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Supplementary Materials A:  List of all notation
Table A1:  A summary of mathematical notation used in the main text, listing the symbol, dimension, object “Type” (i.e., classify all objects into different categories where 
“dimension” defines the dimensionality of model objects, “index” is an index for looping across dimensions, “Data” is data fitted by the model, “Fixed effect” is a parameter estimated using maximum marginal likelihood, “Random effect” is a coefficient that is marginalized across when calculating the marginal likelihood, “Derived quantity” is an internal object calculated from Data, Fixed effects, or Random effects that clarifies model structure and logic, and “Indicator vector” and “Indicator matrix” contain integers that map between other model objects), and a brief description of its role in the model or presentation.  
	Symbol
	Dimension
	Type
	Description

	
	integer
	dimension
	Number of latent traits, where 

	
	integer
	dimension
	Number of modeled taxa including tips and ancestors (but not the root)

	
	integer
	dimension
	Number of continuous traits

	
	integer
	dimension
	Number of categorical traits

	
	integer
	dimension
	Total number of traits, 

	
	integer
	dimension
	Total number of trait measurements

	
	integer
	dimension
	Number of archetypes specified to classify taxa as a finite mixture of archetypes

	
	integer
	index
	Index of taxa,  

	
	integer
	index
	Index of latent traits, 

	
	integer
	index
	Index of measured traits, 

	
	integer
	index
	Index of trait measurements, 

	
	integer
	index
	Index of levels for a given categorical trait, 

	
	integer
	index
	Index of archetypes, 

	
	
	Derived quantity
	Correlation  among any two taxa  and  for a given trait, created from distance  between a taxon and its ancestor, or from distance  between the root and the most recent common ancestor of two taxa, as well as a constant  representing the maximum root-to-tip distance 

	
	
	Derived quantity
	Correlation among traits for a given taxon, calculated using methods from Structural Equation Modelling (SEM)

	
	
	Random effect
	Latent traits for all taxa, subsetted to extract row-vector  for a given taxon, or  for a given taxon and trait 

	
	
	Fixed effects
	Estimated trait values for root of tree

	
	
	Fixed effects
	Path matrix representing linkages among traits

	
	
	Fixed effects
	Cholesky of exogenous covariance  among traits, where 

	
	
	Fixed effect
	Measurement variance  for continuous trait 

	
	
	Data
	Matrix of trait measurements including one column for each continuous or categorical trait

	
	
	Indicator vector
	Integer-vector listing the number of levels for each trait , where continuous trait  has  and categorical trait  has 

	
	
	Indicator vector
	Integer-vector associating each column of latent traits  with a column of trait measurements , i.e.,  

	
	
	Indicator vector
	Integer-vector associating each measurements  with a taxon 

	
	Continuous traits: 
Categorical traits: 
	Derived quantity
	Submatrix containing columns of  associated with trait measurement , where  is a column vector for continuous traits, and contains one or more columns for categorical traits

	
	
	Indicator matrix
	Matrix expanding  levels for categorical trait ; specifically a matrix with  columns where each row  contains a 1 in the column corresponding to level  and zeros otherwise.

	
	
	Derived quantity
	Probability  for each level  of  levels for categorical trait  and taxon , calculated from  via a multivariate logistic transformation

	
	
	Derived quantity
	Percent variance explained for each continuous trait 

	
	
	Derived quantity
	Trait value  identified for each archetype  and latent trait 

	
	
	Derived quantity
	Mixture proportion  for each taxon  and archetype 





Supplementary Materials B:  Constructing the correlation matrix for an additive tree
In the main text, we introduce the matrix  of latent traits with rows  for each of  taxa and columns  for each of  trait variables.  This matrix is treated as a random effect and values are integrated across when calculating the marginal likelihood  of fixed effects , , ,  given the matrix of trait measurements :
	
	B1


where the probability of data  differs somewhat for continuous (Eq. 4) or categorical traits (Eq. 6), and  is a hyper-distribution for latent traits (Eq. 1). This marginal likelihood is then maximized to identify maximum-likelihood estimates for parameters:
	
	B2


In practice, we approximate Eq. B1 using the Laplace approximation, and this involves a sequence of inner and outer optimization iterations that is outlined in detail elsewhere (Kristensen et al., 2016).  Briefly, this involves:
1. defining a joint log-likelihood  as the sum of the log-likelihood for each individual trait measurement (applying Eq. 4/6 to every value of );
2. proposing an initial value for fixed effects 
3. Maximizing  with respect to random effects  given current values of , and computing the matrix of second derivatives of  with respect to  (termed the Hessian matrix );
4. Computing the Laplace approximation to the marginal likelihood, , where  is the determinant of the Hessian matrix;
5. Computing the gradient of  with respect to , and using this gradient to propose a new value of fixed effects ;
6. Repeating steps 3-5 until the gradient in Step-5 is below a specified threshold (we use 0.0001), and defining that value of  as the maximum-likelihood estimate;
7. Given the maximum likelihood estimate for , identify the values of  that maximize the joint likelihood, and treat these as the “empirical Bayes” predictions for latent trait-values;
8. Computing the matrix of second derivatives of  with respect to , inverting this, and treating it as the estimation covariance for fixed effects;
Steps 3-5 are done automatically using the R package TMB (Kristensen et al., 2016), while other steps are done in the R statistical platform (R Core Team, 2021). Steps 6 and 8 involve identifying the value of fixed effects that maximizes the log-likelihood, and also confirms that the negative log-likelihood is positive definite.  Satisfying these two criteria ensures that the model is estimable conditional upon available data. As corollary, a non-estimable model can be diagnosed by identifying that the matrix of second derivatives of  is rank-deficient (Hunter & Caswell, 2009).  
This treatment requires specifying a hyper-distribution  for random effects , and we specify a multivariate normal distribution with a separable covariance constructed as the Kroencker production , where  is the  matrix representing correlation among taxa for a given trait and  is the  matrix representing covariance among traits for a given taxon.  
We here discuss computational approaches for constructing the correlation matrix . The correlation  is typically calculated using a first-order Markov process, including random-walk, Ornstein-Uhlenbeck (OU), or other simple models. For a Brownian motion model, this correlation matrix  is typically constructed by calculating the pairwise correlation  for every pair of taxa  and  as:
	
	B3


where  is the distance between the root and the most recent common ancestor of two taxa  (Paradis, 2012 modifying Eq. 6.4), and  is the maximum root-to-tip distance .  Note that we do not model any parameter for the variance of this “Brownian motion” model, because the variance-per-time parameter would be confounded with the scale of  and we therefore fix that variance-per-time parameter a priori. Alternatively for an OU model this pairwise correlation can be constructed as:
	
	B4


where  is an estimated parameter representing the autoregressive rate (Paradis, 2012 modifying Eq. 6.5).  
	Here, we instead present an alternative formulation of the same process by factoring the joint probability density, , into a series of conditional distributions, , which each represent the change in traits occurring over the branch that connects taxa  and its immediate ancestor . Importantly, this conditional form only requires conditioning the distribution of traits  for each taxon  on the traits  of its immediate ancestor , which results from the first-order Markov structure of Brownian-motion, OU and other common models. Using a Brownian motion model, this involves specifying:
	
	B5


where  and  is the evolutionary distance between taxon  and its ancestor . This specification arises because the Brownian motion model assumes a linear increase in variance  with increased evolutionary distance. This specification can then be expressed as a simultaneous autoregressive (SAR) process. This involves constructing the “spatial dependence matrix” of Ver Hoef et al. (2018 Eq. 7), with a  for row  and column  associated with each edge of the specified tree and  elsewhere. This SAR process can then be used to construct the inverse-covariance (“precision”) matrix directly, which allows computationally efficient computation (Ver Hoef et al., 2018).  
Alternatively, we could instead specify an OU process:
	
	B6


where  and , and we again specify that  as  to avoid confounding with the scale of  (see e.g., Hocking et al., 2018). Or we could specify:
	
	B7


where
	
	B8


and where  is an indicator that equals 1 if taxon  is a tip of the tree and zero otherwise.  In this model,  is the “Pagel’s lambda” parameter that specifies covariance as a mixture of a Brownian motion model and a star phylogeny with weightings  and , respectively. Although we do not implement these methods in the FishLife package, they would be relatively simple to implement in future releases. Importantly, the additional parameters  or  would be estimated jointly with other fixed effects, and the Laplace approximation and subsequent nonlinear maximization routine for identifying fixed effect values that maximize the marginal likelihood would require no further changes.  
	Many studies have specified an OU or other autoregressive process to generate a correlation, and then formed a joint covariance for a Gaussian Markov random field via Kroenecker product of the OU correlation and other modeled covariance terms. This process is widely used in spatial statistics (e.g., Hocking et al., 2018; Thorson et al., 2021), and has been used to estimate parameters (and predict latent spatial variables) when specifying 10,000-100,000 latent variables (treated as random effects) and 100-1000 parameters (treated as fixed effects).  We acknowledge that fitting a multivariate phylogenetic OU process of this size has not previously been demonstrated, and recommend such a demonstration as topic for future research.  
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Supplementary Materials C:  Illustrating missing data

[image: C:\Users\James.Thorson\Desktop\Work files\Collaborations\2021 -- FishLife update\2022-08-17_Nfactors=-6_Vars=More_plus_four_Thin=1_factor=logit-log_tree=taxa\Availability.png]
Fig. C1:  Illustration of data availability for each unique fish species (top panel), genus (middle panel) or family (bottom panel). Each panel shows the proportion of taxa with at least one measurement of a given trait (diagonal cells), or the proportion with each pair of traits (off-diagonal cells), using different color bar legends for each taxonomic level. For clarity, we also list the percentage of taxa with at least one measurement on the diagonal.  

Supplementary Materials D:  Comparison with Phylogenetic Comparative Methods
In the main text, we describe a new method that combines structural equation modelling and phylogenetic comparative methods, while also allowing fit to both continuous and categorical traits.  Here, we briefly describe how the method compares with conventional phylogenetic comparative methods (PCM) using R-package phylolm (Tung Ho & Ané, 2014) as example of the latter. We first outline theoretical differences, and then provide a simulation experiment to illustrate code-interface differences and explore relative performance.  
	We first compare phylolm and FishLife on a theoretical basis, and start by listing differences in their scope and feature-set:
1. Package phylolm assembles the variance-covariance for different evolutionary models, including Brownian motion but also Ornstein-Uhlenbeck (OU), trend, and other models.  FishLife by contrast only includes an implementation for the Brownian motion model.  However, other evolutionary models could be added including OU, Pagel’s lambda and kappa, and rapid burst. The phylogenetic SEM that we present requires calculating the correlation among tips  either as a simultaneous or conditional autoregressive process, and parameters that are used to assemble  are then estimated via nonlinear minimization of the marginal likelihood function.   
2. Package phylolm uses the specified evolutionary model, phylogenetic tree, and model parameters to assemble the evolutionary covariance matrix. In then uses characteristics of this structure to efficiently calculate the determinant and quadratic products of the inverse-covariance. By contrast, FishLife specifies a conditional or simultaneous autoregressive process (which is available for Brownian motion and OU evolutionary models, and potentially others too) for trait evolution. This CAR or SAR process results in a sparse precision matrix (i.e.,  is zero for any two taxa that are not immediate ancestors or decedents).  It then uses automatic differentiation via R-package TMB to calculate this sparse matrix representing the inverse-correlation matrix (Kristensen et al., 2016). It is then efficient to calculate the determinant and quadratic product from this inverse-covariance directly.
3. Package phylolm requires that all predictor and response variables are available for each taxa that is fitted, and drops data for any taxon that does not have all predictor and response variables.  By contrast, FishLife marginalizes across latent traits  for all taxa within the supplied tree, regardless of whether they have complete (or in fact any) data.  By doing so, it infers latent traits values jointly while estimating other model parameters. As a result of these design decisions, phylolm defines a S3 predict.phylolm function that predicts traits for new taxa (or for nodes in the phylogenetic tree) that condition only upon specified predictor variables and not the position of that taxa within the user-specified tree. By contrast, FishLife automatically predicts traits for ancestral nodes or new taxa (tips of the phylogenetic tree) that condition upon all data for that taxon, as well as phylogenetic covariance for each trait (i.e., based on the joint covariance  in Eq. 1).
4. Both packages include capabilities to estimate the magnitude of measurement errors (i.e., an additive diagonal component to the evolutionary covariance matrix), or to assume that the response is measured without error (i.e., that this diagonal component has variance approaching zero from above).  
5. Both packages use R-package ape (Paradis & Schliep, 2019) to define the structure of phylogenetic trees, and to allow interoperability with other packages. However, FishLife has undergone less development, and therefore does not have a well-defined class structure to leverage this interoperability for use when plotting output or other common tasks in phylogenetic comparative methods.  
6. Package phylolm defines dependencies using a linear model, which involves defining a directed acyclic graph for the dependencies among variables. By contrast, FishLife uses R-package sem (Fox et al., 2020) as a user-interface to allow users to specify a RAM that represents the linear dependencies among variables. These dependencies do not need to be acyclic, i.e., can include loops, rings, or other mechanisms involving feedbacks among variables.  
This list is not intended to be exhaustive, but instead to emphasize some of the major differences between software platforms.
	We next provide results from a simulation experiment comparing FishLife and phylolm. To do so, we use R-package ape and function rtree to simulate a new phylogenetic tree with 100 “tips” (i.e., extent taxa with measurable traits) and randomized branch lengths and structure.  We then simulate two variables from this tree, using a Brownian motion model for trait evolution and exploring scenarios with complete data for each taxon, or 60% of taxa missing measurements for each trait:
# Settings
Ntree = 100
Nrep = 100
sd_x = 0.3
sd_y = 0.3
b0_x = 1
b0_y = 2
b_xy = 1
missing_rate_set = c(0, 0.6)[1]

Simulating data from this model involves the following code:  
  # Simulate tree
  tree = ape::rtree(n=Ntree)

  # Simulate data
  xfit = x = b0_x + sd_x * phylolm::rTrait(n = 1, phy=tree)
  yfit = y = b0_y + b_xy*x + sd_y * phylolm::rTrait(n = 1, phy=tree)

  # Missing at random
  drop_x = sample( 1:Ntip(tree), replace=FALSE, size=round(Ntip(tree)*missing_rate_set) )
  xfit[drop_x] = NA
  drop_y = sample( 1:Ntip(tree), replace=FALSE, size=round(Ntip(tree)*missing_rate_set) )
  yfit[drop_y] = NA


We then fit these data with package phylolm
  # Fit phylolm
  P = phylolm::phylolm(yfit ~ 1 + xfit, phy=tree)

Similarly, we fit the same data using FishLife and identical settings:
  # Run FishLife
  Fit = Fit_model(
    text = "x -> y, p",
    Database = NULL,
    Y_ij = data.frame( x=xfit, y=yfit ),
    tree = tree,
    min_replicate_measurements = Inf )

We replicate this experiment 500 times for each rate of missing data and record the estimated slope parameter for these two models as well as a conventional linear model with the model formula.  
	Results confirm that FishLife and phylolm give essentially identical estimates when data are complete (Fig. D1, left panel), and that the linear model has degraded performance due to ignoring the known structure for phylogenetic correlations in residuals. By contrast, FishLife shows a small improvement in estimation performance when data are missing (Fig. D1, right panel), when phylolm has performance intermediate between FishLife and the uncorrected linear model. Presumably this improvement occurs because FishLife is informed by traits measurements even for taxa where only one is available, and this information improves estimates of trait-values for related species (i.e., jointly estimates missing data and model parameters).  



Fig. D1:  Results from 500 replicates of a simulation experiment with 0% (left panel) or 60% missing data (right panel), showing the distribution of estimated values for a the impact of the predictor `xfit` on response `yfit` (which has true value 1.0) using three alternative methods (FishLife, phylolm, or a conventional linear model), showing the binned count across replicates (y-axis) of estimates (x-axis, see color label at top of plot), where a well-performing model will have a distribution centered at the true value (1.0) and a tight distribution around this value. 
[image: C:\Users\James.Thorson\Desktop\Work files\Collaborations\2021 -- FishLife update\Sim_2022-08-12\histogram.png]




Supplementary Materials E: Detailed results
Table E1: Estimated mechanisms that jointly define the evolutionary covariance used in phylogenetic trait imputation, where each row corresponds to an edge specified within the structural equation model and maximum likelihood estimate is a estimated value in path matrix .  
	Link
	Maximum likelihood estimate
	Standard Error

	temperature -> log(length_infinity)
	-0.017
	0.003

	temperature -> log(growth_coefficient)
	0.04
	0.003

	temperature -> log(natural_mortality)
	0.021
	0.002

	temperature -> log(weight_infinity)
	0.009
	0.005

	log(length_infinity) -> log(growth_coefficient)
	-0.662
	0.02

	log(length_infinity) -> log(natural_mortality)
	-0.821
	0.03

	log(length_infinity) -> log(length_max)
	0.999
	0.011

	log(length_infinity) -> log(weight_infinity)
	2.963
	0.041

	log(natural_mortality) -> log(length_maturity)
	-1.281
	0.064

	log(natural_mortality) -> log(age_maturity)
	-0.297
	0.047

	log(natural_mortality) -> log(age_max)
	-0.851
	0.039

	log(growth_coefficient) -> log(length_maturity)
	0.279
	0.037

	log(growth_coefficient) -> log(age_maturity)
	-0.501
	0.048

	log(weight_infinity) -> trophic_level
	0.097
	0.007

	log(weight_infinity) -> log(fecundity)
	0.709
	0.023

	log(weight_infinity) -> log(offspring_size)
	0.061
	0.01

	log(length_infinity) -> log(aspect_ratio)
	0.062
	0.009

	log(aspect_ratio) -> log(max_body_width)
	-0.134
	0.009

	log(aspect_ratio) -> log(max_body_depth)
	0.223
	0.012

	log(aspect_ratio) -> log(lower_jaw_length)
	-0.108
	0.018

	log(aspect_ratio) -> log(min_caudal_pedoncule_depth)
	0.171
	0.02

	log(length_infinity) -> spawning_typeguarders
	-3.476
	0.645

	log(length_infinity) -> spawning_typebearers
	-3.617
	0.715

	log(length_infinity) -> habitatpelagic
	0.485
	0.202

	log(length_infinity) -> habitatbenthopelagic
	0.083
	0.13

	log(length_infinity) -> habitatreefassociated
	-0.097
	0.153

	log(length_infinity) -> habitatbathymetric
	0.578
	0.247

	log(length_infinity) -> feeding_modeplanktivorous_or_other
	-1.758
	0.373

	log(length_infinity) -> feeding_modemacrofauna
	0.844
	0.111

	log(length_infinity) -> body_shapeelongated
	-1.07
	0.156

	log(length_infinity) -> body_shapeother
	-3.092
	0.949

	log(length_infinity) -> body_shapeshort_and_or_deep
	-0.396
	0.207

	log(length_infinity) -> body_shapeeellike
	0.369
	0.526




Table E2: Predicted “total” effect of an exogenous change in each trait (column) on other traits (rows), including both direct and indirect effects. We list only the total effect for those two traits (columns) that have direct and/or indirect effects on five or more other traits (i.e., nonzero entries in five or more rows rows).  See Fig. 2 for details on interpreting categorical trait linkages and names. 
	
	temperature
	log(length_infinity)

	log(length_infinity)
	-0.017
	0

	log(growth_coefficient)
	0.051
	-0.662

	log(natural_mortality)
	0.035
	-0.821

	log(weight_infinity)
	-0.042
	2.963

	log(length_max)
	-0.017
	0.999

	log(length_maturity)
	-0.031
	0.867

	log(age_maturity)
	-0.036
	0.576

	log(age_max)
	-0.03
	0.699

	trophic_level
	-0.004
	0.289

	log(fecundity)
	-0.03
	2.1

	log(offspring_size)
	-0.003
	0.182

	log(aspect_ratio)
	-0.001
	0.062

	log(max_body_width)
	0
	-0.008

	log(max_body_depth)
	0
	0.014

	log(lower_jaw_length)
	0
	-0.007

	log(min_caudal_pedoncule_depth)
	0
	0.011

	ST: guarders
	0.06
	-3.476

	ST: bearers
	0.062
	-3.617

	H: pelagic
	-0.008
	0.485

	H: benthopelagic
	-0.001
	0.083

	H: reefassociated
	0.002
	-0.097

	H: bathymetric
	-0.01
	0.578

	FM: planktivorous_or_other
	0.03
	-1.758

	FM: macrofauna
	-0.014
	0.844

	BS: elongated
	0.018
	-1.07

	BS: other
	0.053
	-3.092

	BS: short_and_or_deep
	0.007
	-0.396

	BS: eellike
	-0.006
	0.369





Table E3: Estimated parameters in matrix , i.e., the Cholesky of the exogenous covariance for the SEM, where the covariance among traits is calculated from  and .  
	Link
	Par
	SE

	spawning_typebearers <-> spawning_typeguarders
	3.11
	0.607

	habitatbenthopelagic <-> habitatpelagic
	1.471
	0.235

	habitatreefassociated <-> habitatpelagic
	0.472
	0.188

	habitatbathymetric <-> habitatpelagic
	0.671
	0.231

	habitatreefassociated <-> habitatbenthopelagic
	-0.317
	0.136

	habitatbathymetric <-> habitatbenthopelagic
	0.355
	0.176

	habitatbathymetric <-> habitatreefassociated
	-0.412
	0.176

	feeding_modemacrofauna <-> feeding_modeplanktivorous_or_other
	-2.898
	0.325

	body_shapeother <-> body_shapeelongated
	0.768
	0.285

	body_shapeshort_and_or_deep <-> body_shapeelongated
	-0.613
	0.153

	body_shapeeellike <-> body_shapeelongated
	1.57
	0.189

	body_shapeshort_and_or_deep <-> body_shapeother
	2.2
	0.794

	body_shapeeellike <-> body_shapeother
	1.062
	0.689

	body_shapeeellike <-> body_shapeshort_and_or_deep
	0.49
	0.213

	log(age_max) <-> log(age_max)
	0.257
	0.01

	trophic_level <-> trophic_level
	0.305
	0.005

	log(aspect_ratio) <-> log(aspect_ratio)
	0.183
	0.003

	log(fecundity) <-> log(fecundity)
	0.887
	0.022

	log(growth_coefficient) <-> log(growth_coefficient)
	0.24
	0.007

	temperature <-> temperature
	3.178
	0.071

	log(length_max) <-> log(length_max)
	0.089
	0.006

	log(length_infinity) <-> log(length_infinity)
	0.382
	0.005

	log(length_maturity) <-> log(length_maturity)
	0.104
	0.011

	log(age_maturity) <-> log(age_maturity)
	0.186
	0.01

	log(natural_mortality) <-> log(natural_mortality)
	0.111
	0.009

	log(weight_infinity) <-> log(weight_infinity)
	0.263
	0.015

	log(max_body_depth) <-> log(max_body_depth)
	-0.084
	0.001

	log(max_body_width) <-> log(max_body_width)
	-0.075
	0.001

	log(lower_jaw_length) <-> log(lower_jaw_length)
	0.172
	0.002

	log(min_caudal_pedoncule_depth) <-> log(min_caudal_pedoncule_depth)
	0.174
	0.002

	log(offspring_size) <-> log(offspring_size)
	0.347
	0.008

	spawning_typeguarders <-> spawning_typeguarders
	3.358
	0.326

	spawning_typebearers <-> spawning_typebearers
	5.488
	0.61

	habitatbathymetric <-> habitatbathymetric
	2.539
	0.199

	habitatbenthopelagic <-> habitatbenthopelagic
	1.704
	0.107

	habitatreefassociated <-> habitatreefassociated
	2.087
	0.141

	habitatpelagic <-> habitatpelagic
	1.895
	0.202

	feeding_modemacrofauna <-> feeding_modemacrofauna
	1.184
	0.079

	feeding_modeplanktivorous_or_other <-> feeding_modeplanktivorous_or_other
	2.93
	0.338

	body_shapeelongated <-> body_shapeelongated
	1.493
	0.221

	body_shapeshort_and_or_deep <-> body_shapeshort_and_or_deep
	2.702
	0.169

	body_shapeeellike <-> body_shapeeellike
	4.974
	0.383

	body_shapeother <-> body_shapeother
	4.451
	0.772






Fig. E1: Illustration of the estimated trade-off between timing of maturation (, y-axis) and relative mortality (, x-axis), as well as the theoretical prediction  (Holt, 1958) assuming . 
 [image: C:\Users\James.Thorson\Desktop\Work files\Collaborations\2021 -- FishLife update\2022-11-02_Vars=All_via_length_factor=multinom_tree=taxa\_mortality_growth_maturity.png]


Fig. E2: Path diagram representing specified causal linkages and estimated coefficients linking fish traits when using a subset of available data and a merged version of two separate ultrametric phylogenies constructed independently for bony and cartilaginous fishes (see Fig. 2 for more details)
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Fig. E3: Scree plot showing the residual sum of squares (RSS, y-axis) given a specified number of archetypes (x-axis), where we select three archetypes based on the small changes in RSS when adding archetypes past this number.
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