Appendices for "Multistage Hierarchical Capture-Recapture Models"

Appendix A

To fit the homogeneous CR model using a single-stage MCMC algorithm, we consider the joint posterior distribution for p and ψ . Under the PX-DA framework, this posterior distribution can be written as

$$[p, \psi | \mathbf{y}_{1:n}, \mathbf{y}_{(n+1):M}, n] \propto [\mathbf{y}_{(n+1):M} | p, \psi, \mathbf{y}_{1:n}, n] [p, \psi | \mathbf{y}_{1:n}, n] , \qquad (35)$$

$$\propto [\mathbf{y}_{(n+1):M}|p,\psi,\mathbf{y}_{1:n},n][\mathbf{y}_{1:n}|p,n][n|p,\psi][p][\psi] , \qquad (36)$$

$$\propto [\mathbf{y}_{1:n}|p,n][n|p,\psi][p][\psi] , \qquad (37)$$

where the full-conditional distribution of $\mathbf{y}_{(n+1):M}$ is proportional to one when conditioned on n (and hence drops out of the right hand side) and the conditional distribution of $\mathbf{y}_{1:n}$ is proportional to the product of zero-truncated binomials

$$[\mathbf{y}_{1:n}|p,n] \propto \frac{\prod_{i=1}^{n} [y_i|p]}{(1-(1-p)^J)^n} .$$
(38)

For a given joint proposal distribution $[p, \psi]^*$, the associated Metropolis-Hastings ratio to update p and ψ jointly is

$$r = \frac{[\mathbf{y}_{1:n}|p^{(*)}, n][n|p^{(*)}, \psi^{(*)}][p^{(*)}][\psi^{(*)}][p^{(k-1)}, \psi^{(k-1)}]^*}{[\mathbf{y}_{1:n}|p^{(k-1)}, n][n|p^{(k-1)}, \psi^{(k-1)}][p^{(k-1)}][\psi^{(k-1)}][p^{(*)}, \psi^{(*)}]^*} .$$
(39)

To implement the model using PPRB following Hooten et al. (2021), we obtain an initial MCMC sample for p and ψ by fitting the CR model to the observed data while conditioning

on fixed and known n. The posterior distribution for the first stage is proportional to

$$[\mathbf{y}_{1:n}|p,n][p][\psi] , \qquad (40)$$

with respect to p and ψ , and the associated first-stage Metropolis-Hastings ratio is

$$r = \frac{[\mathbf{y}_{1:n}|p^{(*)}, n][p^{(*)}][\psi^{(*)}][p^{(k-1)}, \psi^{(k-1)}]^*}{[\mathbf{y}_{1:n}|p^{(k-1)}, n][p^{(k-1)}][\psi^{(k-1)}][p^{(*)}, \psi^{(*)}]^*} .$$
(41)

At this first stage, we use a temporary proposal distribution $[p, \psi]^*$ that is convenient.

For the second stage of the PPRB implementation, we assume that the proposal distribution is

$$[p,\psi]^* \propto [\mathbf{y}_{1:n}|p,n][p][\psi] , \qquad (42)$$

which is equivalent to the first-stage posterior, and randomly sample (with replacement) joint first-stage MCMC realizations to use as proposals in the second stage Metropolis-Hastings updates. The resulting second-stage Metropolis-Hastings ratio becomes

$$r = \frac{[\mathbf{y}_{1:n}|p^{(*)}, n][n|p^{(*)}, \psi^{(*)}][p^{(*)}][\psi^{(*)}][p^{(k-1)}, \psi^{(k-1)}]^*}{[\mathbf{y}_{1:n}|p^{(k-1)}, n][n|p^{(k-1)}, \psi^{(k-1)}][p^{(k-1)}][\psi^{(k-1)}][p^{(*)}, \psi^{(*)}]^*},$$
(43)

$$=\frac{[n|p^{(*)},\psi^{(*)}]}{[n|p^{(k-1)},\psi^{(k-1)}]},$$
(44)

because the proposal cancels with the data model and priors. Thus, the second-stage Metropolis-Hastings ratio is merely a quotient involving the conditional model for n and can be evaluated easily using the first-stage MCMC sample.

Appendix B

To demonstrate the recursive implementation of the hierarchical CR model, we fit the model to simulated data using the single-stage and two-stage approaches. To simulate CR data for this example, we set M = 100 individuals in the superpopulation, membership probability $\psi = 0.4$, and detection probability p = 0.25. Then we used the hierarchical model in Section 2 as a generative process to simulate data based on J = 3 occasions which resulted in N = 39 individuals in our population, with n = 19 individuals observed by our measurement process. The simulated observed data y_i , for i = 1, ..., n, can be summarized by the values $\mathbf{y} = (1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1)'$.

In the PX-DA implementation, we assumed M - n = 81 augmented individuals with all-zero capture histories. Thus, we assumed the same M as in our data simulation and this allows us to infer the true ψ . We note that the estimation of N is not constrained by Mempirically in this example, therefore we could use larger values of M without influencing the inference for parameter p.

We fit the hierarchical CR from Section 2 to our simulated data using two approaches: 1) a standard single-stage MCMC algorithm for the hierarchical model and 2) a two-stage algorithm based on the recursive formulation of the same model. In both cases, we used K = 200000 MCMC iterations. The results of our analyses are summarized in Figure 5. The posterior comparison shown in Figure 5 indicates that the two-stage PPRB approach yields the same inference as the conventional single-stage MCMC algorithm. Both approaches fit exactly the same model, but the recursive framework suggests that other specifications for the conditional model for n (e.g., Poisson) are straightforward to implement. Furthermore, in more complicated models, we can benefit from parallel evaluation of the PMF for n which can improve stability and facilitate computation for large data sets.

Figure 5: Marginal posterior distributions for a) p, b) ψ , c) N. Distributions shown are a result of the single-stage MCMC algorithm (black), first-stage of the two-stage MCMC algorithm (red), and second-stage of the two-stage MCMC algorithm (green). Subfigure c shows marginal posterior probability mass functions; black line shown for single-stage for comparison.

Appendix C

The snowshoe hare SCR data used to fit the model in Section 4 are presented below. The first column is the trap ID (i.e., [1,] indicates trap 1), the second two columns correspond to the L = 84 trap locations **X** in meters, and the remaining 13 columns contain values that correspond to the sum of detections associated with each individual at each trap.

[1,]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
[2,]	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0
[3,]	100	0	1	0	0	0	0	0	0	0	0	0	0	0	0
[4,]	150	0	0	0	0	0	0	0	0	0	0	0	0	0	0
[5,]	200	0	0	0	0	0	0	0	0	0	0	0	0	0	0
[6,]	250	0	0	1	0	0	0	0	0	0	0	0	0	0	0
[7,]	300	0	0	0	0	0	0	0	0	0	0	0	0	0	0
[8,]	350	0	0	0	1	0	0	0	0	0	0	0	0	0	0
[9,]	400	0	0	0	0	0	0	0	0	0	0	0	0	0	0
[10,]	450	0	0	0	0	1	0	0	0	0	0	0	0	0	0
[11,]	500	0	0	0	0	1	2	0	0	0	0	0	0	0	0
[12,]	550	0	0	0	0	0	0	0	0	0	0	0	0	0	0
[13,]	0	-50	0	0	0	0	0	0	0	0	0	0	0	0	0
[14,]	50	-50	1	0	0	0	0	0	0	0	0	0	0	0	0
[15,]	100	-50	0	0	0	0	0	0	0	0	0	0	0	0	0
[16,]	150	-50	0	0	0	0	0	0	0	0	0	0	0	0	0
[17,]	200	-50	0	0	0	0	0	0	0	0	0	0	0	0	0
[18,]	250	-50	0	0	0	0	0	0	0	0	0	0	0	0	0
[19,]	300	-50	0	0	0	0	0	0	0	0	0	0	0	0	0
[20,]	350	-50	0	0	0	0	0	1	0	0	0	0	0	0	0
[21,]	400	-50	0	0	0	0	0	0	0	0	0	0	0	0	0
[22,]	450	-50	0	0	0	0	0	0	0	0	0	0	0	0	0
[23,]	500	-50	0	0	0	0	0	0	0	0	0	0	0	0	0
[24,]	550	-50	0	0	0	1	0	0	0	0	0	0	0	0	0
[25,]	0	-100	0	0	0	0	0	0	0	0	0	0	0	0	0
[26,]	50	-100	0	0	0	0	0	0	0	0	0	0	0	0	0
[27,]	100	-100	1	0	0	0	0	0	0	0	0	0	0	0	0
[28,]	150	-100	0	0	0	0	0	0	0	0	0	0	0	0	0
[29,]	200	-100	0	0	0	0	0	0	0	0	0	0	0	0	0
[30,]	250	-100	0	0	0	0	0	0	0	0	0	0	0	0	0
[31,]	300	-100	0	0	2	0	0	0	1	0	0	0	0	0	0
[32,]	350	-100	0	0	0	0	0	0	0	0	0	0	0	0	0
[33,]	400	-100	0	0	0	0	0	0	0	0	0	0	0	0	0
[34,]	450	-100	0	0	0	0	0	0	0	0	0	0	0	0	0
[35,]	500	-100	0	0	0	0	0	0	0	0	0	0	0	0	0
[36,]	550	-100	0	0	0	0	0	0	0	0	0	0	0	0	0
[37,]	0	-150	0	0	0	0	0	0	0	0	0	0	0	0	0
[38,]	50	-150	0	0	0	0	0	0	0	0	0	0	0	0	0
[39,]	100	-150	0	0	0	0	0	0	0	1	0	0	0	0	0
[40,]	150	-150	0	0	0	0	0	0	0	0	0	0	0	0	0
[41,]	200	-150	0	0	0	0	0	0	0	0	0	0	0	0	0
[42,]	250	-150	0	0	0	0	0	0	0	0	0	0	0	0	0
[43,]	300	-150	0	0	0	0	0	0	0	0	0	0	0	0	0
[44,]	350	-150	0	0	0	0	0	0	0	0	0	0	0	0	0
[45,]	400	-150	0	0	2	0	0	0	0	0	0	0	0	0	0

[46,]	450	-150	0	0	0	0	0	0	0	0	0	0	0	0	0
[47,]	500	-150	0	0	0	0	0	0	0	0	0	0	0	0	0
[48,]	550	-150	0	0	0	0	0	0	0	0	0	0	0	0	0
[49,]	0	-200	0	0	0	0	0	0	0	0	0	0	0	0	0
[50,]	50	-200	0	0	0	0	0	0	0	0	0	0	0	0	0
[51,]	100	-200	0	0	0	0	0	0	0	1	0	0	0	0	0
[52,]	150	-200	0	0	0	0	0	0	0	0	0	0	0	0	0
[53,]	200	-200	0	0	0	0	0	0	0	0	0	0	0	0	0
[54,]	250	-200	0	0	0	0	0	0	0	0	0	0	0	0	0
[55,]	300	-200	0	0	0	0	0	0	0	0	0	0	0	0	0
[56,]	350	-200	0	0	0	0	0	0	0	0	0	0	0	0	0
[57,]	400	-200	0	0	0	0	0	0	0	0	1	0	0	0	0
[58,]	450	-200	0	0	0	0	0	0	0	0	0	0	0	0	0
[59,]	500	-200	0	0	0	0	2	0	0	0	0	0	0	0	0
[60,]	550	-200	0	0	0	0	0	0	0	0	0	2	0	0	0
[61,]	0	-250	0	0	0	0	0	0	0	0	0	0	0	0	0
[62,]	50	-250	0	0	0	0	0	0	0	0	0	0	0	0	0
[63,]	100	-250	0	0	0	0	0	0	0	0	0	0	0	0	0
[64,]	150	-250	0	0	0	0	0	0	0	1	0	0	0	0	0
[65,]	200	-250	0	0	0	0	0	0	0	0	0	0	0	0	0
[66,]	250	-250	0	0	0	0	0	0	0	0	0	0	0	0	0
[67,]	300	-250	1	0	0	0	0	0	0	0	0	0	0	0	0
[68,]	350	-250	0	0	0	0	0	0	0	0	2	0	0	0	0
[69,]	400	-250	0	0	0	0	0	0	0	0	0	0	0	0	0
[70,]	450	-250	0	0	0	0	0	0	0	0	0	0	0	0	0
[71,]	500	-250	0	0	0	0	0	0	0	0	0	0	0	0	0
[72,]	550	-250	0	0	0	0	0	0	0	0	0	1	1	0	0
[73,]	0	-300	0	0	0	0	0	0	0	0	0	0	0	1	0
[74,]	50	-300	0	0	0	0	0	0	0	0	0	0	0	0	1
[75,]	100	-300	0	0	0	0	0	0	0	0	0	0	0	0	0
[76,]	150	-300	0	0	0	0	0	0	0	0	0	0	0	0	0
[77,]	200	-300	0	0	0	0	0	0	0	0	0	0	0	0	0
[78,]	250	-300	0	0	0	0	0	0	0	0	0	0	0	0	0
[79,]	300	-300	0	0	0	0	0	0	0	0	0	0	0	0	0
[80,]	350	-300	0	0	0	0	0	0	0	0	0	0	0	0	0
[81,]	400	-300	0	0	0	0	0	0	0	0	1	0	0	0	0
[82,]	450	-300	0	0	0	0	0	0	0	0	1	0	0	0	0
[83,]	500	-300	0	0	0	0	0	0	0	0	0	0	1	0	0
[84,]	550	-300	0	0	0	0	0	0	0	0	0	0	1	0	0