Delta\Omega^{\Delta\text{NDIC}}, \quad (9)$$

199
$$\Delta\Omega^{\text{Org}} = (\Delta\text{NDIC}^{\text{Org}}/\Delta\text{NDIC})\Delta\Omega^{\Delta\text{NDIC}}. \quad (10)$$

200 Therefore,

201
$$\Delta\Omega_{\text{arag}} = \Delta\Omega^{\text{Anth}} + \Delta\Omega^{\text{Org}} + \Delta\Omega^{\Delta\text{NTA}} + \Delta\Omega^{\Delta T} + \Delta\Omega^{\Delta S} + \text{residual}. \quad (11)$$

202 In Eq. (6), where the $\Delta\Omega_{\text{arag}}$, ΔT , ΔS ΔNDIC , and ΔNTA were calculated based on the
 203 differences in average water chemistry parameters between two surveys; the four partial
 204 derivative terms represent the contributions of changes of average water chemistry parameters
 205 on $\Delta\Omega_{\text{arag}}$, while keeping the other three parameters constant. In Eq. (7–10), we represent these
 206 contributions using the terms: $\Delta\Omega^{\Delta\text{NDIC}} = (\partial\Omega/\partial\text{NDIC})\Delta\text{NDIC}$, $\Delta\Omega^{\text{Anth}} =$
 207 $(\Delta\text{NDIC}^{\text{Anth}}/\Delta\text{NDIC})\Delta\Omega^{\Delta\text{NDIC}}$, $\Delta\Omega^{\text{Org}} = (\Delta\text{NDIC}^{\text{Org}}/\Delta\text{NDIC})\Delta\Omega^{\Delta\text{NDIC}}$, $\Delta\Omega^{\Delta\text{NTA}} =$
 208 $(\partial\Omega/\partial\text{NTA})\Delta\text{NTA}$, $\Delta\Omega^{\Delta T} = (\partial\Omega/\partial T)\Delta T$, and $\Delta\Omega^{\Delta S} = (\partial\Omega/\partial S)\Delta S$. We applied this procedure to
 209 the values of each property averaged in the STMW layers of 150 m ($25.1\sigma_0$), 200 m ($25.2\sigma_0$)
 210 and 300 m ($25.4\sigma_0$) in the KR region during 1993–2005 and 2005–2018. In a similar manner to
 211 the decomposition of $\Delta\Omega_{\text{arag}}$, we also decomposed ΔpH . Note that, the effects of precipitation
 212 and dissolution of CaCO₃ on Ω_{arag} and pH were generally considered minor in the upper ~400

213 m of the western subtropical gyre (Murata & Shu, 2012; Murata et al., 2015) and were
214 attributed to the residual.

215

216

217 **Table S1.** Crossover checks in deep water (\sim 1000 m) in the Kuroshio Recirculation regime (25–32°N,
 218 147–149°E). TA values in 1993 have been adjusted according to Text S3.

Time	AOU ($\mu\text{mol kg}^{-1}$)	DIC ($\mu\text{mol kg}^{-1}$)	TA ($\mu\text{mol kg}^{-1}$)	NTA ($\mu\text{mol kg}^{-1}$)	$\Delta^{14}\text{C}$ (\textperthousand)	$\delta^{13}\text{C}$ (\textperthousand)
Aug 2018	269 \pm 7	2332 \pm 13	2346 \pm 11	2398 \pm 8	-169 \pm 37	-0.38 \pm 0.04
May 2005	266 \pm 9	2327 \pm 13	2344 \pm 10	2396 \pm 7	-171 \pm 24	-0.44 \pm 0.04
Ocotber 1993	266 \pm 14	2327 \pm 16	2344 \pm 11	2395 \pm 8	-167 \pm 27	-0.41 \pm 0.06

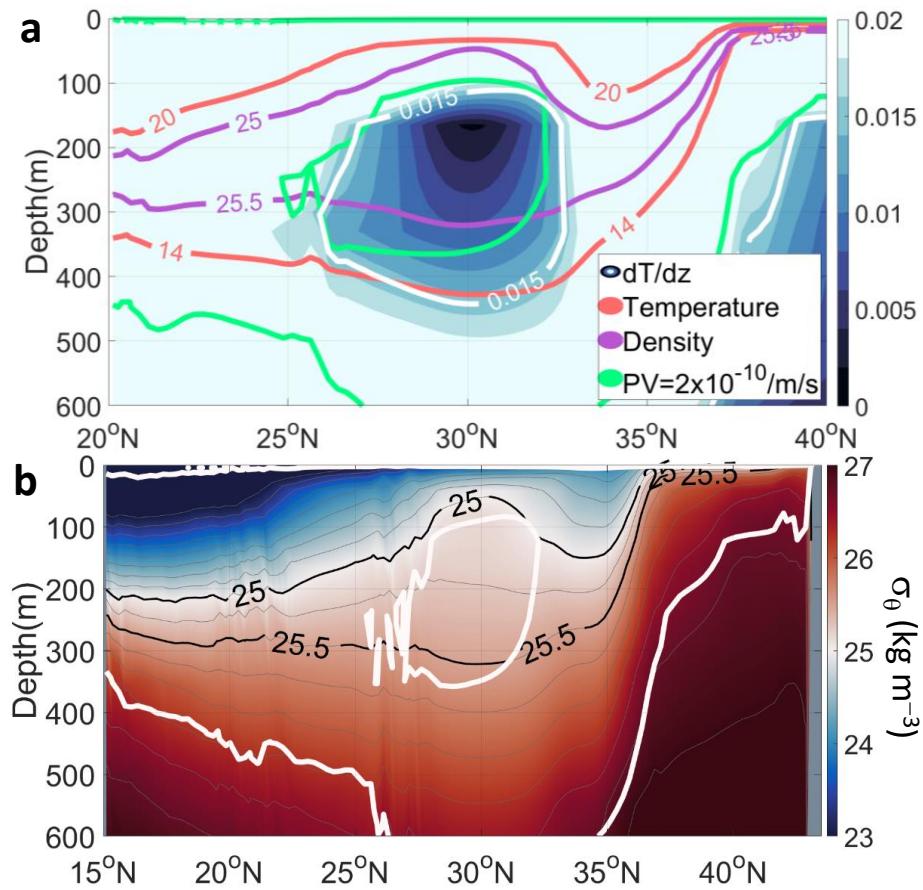
219

220

221

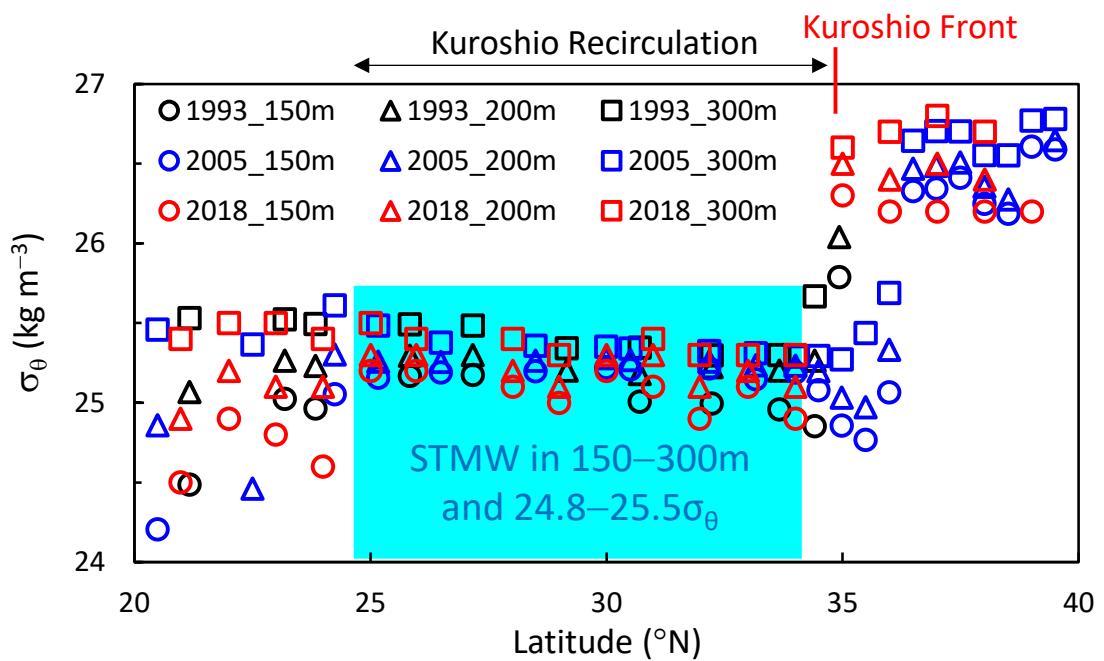
222 **Table S2.** Rates of the decadal trends in C_{ANT} , pH and Ω_{arag} when using 3 cruises (1993, 2005 and 2018)
 223 or 124 cruises (26-year GLODAP and JMA datasets during 1993-2020) regularly conducted in the North
 224 Pacific subtropical mode water.

Periods	Dataset	Rate of C_{ANT} increase (μmol $\text{kg}^{-1} \text{yr}^{-1}$)	Rate of Ω_{arag} decrease (yr^{-1})	Rate of pH decrease (yr^{-1})
1993-2005	1993 and 2005	0.76 ± 0.07	-0.0078 ± 0.0024	-0.0011 ± 0.0002
1993-2005	GLODAP	0.68 ± 0.31	-0.0074 ± 0.0067	-0.0015 ± 0.0008
2005-2018	2005 and 2018	1.76 ± 0.06	-0.0242 ± 0.002	-0.0050 ± 0.0003
2005-2020	GLODAP and JMA	1.51 ± 0.06	-0.0176 ± 0.0029	-0.0028 ± 0.0005

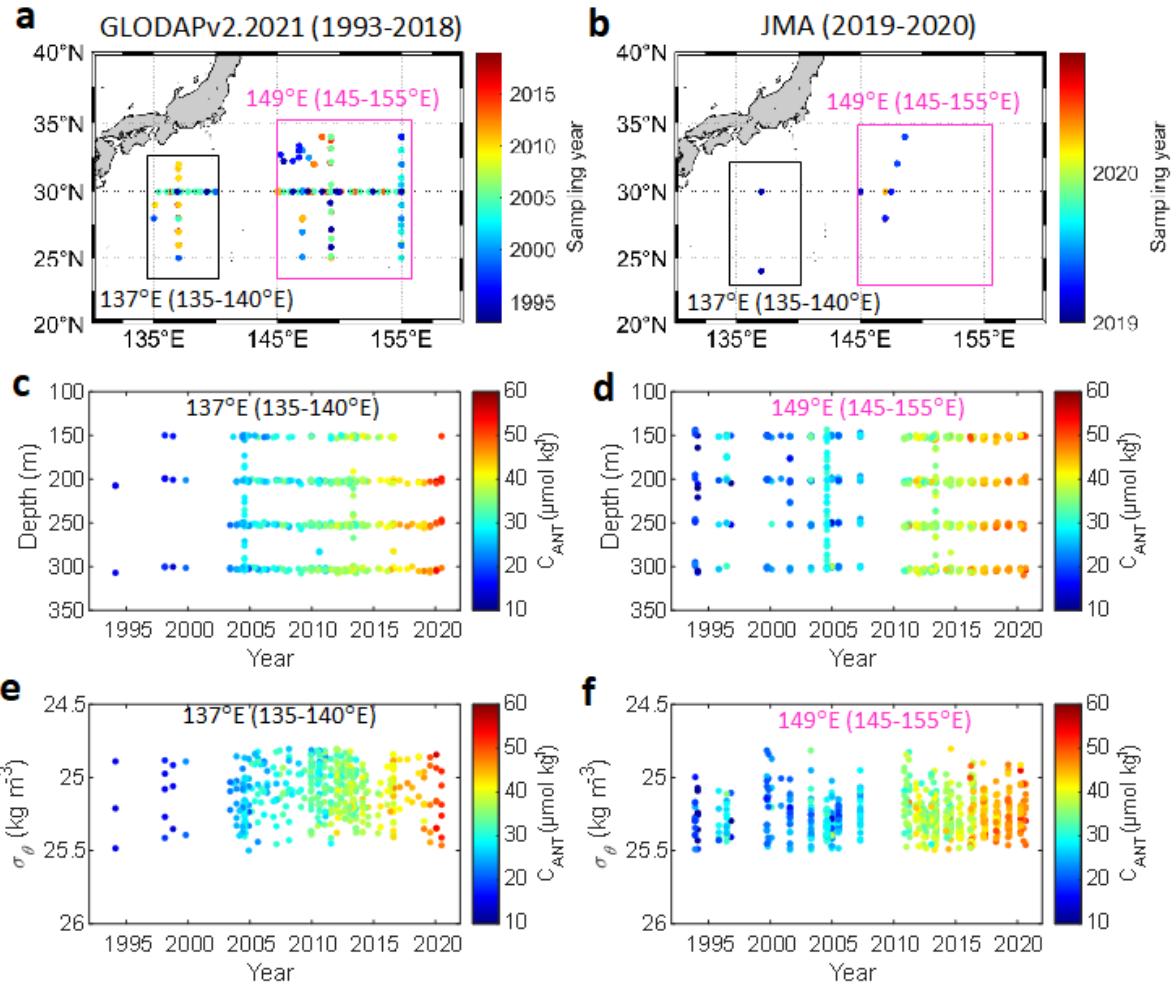

225

226

227 **Table S3.** Rates of the NDIC, C_{ANT} , Ω_{arag} and pH changes for different periods in KR surface waters
 228 and STMW. Note that the rates of NDIC, Ω_{arag} and pH in KR surface waters are from Ono et al. (2019),
 229 and the rate of NDIC change is entirely attributed to the C_{ANT} change. The rates in the STMW refer to
 230 Figure 4 and Figure S7. $p < 0.05$ indicates statistical significance at the 95% confidence level.

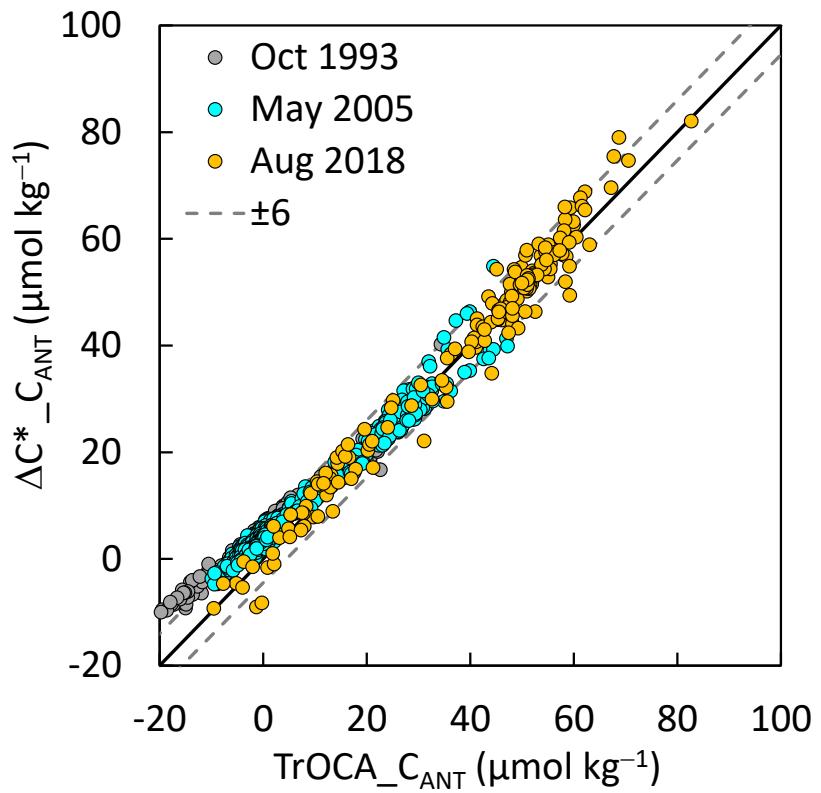

Periods	Water	Rate of NDIC increase ($\mu\text{mol kg}^{-1} \text{yr}^{-1}$)	Rate of C_{ANT} increase ($\mu\text{mol kg}^{-1} \text{yr}^{-1}$)	Rate of Ω_{arag} decrease (yr^{-1})	Rate of pH decrease (yr^{-1})
1993-2005	Surface	0.8 ($p < 0.05$)	/	-0.008 ($p < 0.05$)	-0.0014 ($p < 0.05$)
1993-2005	STMW	0.8 ($p = 0.19$)	0.7 ($p < 0.05$)	-0.0074 ($p = 0.29$)	-0.0015 ($p = 0.12$)
2005-2017	Surface	1.6 ($p < 0.05$)	/	-0.018 ($p < 0.05$)	-0.0028 ($p < 0.05$)
2005-2017/2020	STMW	1.8 ($p < 0.01$)	1.5 ($p < 0.05$)	-0.0176 ($p < 0.01$)	-0.0028 ($p < 0.01$)

231
 232

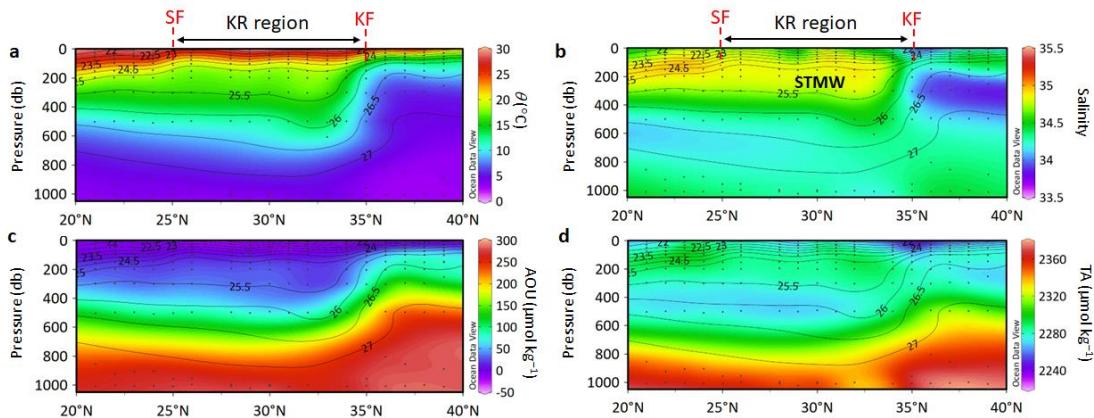


233
234
235
236
237
238
239
240
241
242
243
244

Figure S1. (a) Different criterions to define the STMW along the 147°E transect in the North Pacific. Color fills denote the vertical derivative of the potential temperature, dT/dz . Pink, purple and green lines represent contour lines of potential temperature, density and PV, respectively. White lines denote the dT/dz criterion adopted in Tsubouchi et al. (2016). The data is produced by a global run of the MASNUM model detailed in text. (b) Latitudinal variations of the annual mean potential density (σ_0) and the PV contours of $2 \times 10^{-10} \text{ m}^{-1} \text{ s}^{-1}$ (white contours) along the 147°E transect in the North Pacific produced by the MASNUM model.


245
246
247
248 **Figure S2.** Latitudinal distributions of the potential density (σ_0) in the STMW layers of 150m,
249 200m and 300m (24.8–25.5 σ_0) along the 147°–149°E sections.
250

251
252
253


254 **Figure S3.** (a–b) All stations of C_{ANT} data in the two STMW distribution regions mainly along 149°E
255 (145°E–155°E, 25°N–34°N) and 137°E (135°E–140°E, 24°N–32°N) during 1993–2018 from
256 GLODAPv2.2021 and during 2019–2020 from the Japan Meteorological Agency (JMA) website
257 (<https://www.data.jma.go.jp>). (c–d) Depths of STMW C_{ANT} data in 150–300m in the two regions. (e–f)
258 Potential density (σ_θ) of STMW C_{ANT} data within 150–300m and 24.8–25.5 σ_θ in the two regions.

259
260

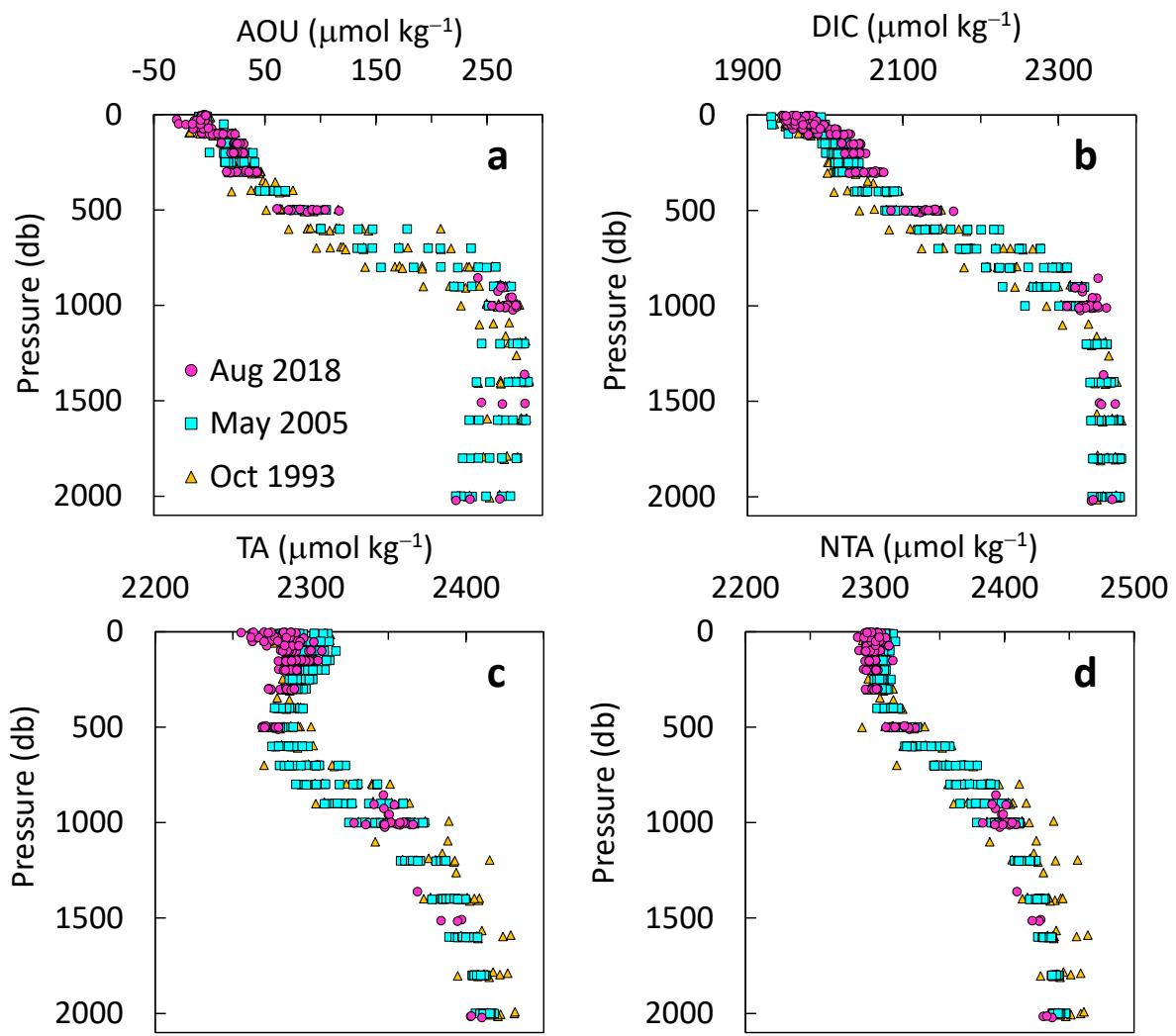

261
262
263
264
265
266
267
268
269

Figure S4. Comparison of C_{ANT} values calculated from TrOCA method ($TrOCA_C_{ANT}$) and ΔC^* method ($\Delta C^* _C_{ANT}$) below 100 m in August 2018, May 2005 and October 1993 along 147° – 149° E (20° – 40° N) in the western North Pacific.

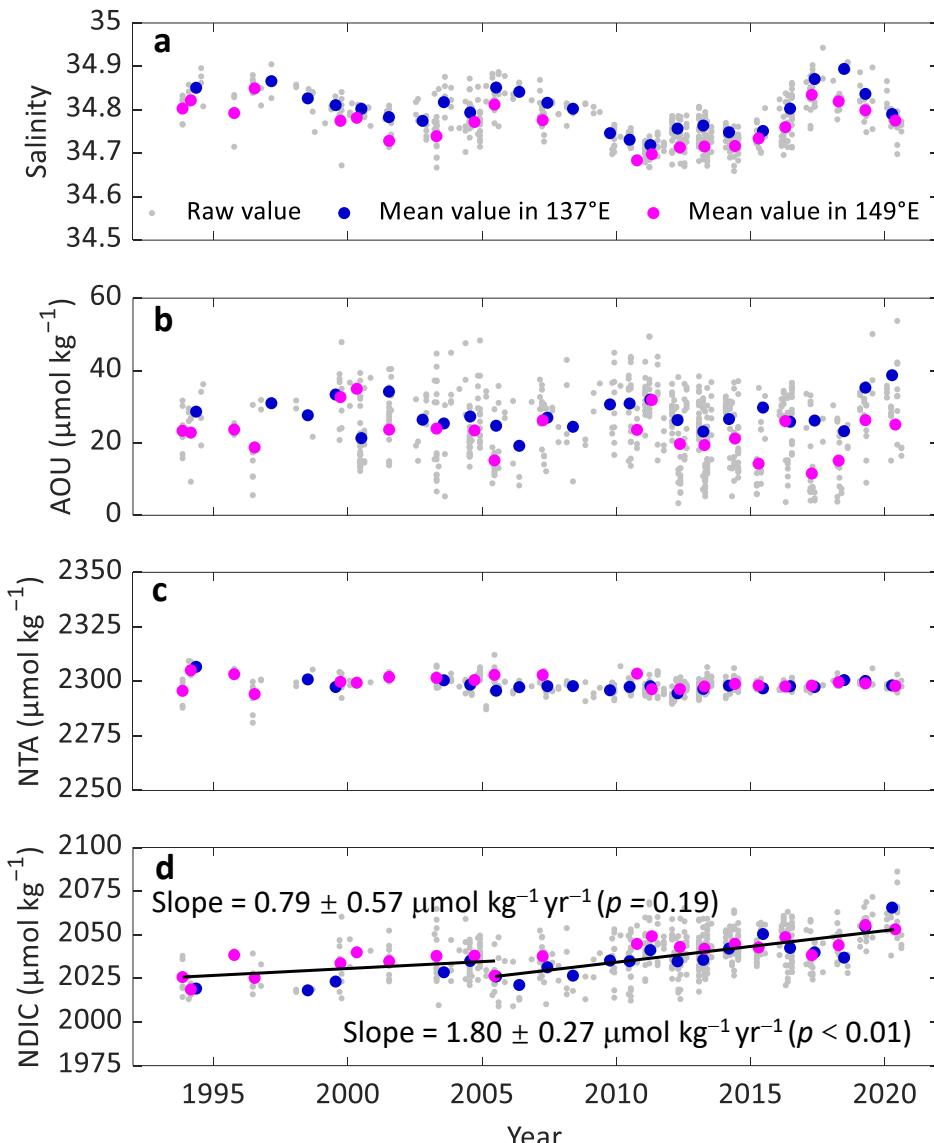
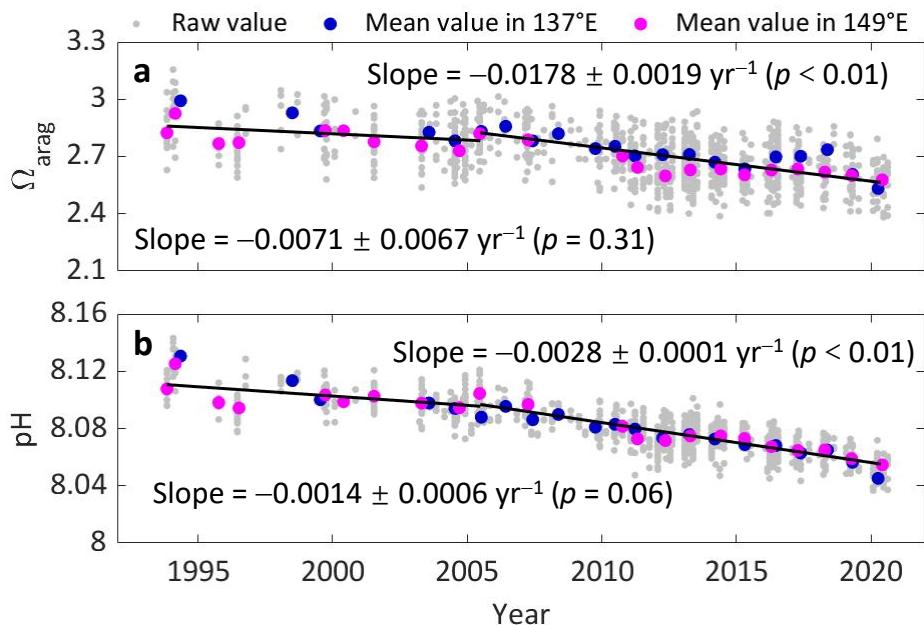

270
271
272
273
274
275
276
277
278

Figure. S5. Latitudinal variations in potential temperature (θ), salinity, AOU and TA along the 147°E transect in August 2018, drawn with Ocean Data View software (Schlitzer, R., 2015, Ocean Data View 4, <http://odv.awi.de>). Black contours represent the potential density. KF = Kuroshio front, SF = subtropical front, KR = Kuroshio Recirculation, STMW = subtropical mode water.


Figure S6. (a–d) Vertical profiles of water AOU, DIC, TA and salinity-normalized TA (NTA) in August 2018 (red circles), May 2005 (Cyan rectangles) and October 1993 (yellow triangles) in upper 2000 m depth south of the Kuroshio Extention (147° – 149° E, 20° N– 34° N).

279
280
281
282
283
284
285
286

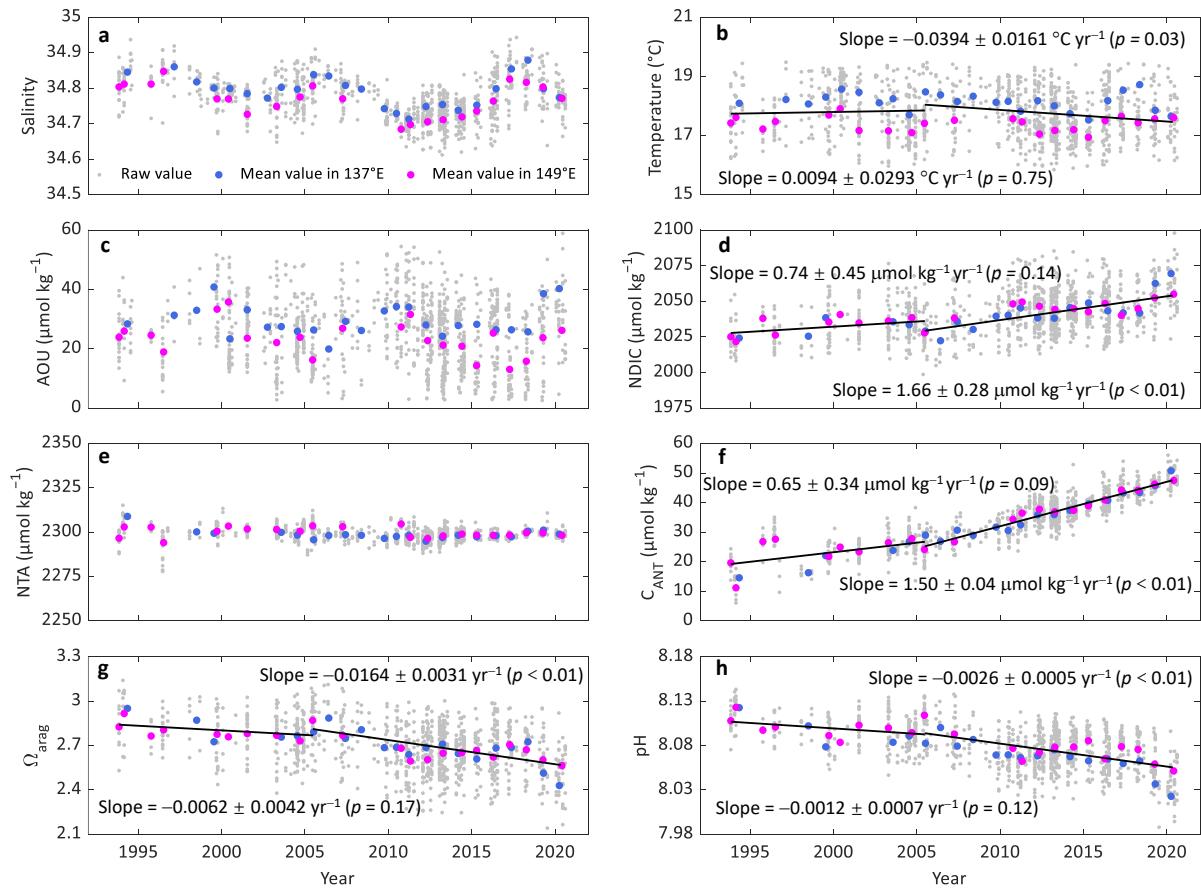

287
288
289
290
291
292
293
294
295
296

Figure S7. Temporal changes in salinity, AOU, and salinity-normalized TA (NTA) and DIC (NDIC) in the STMW (200–250 m and $24.8\text{--}25.5\sigma_\theta$) during 1993–2020 around the 149°E section (25°–34°N, 145°–155°E) and 137°E section (24°–32°N, 135°–140°E). The grey dots represent the raw data, and the blue and red dots indicate the annual means. The black lines represent linear regression to all annual mean data during 1993–2005 and 2005–2020; slopes (mean \pm standard errors) indicate rates of change; $p < 0.05$ indicates statistical significance at the 95% confidence level.

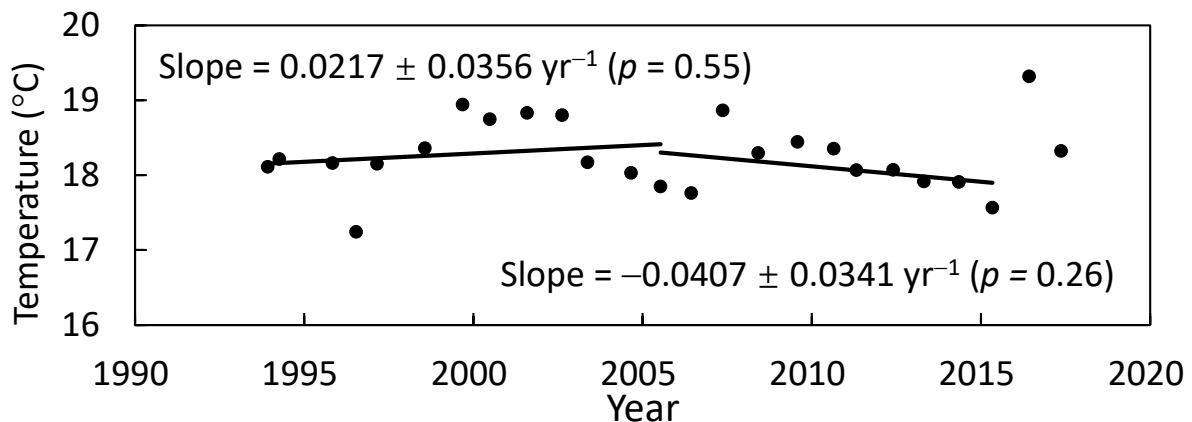

297
298
299
300
301
302
303
304

Figure S8. Same as Figure S7 but for the AOU-corrected (to the mean AOU value of $24 \pm 11 \text{ } \mu\text{mol kg}^{-1}$ during 1993–2020) Ω_{arag} and pH based on Text S7.

Figure S9. Same as Figure S7 but for the STMW within 150–300 m and $24.8\text{--}25.5\sigma_0$.

305
306
307
308
309

310
 311
 312
 313 **Figure S10.** Wintertime (February) sea surface temperature in the main STMW formation region south of
 314 Kuroshio Extension (Kuroshio Recirculation region: 30°–34°N, 145°–160°E) during 1993–2017. The
 315 NOAA Extended Reconstructed Sea Surface Temperature (ERSST) v4 is obtained from the website
 316 (<http://www.ncdc.noaa.gov>).
 317

318 **References**

319 Anderson, L. A., & Sarmiento, J. L. (1994). Redfield ratios of remineralization determined by nutrient
320 data analysis. *Global Biogeochemical Cycles*, 8, 65–80. <https://doi.org/10.1029/93GB03318>

321 Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. V., Garcia, H. E., et al. (2010).
322 World Ocean Atlas 2009, Volume 2: Salinity. In: S. Levitus, Ed. NOAA Atlas NESDIS 69, U.S.
323 Government Printing Office, Washington DC, USA. 184 pp.
324 <https://www.nodc.noaa.gov/OC5/indprod.html>

325 Benson, B. B., & Krause, D. (1984). The concentration and isotopic fractionation of oxygen dissolved
326 in fresh water and seawater in equilibrium with the atmosphere. *Limnology and Oceanography*,
327 29, 620–632. <https://doi.org/10.4319/lo.1984.29.3.0620>

328 Cerovečki, I., & Giglio, D. (2016). North Pacific subtropical mode water volume decrease in
329 2006–2009 estimated from Argo observations: influence of surface formation and basin scale
330 oceanic variability. *Journal of Climate*, 29, 2177–2199. <https://doi.org/10.1175/JCLI-D-15-0179.1>

331 Deutsch, C., Gruber, N., Key, R. M., Sarmiento, J. L., Ganachaud, A. (2001). Denitrification and N₂
332 fixation in the Pacific Ocean. *Global Biogeochemical Cycles*, 15, 483–506.
333 <https://doi.org/10.1029/2000GB001291>

334 Dickson, A. G., Sabine, C. L., & Christian, J. R. (2007). *Guide to best practices for ocean CO₂*
335 *measurements, PICES Special Publication* (Vol. 3(8), p. 191). Sidney, British Columbia, Canada:
336 North Pacific Marine Science Organization.

337 Dickson, A. G. (1990). Standard potential of the reaction: AgCl(s)+1/2H₂(g)=Ag(s)+HCl(aq), and the
338 standard acidity constant of the ion HSO₄⁻ in synthetic sea water from 273.15 to 318.15 K. *The*
339 *Journal of Chemical Thermodynamics*, 22(2), 113–127. [https://doi.org/10.1016/0021-9614\(90\)90074-Z](https://doi.org/10.1016/0021-9614(90)90074-Z)

341 Ge, T. T., Wang, X. C., Zhang, J., Xue, Y. J., & Luo, C. L. (2016). Dissolved inorganic radiocarbon in
342 the northwest Pacific continental margin. *Radiocarbon*, 58(3), 517–529
343 <https://doi.org/10.1017/RDC.2016.23>

344 Gruber, N., Sarmiento, J. L., & Stocker, T. F. (1996). An improved method for detecting anthropogenic
345 CO₂ in the oceans. *Global Biogeochemical Cycles*, 10, 809–837.
346 <https://doi.org/10.1029/96GB01608>

347 Han, L. (2014). A two-time-level split-explicit ocean circulation model (MASNUM) and its validation.
348 *Acta Oceanologica Sinica*, 33(11), 11–35. <https://doi.org/10.1007/s13131-014-0553-z>

349 Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M., & Potter, G. L.
350 (2002). NCEP–DOE AMIP-II Reanalysis (R-2). *Bulletin of the American Meteorological Society*,
351 83(11), 1631–1643. <https://doi.org/10.1175/BAMS-83-11-1631>

352 Kantha, L. H., & Clayson, C. A. (2000). Numerical Models of Oceans and Oceanic Processes.
353 International Geophysics Series, 66, Academic Press, San Diego, USA. 750 pp.
354 <https://www.sciencedirect.com/bookseries/international-geophysics/vol/66/suppl/C>

355 Li, C.-L., Han, L., Zhai, W.-D., Qi, D., Wang, X.-C., Lin, H.-M., et al. (2022a). Storage and
356 redistribution of anthropogenic CO₂ in the western North Pacific: The role of subtropical mode
357 water transportation. *Fundamental Research*, in press. <https://doi.org/10.1016/j.fmre.2022.05.001>

358 Li, C.-L., Zhai, W.-D., & Qi, D. (2022b). Unveiling controls of the latitudinal gradient of surface pCO₂
359 in the Kuroshio Extension and its recirculation regions (northwestern North Pacific) in late spring.
360 *Acta Oceanologica Sinica*, 41(5), 108–121,
361 <http://www.aoscean.com/article/doi/10.1007/s13131-021-1949-1>

362 Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., et al.
363 (2010). World Ocean Atlas 2009, Volume 1: Temperature. In: S. Levitus, Ed. NOAA Atlas
364 NESDIS 68, U.S. Government Printing Office, Washington DC, USA. 184 pp.
365 <https://www.nodc.noaa.gov/OC5/indprod.html>

366 McNichol, A. P., Jones, G. A., Hutton, D. L., & Gagnon, A. R. (1994). The rapid preparation of seawater
367 ΣCO_2 for radiocarbon analysis at the National Ocean Sciences AMS facility. *Radiocarbon*, 36(2),
368 237–246. <https://doi.org/10.1017/S0033822200040522>

369 Millero, F. J. (1979). The thermodynamics of the carbonate system in seawater. *Geochimica et*
370 *Cosmochimica Acta*, 43(10), 1651–1661. [https://doi.org/10.1016/0016-7037\(79\)90184-4](https://doi.org/10.1016/0016-7037(79)90184-4)

371 Millero, F. J., Lee, K., & Roche, M. (1998). Distribution of alkalinity in the surface waters of the major
372 oceans. *Marine Chemistry*, 60, 111–130. [https://doi.org/10.1016/S0304-4203\(97\)00084-4](https://doi.org/10.1016/S0304-4203(97)00084-4)

373 Millero, F. J., Graham, T. B., Huang, F., Bustos-Serrano, H., & Pierrot, D. (2006). Dissociation
374 constants of carbonic acid in seawater as a function of salinity and temperature. *Marine Chemistry*,
375 100, 80–94. <https://doi.org/10.1016/j.marchem.2005.12.001>

376 Mucci, A. (1983). The solubility of calcite and aragonite in seawater at various salinities, temperatures,
377 and one atmosphere total pressure. *American Journal of Science*, 283(7), 780–799.
378 <https://doi.org/10.2475/ajs.283.7.780>

379 Murata, A., Kumamoto, Y., Sasaki, K., Watanabe, S., & Fukasawa, M. (2009). Decadal increases of
380 anthropogenic CO₂ along 149°E in the western North Pacific. *Journal of Geophysical Research*,
381 114, C04018. <https://doi.org/10.1029/2008JC004920>

382 Murata, A., & Saito, S. (2012). Decadal changes in the CaCO₃ saturation state along 179°E in the Pacific
383 Ocean. *Geophysical Research Letters*, 39(12), L12604. <https://doi.org/10.1029/2012GL052297>

384 Murata, A., Hayashi, K., Kumamoto, Y., & Sasaki K. (2015). Detecting the progression of ocean
385 acidification from the saturation state of CaCO₃ in the subtropical South Pacific. *Global
386 Biogeochemical Cycles*, 29(4), 463–475. <https://doi.org/10.1002/2014GB004908>

387 Ono, H., Kosugi, N., Toyama, K., Tsujino, H., Kojima, A., Enyo, K., et al. (2019). Acceleration of ocean
388 acidification in the Western North Pacific. *Geophysical Research Letters*, 46(22), 13161–13169.
389 <https://doi.org/10.1029/2019GL085121>

390 Pelletier, G. J., Lewis, E., & Wallace, D. W. R. (2015). CO2SYS.XLS: A calculator for the CO₂ system
391 in seawater for Microsoft Excel/VBA, Version 24, Washington State Department of Ecology,
392 Olympia, Washington.

393 Sabine, C. L., Feely, R. A., Key, R. M., Bullister, J. L., Millero, F. J., Lee, K., et al. (2002). Distribution
394 of anthropogenic CO₂ in the Pacific Ocean. *Global Biogeochemical Cycles*, 16, 1083.
395 <https://doi.org/10.1029/2001GB001639>

396 Touratier, F., Azouzi, L., & Goyet, C. (2007). CFC-11, Δ¹⁴C and ³H tracers as a means to assess
397 anthropogenic CO₂ concentrations in the ocean. *Tellus B*, 59, 318–325.
398 <https://doi.org/10.1111/j.1600-0889.2006.00247.x>

399 Uppström, L. R. (1974). The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. *Deep Sea
400 Research and Oceanographic Abstracts*, 21, 161–162. [https://doi.org/10.1016/0011-7471\(74\)90074-6](https://doi.org/10.1016/0011-7471(74)90074-6)

402 Wong, G. T. F. (2012). Removal of nitrite interference in the Winkler determination of dissolved oxygen
403 in seawater. *Marine Chemistry*, 130, 28–32. <https://doi.org/10.1016/j.marchem.2011.11.003>

404 Zheng, L.-W., & Zhai, W.-D. (2021). Excess nitrogen in the Bohai and Yellow seas, China: distribution,
405 trends, and source apportionment. *Science of The Total Environment*, 794, 148702.
406 <https://doi.org/10.1016/j.scitotenv.2021.148702>

407 Zhuang, Z. P., Yuan, Y. L., Zhang, J., Han, L., & Yang, J. G. (2016). An efficient parallel algorithm
408 for ocean circulation numerical model based on irregular rectangle decomposition scheme. *Acta
409 Oceanologica Sinica*, 35(4), 18–23. <https://doi.org/10.1007/s13131-016-0855-4>

410 Zhuang, Z. P., Yuan, Y. L., & Yang, G. B. (2018). An ocean circulation model in σS-z-σB hybrid
411 coordinate and its validation. *Ocean Dynamics*, 68, 159–175. <https://doi.org/10.1007/s10236-017-1124-6>

413