Appendices for "Multistage Hierarchical Capture-Recapture

Models"

Appendix A

To fit the homogeneous CR model using a single-stage MCMC algorithm, we consider the joint posterior distribution for p and ψ. Under the PX-DA framework, this posterior distribution can be written as

$$
\begin{align*}
{\left[p, \psi \mid \mathbf{y}_{1: n}, \mathbf{y}_{(n+1): M}, n\right] } & \propto\left[\mathbf{y}_{(n+1): M} \mid p, \psi, \mathbf{y}_{1: n}, n\right]\left[p, \psi \mid \mathbf{y}_{1: n}, n\right] \tag{35}\\
& \propto\left[\mathbf{y}_{(n+1): M} \mid p, \psi, \mathbf{y}_{1: n}, n\right]\left[\mathbf{y}_{1: n} \mid p, n\right][n \mid p, \psi][p][\psi] \tag{36}\\
& \propto\left[\mathbf{y}_{1: n} \mid p, n\right][n \mid p, \psi][p][\psi] \tag{37}
\end{align*}
$$

where the full-conditional distribution of $\mathbf{y}_{(n+1): M}$ is proportional to one when conditioned on n (and hence drops out of the right hand side) and the conditional distribution of $\mathbf{y}_{1: n}$ is proportional to the product of zero-truncated binomials

$$
\begin{equation*}
\left[\mathbf{y}_{1: n} \mid p, n\right] \propto \frac{\prod_{i=1}^{n}\left[y_{i} \mid p\right]}{\left(1-(1-p)^{J}\right)^{n}} \tag{38}
\end{equation*}
$$

For a given joint proposal distribution $[p, \psi]^{*}$, the associated Metropolis-Hastings ratio to update p and ψ jointly is

$$
\begin{equation*}
r=\frac{\left[\mathbf{y}_{1: n} \mid p^{(*)}, n\right]\left[n \mid p^{(*)}, \psi^{(*)}\right]\left[p^{(*)}\right]\left[\psi^{(*)}\right]\left[p^{(k-1)}, \psi^{(k-1)}\right]^{*}}{\left[\mathbf{y}_{1: n} \mid p^{(k-1)}, n\right]\left[n \mid p^{(k-1)}, \psi^{(k-1)}\right]\left[p^{(k-1)}\right]\left[\psi^{(k-1)}\right]\left[p^{(*)}, \psi^{(*)}\right]^{*}} . \tag{39}
\end{equation*}
$$

To implement the model using PPRB following Hooten et al. (2021), we obtain an initial MCMC sample for p and ψ by fitting the CR model to the observed data while conditioning
on fixed and known n. The posterior distribution for the first stage is proportional to

$$
\begin{equation*}
\left[\mathbf{y}_{1: n} \mid p, n\right][p][\psi] \tag{40}
\end{equation*}
$$

with respect to p and ψ, and the associated first-stage Metropolis-Hastings ratio is

$$
\begin{equation*}
r=\frac{\left[\mathbf{y}_{1: n} \mid p^{(*)}, n\right]\left[p^{(*)}\right]\left[\psi^{(*)}\right]\left[p^{(k-1)}, \psi^{(k-1)}\right]^{*}}{\left[\mathbf{y}_{1: n} \mid p^{(k-1)}, n\right]\left[p^{(k-1)}\right]\left[\psi^{(k-1)}\right]\left[p^{(*)}, \psi^{(*)}\right]^{*}} \tag{41}
\end{equation*}
$$

At this first stage, we use a temporary proposal distribution $[p, \psi]^{*}$ that is convenient.
For the second stage of the PPRB implementation, we assume that the proposal distribution is

$$
\begin{equation*}
[p, \psi]^{*} \propto\left[\mathbf{y}_{1: n} \mid p, n\right][p][\psi] \tag{42}
\end{equation*}
$$

which is equivalent to the first-stage posterior, and randomly sample (with replacement) joint first-stage MCMC realizations to use as proposals in the second stage Metropolis-Hastings updates. The resulting second-stage Metropolis-Hastings ratio becomes

$$
\begin{align*}
r & =\frac{\left[\mathbf{y}_{1: n} \mid p^{(*)}, n\right]\left[n \mid p^{(*)}, \psi^{(*)}\right]\left[p^{(*)}\right]\left[\psi^{(*)}\right]\left[p^{(k-1)}, \psi^{(k-1)}\right]^{*}}{\left[\mathbf{y}_{1: n} \mid p^{(k-1)}, n\right]\left[n \mid p^{(k-1)}, \psi^{(k-1)}\right]\left[p^{(k-1)}\right]\left[\psi^{(k-1)}\right]\left[p^{(*)}, \psi^{(*)}\right]^{*}}, \tag{43}\\
& =\frac{\left[n \mid p^{(*)}, \psi^{(*)}\right]}{\left[n \mid p^{(k-1)}, \psi^{(k-1)}\right]}, \tag{44}
\end{align*}
$$

because the proposal cancels with the data model and priors. Thus, the second-stage Metropolis-Hastings ratio is merely a quotient involving the conditional model for n and can be evaluated easily using the first-stage MCMC sample.

Appendix B

To demonstrate the recursive implementation of the hierarchical CR model, we fit the model to simulated data using the single-stage and two-stage approaches. To simulate CR data for this example, we set $M=100$ individuals in the superpopulation, membership probability $\psi=0.4$, and detection probability $p=0.25$. Then we used the hierarchical model in Section 2 as a generative process to simulate data based on $J=3$ occasions which resulted in $N=39$ individuals in our population, with $n=19$ individuals observed by our measurement process. The simulated observed data y_{i}, for $i=1, \ldots, n$, can be summarized by the values $\mathbf{y}=(1,1,1,1,1,1,1,2,2,1,1,1,1,2,2,1,1,2,1)^{\prime}$.

In the PX-DA implementation, we assumed $M-n=81$ augmented individuals with all-zero capture histories. Thus, we assumed the same M as in our data simulation and this allows us to infer the true ψ. We note that the estimation of N is not constrained by M empirically in this example, therefore we could use larger values of M without influencing the inference for parameter p.

We fit the hierarchical CR from Section 2 to our simulated data using two approaches: 1) a standard single-stage MCMC algorithm for the hierarchical model and 2) a two-stage algorithm based on the recursive formulation of the same model. In both cases, we used $K=200000$ MCMC iterations. The results of our analyses are summarized in Figure 5. The posterior comparison shown in Figure 5 indicates that the two-stage PPRB approach yields the same inference as the conventional single-stage MCMC algorithm. Both approaches fit exactly the same model, but the recursive framework suggests that other specifications for the conditional model for n (e.g., Poisson) are straightforward to implement. Furthermore, in more complicated models, we can benefit from parallel evaluation of the PMF for n which can improve stability and facilitate computation for large data sets.

Figure 5: Marginal posterior distributions for a) p, b) $\psi, c) N$. Distributions shown are a result of the single-stage MCMC algorithm (black), first-stage of the two-stage MCMC algorithm (red), and second-stage of the two-stage MCMC algorithm (green). Subfigure c shows marginal posterior probability mass functions; black line shown for single-stage for comparison.

Appendix C

The snowshoe hare SCR data used to fit the model in Section 4 are presented below. The first column is the trap ID (i.e., [1,] indicates trap 1), the second two columns correspond to the $L=84$ trap locations \mathbf{X} in meters, and the remaining 13 columns contain values that correspond to the sum of detections associated with each individual at each trap.

[1,]	0	0	0	0	00	0	00	0	0	0	0	0		0
[2,]	50	0	0	0	0	00	0	0	0	0	0	0		0
[3,]	100	0	1	0	0	00	00	0	0	0	0	0		0
[4,]	150	0	0	0	0	00	0	0	0	0	0	0		0
[5,]	200	0	0	0	00	00	00	0	0	0	0	0		0
[6	250	0	0	1	0	00	00	0	0	0	0	0		0
[7,]	300	0	0	0	0	00	00	0	0	0	0	0		0
[8,	350	0	0	0	10	00	00	0	0	0	0	0		0
[9,]	400		0	0	0	00	0	0	0	0	0	0		0
[10,]	450	0	0	0	0	10	00	0	0	0	0	0		0
,]	500	0	0	0	0	12	20	0	0	0	0	0		0
,]	550	0	0	0	0	0	0	0	0	0	0	0		0
,]	0	-50	0	0	0	00	0	0	0	0	0	0		0
[14,]	50	-50	1	0	0	0	0	0	0	0	0	0	0	0
[15	100	-50	0	0	0	00	0	0	0	0	0	0		0
[16,]	150	-50	0	0	0	0	00	0	0	0	0	0		0
[1	200	-50	0	0	0	00	0	0	0	0	0	0		0
[18,]	250	-50	0	0	0	0	00	0	0	0	0	0		0
[19,]	300	-50	0	0	0	00	0	0	0	0	0	0	0	0
[20	350	-50	0	0	00	00	0	0	0	0	0	0		0
[21,]	400	-50	0	0	00	00	00	0	0	0	0	0	0	0
[22,]	450	-50	0	0	00	00	0	0	0	0	0	0		0
[23,]	500	-50	0	0	0	00	00	0	0	0	0	0		0
[24,]	550	-50	0	0	0	10	0	0	0	0	0	0		0
[25,]	0	-100	0	0	00	00	0	0	0	0	0	0		0
[26,]	50	-100	0	0	00	00	0	0	0	0	0	0	0	0
[27,]	100	-100	1	0	00	00	0	0	0	0	0	0		0
[28,]	150	-100	0	0	0		0	0	0	0	0	0		0
[2]	200	-100	0	0	0	00	0	0	0	0	0	0		0
[30,]	250	-100	0	0	00	00	0	0	0	0	0	0		0
[31,]	300	-100	0	0	20		0	1	0	0	0	0	0	0
[32,]	350	-100	0	0	00	00	0	0	0	0	0	0		0
[33,]	400	-100	0	0	0		0	0	0	0	0	0	0	0
[34,]	450	-100	0	0	00	00	0	0	0	0	0	0	0	0
[35,]	500	-100	0	0	00	00	0	0	0	0	0	0		0
[36,]	550	-100	0	0	00	00	0	0	0	0	0	0	0	0
[37,]	0	-150	0	0	00	00	0	0	0	0	0	0		0
[38,]	50	-150	0	0	0	00	0	0	0	0	0	0	0	0
[39,]	100	-150	0	0	00	00	0	0	1	0	0	0	0	0
[40,]	150	-150	0	0	00	00	0	0	0	0	0	0	0	0
[41,]	200	-150	0	0	00	00	0	0	0	0	0	0	0	0
[42,]	250	-150	0	0	00		0	0	0	0	0	0		0
[43,]	300	-150	0	0	00	00	00	0	0	0	0	0	0	0
[44,]	350	-150		0			00	0		0	0			0
[45,]	400	150												

[46,] $450-1500000000000000000$
[47,] $500-1500000000000000000$
[48,] $550-15000000000000000$
[49,] $0-200000000000000000$
[50,] $50-2000000000000000000$
[51,] $100-200000000000100000$
[52,] $150-200000000000000000$
[53,] $200-2000000000000000000$
[54,] $250-200000000000000000$
[55,] $300-2000000000000000000$
[56,] $350-200000000000000000$
[57,] $400-200000000000010000$
[58,] $450-200000000000000000$
[59,] $500-200000002000000000$
[60,] $550-200000000000002000$
[61,] $0-25000000000000000$
[62,] $50-2500000000000000000$
[63,] $100-25000000000000000$
[64,] $150-25000000000100000$
[65,] $200-250000000000000000$
$[66] \quad 250-$,
[67,] $300-25010000000000000$
[68,] $350-250000000000020000$
[69,] $400-250000000000000000$
[70,] $450-250000000000000000$
[71,] $500-250000000000000000$
[72,] $550-250000000000001100$
[73,] $0-30000000000000010$
[74,] $50-300000000000000001$
[75,] $100-30000000000000000$
[76,] $150-300000000000000000$
[77,] $200-300000000000000000$
[78,] $250-300000000000000000$
[79,] $300-300000000000000000$
[80,] $350-30000000000000000$
[81,] $400-30000000000010000$
[82,] $450-300000000000010000$
[83,] $500-30000000000000100$
[84,] $550-300000000000000100$

