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23 Abstract  
Rare phenotypes and behaviors within a population are often overlooked, yet they may  

serve a heightened role  for species imperiled by  rapid warming. In threatened spring-run 

Chinook salmon spawning at the southern edge of the species range, we show late-migrating  

juveniles are critical to cohort success in years  characterized by droughts and ocean heatwaves.  

Late migrants rely on cool over-summer river temperatures, increasingly rare due to the  

combined effects of warming and impassable dams. Despite the dominance of late  migrants, 

other strategies played an important role in many years. Our results suggest that further loss of  

phenotypic  diversity will have critical impacts on population  persistence in a warming climate.  

Predicted thermally suitable river conditions for late migrants will shrink rapidly in the future,  

and will be largely relegated above impassable dams. Reconnecting diverse habitat mosaics to  

support phenotypic diversity will be integral to the long term persistence of this species.  

Main text  

Climate change is arguably the greatest emerging threat to global biodiversity and  

ecosystem functioning in this period of unprecedented change1,2. To track changing climate  

regimes, many species have shifted their phenology3, distribution4,5, and abundances6. While  

there has been considerable attention given to  predicting species and community-level 

phenological responses to climate change7,8, far less attention has been given to understanding  

how the loss of within population variation and rare phenotypes might modulate population 

resilience to future climate forcings9,10.   

Phenotypic diversity is one way for populations to buffer  themselves against natural or 

anthropogenic perturbations11–13. Plasticity in migratory timing may be particularly important  

for species that migrate  between freshwater and marine environments to forage and  spawn, as  

their ability to respond to adverse ambient conditions is constrained by the stream  network, 

leaving fewer options for lateral movements compared with terrestrial or marine species14–17. 

Furthermore, in many cases, anthropogenic land use changes, such as hydropower dams  and 
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irrigation diversions, have restricted access to high elevation habitats that would have 

otherwise provided thermal refugia18–20. 

Salmonids exhibit extensive phenotypic plasticity, which could enhance population 

stability against disturbances by spreading risk across time and space (portfolio effect 

concept12,21,22). However, multiple concurrent environmental forcings could weaken this 

portfolio effect and challenge species resilience to future climate change23. In particular, the 

combination of warming and habitat contraction, caused by dam construction, has resulted in 

large population declines and erosion of salmon life history diversity, particularly for runs that 

rely on cooler high elevation habitats24,18,25,26. To understand how life history diversity may 

influence salmon resilience to climate change, we tracked the relative contribution of different 

juvenile migratory strategies in California’s Chinook salmon (Oncorhynchus tshawytscha) 

populations that spawn in a heavily modified environment at the southern edge of the species’ 

native range27. These salmon serve as a model system for early indication of the challenges 

faced by cold-water fishes when access to thermal refugia has been drastically reduced28. 

While juvenile salmonids at higher latitudes often spend multiple years in freshwater 

before emigrating to the ocean27,29, today, most salmon in the California Central Valley 

emigrate in their first winter and spring before river temperatures become too warm. An 

exception is found among spring-run Chinook salmon that used to dominate the region before 

the construction of impassable dams24. Two populations still have access to high elevation 

reaches, and exhibit a now rare phenotype where juveniles remain in the river over-summer 

before emigrating the following fall30. This late-migrating phenotype relies on access to cool 

water for the entire rearing period and is therefore most likely to be negatively impacted by 

warming temperatures and impaired access to high elevation reaches. Here, we used strontium 

isotope ratios (87Sr/86Sr) and daily depositional chronology in otoliths (calcium carbonate 

structures, part of the fish’s hearing and balance system) to reconstruct the juvenile emigration 

patterns and growth rates of returning (i.e., successful) adult spring-run Chinook salmon, and to 

estimate the contribution of different migration strategies to the reproductive population 

across environmental extremes. Specifically, 87Sr/86Sr vary among California Central Valley 
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rivers, producing distinct and reproducible geographic markers across the landscape that are 

permanently recorded in the daily otolith layers, thus allowing reconstruction of the juvenile 

life histories of 123 adults that returned to Mill and Deer Creeks (two geographically close 

watersheds with genetically similar spring-run populations31; Fig. 1a) between 2007 and 2018 

(Supplementary Table 1). Some of these cohorts experienced severe droughts and warm ocean 

conditions (Supplementary Table 2) revealing potential mechanisms involved in the expression 

and success of alternative life history strategies. We also investigated how predicted future 

river temperatures will affect the availability of suitable rearing habitat and the long-term 

viability of the late-migrating phenotype. In summary, we show how climate change may 

truncate salmon life history diversity, and how the loss of the late-migrant phenotype could 

negatively affect the long-term resilience of threatened spring-run Chinook salmon populations. 

The importance of rare phenotypes and life history diversity 
Otolith isotope profiles revealed three distinct juvenile life-history types (hereafter 

referred to as “early”, “intermediate” and “late” migrants; Fig. 1b-d, Supplementary Fig. 1), 

concordant with the three emigration modes observed in the juvenile trapping data (Fig. 2a). 

The three life-history types were characterized by significant differences in the age and size at 

which the fish exited the natal tributary (Fig. 1b-d, 2b, Supplementary Fig. 2c, 2e). Despite 

leaving the natal stream considerably smaller, early migrants entered the ocean at a similar size 

and age to intermediate migrants, after rearing for multiple months in non-natal freshwater 

habitats (i.e., Sacramento River and Delta). Late migrants emigrated to the ocean significantly 

later and larger than the other two phenotypes (Fig. 2c, Supplementary Fig. 2d, 2f), having 

reared in the natal stream over the summer (mean natal rearing period = 194 days ± 32 days 

SD). Late migrants may thus experience very different freshwater, estuarine and nearshore 

marine conditions, potentially resulting in differential feeding, growth and survival 

opportunities32,33. 

While late migrants were the rarest phenotype (10%) observed in juvenile monitoring 

traps34, they represented the majority (60%) of the returning adults averaged across years (Fig. 

2a, 2b). Conversely, on average, 26% of juveniles and 19% of surviving adults were represented 
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106 by intermediate migrants that reared in natal rivers for 84 days ± 27 days  SD. Early migrants,  

that reared in natal rivers for 15 days ± 14 days SD, were the  dominant phenotype observed in 

juvenile  monitoring (64%), yet their contribution to the adult returns was suppressed (only 

21%). Importantly, the contribution rate of each life history type varied considerably  among  

years (Fig. 3). Half of the return years (2007, 2008, 2013) were represented by similar 

contributions of each life history type, and their most likely emigration years (2004 & 2005,  

2005 &  2006, 2009  & 2010) were generally wetter. In contrast, the late  migrants that left 

freshwater in the fall during multi-year droughts and ocean heatwaves (returning 2012, 2014, 

2018) were functionally  the only strategy to survive to adulthood (100%, 77%, and 97% of late  

migrants  observed  respectively,  Fig. 3; Supplementary Table  2).   

Although variability in juvenile growth rates was observed, likely related to a 

combination of fine-scale habitat heterogeneity and individual ontogeny, some clear trends  

emerged from the otolith increment analysis. First, early-life freshwater  growth rates were  

inversely  correlated with emigration timing, with faster growing individuals tending to leave the  

natal tributary earlier, and slower growing individuals remaining for longer before  migrating  

downstream (Fig. 4a and Supplementary Fig.  3). Second, cumulative growth over the first 15  

days was significantly faster for early migrants (37 µm ± 11  µm  SD)  compared to late  migrants  

(30 µm ±  8 µm  SD)  but not  different between early and intermediate migrants (32 µm  ± 7  µm  

SD; Fig. 4b).  It is interesting to note that the fastest growth rates were typically observed 

among the juveniles that left the natal stream earliest (within 15 days after emergence; open  

circle dots in Fig. 4a),  and thus also reared in non-natal habitats. Those results are consistent 

with previous studies showing differential salmon juvenile growth rates and sizes across  

multiple migratory pathways29,35.  

Thermally suitable habitat  in a warming climate  
Temperature strongly influences salmonid physiology, growth and survival36. Thus, 

populations  with access  to diverse water temperatures during incubation and natal rearing are  

predicted to exhibit increased phenotypic and phenological diversity37. To support late  

migrants, stream temperatures need to remain suitably cool (temperature  below  ~15°C38) over  
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134 the summer to accommodate the extended rearing period.  Mill and Deer Creek watersheds,  

along with upstream reaches of the Battle and Clear Creeks, are among the few accessible and  

populated spring-run streams in the  system that still provide suitable rearing temperatures to  

support all three phenotypes (Fig. 5 top panels). In accessible  stream reaches where spring-run 

Chinook were historically present but are now extirpated, only the Stanislaus River has  

temperatures that could support the late migrating phenotype. Adult spring-run  Chinook  

(based on return timing) have recently been observed in the Stanislaus River suggesting this  

habitat has the potential to support recolonization thus contributing to the reintroduction 

efforts in the San Joaquin Basin39. Importantly,  increases in spring and summer stream 

temperatures by 2040 (Extended Data Fig. 1) and 2080 (Fig.5 bottom panels) are predicted to  

further contract the amount of thermally suitable rearing habitat, especially along the  

downstream reaches of spring-run  streams and the mainstem Sacramento River. Without  

intervention, late-migrants may only have access to 76 km of suitable summer rearing habitat  

by 2080, less than half (44%) of the  accessible suitable habitat during our study period (i.e., 

2005-2015;  Supplementary Table  3). Providing access above dams on the Sacramento, Feather,  

Yuba, American, and Tuolumne Rivers (Fig. 5) would approximately triple summer rearing  

habitat under 2080 climate conditions (76km without access, 201km with access; 

Supplementary Table  3).  

Discussion  

Here, using archived otolith tissues, we reveal how a diversity of growth rates and 

behaviors expressed during early life stages can shape population dynamics and resilience via 

within-population portfolio effects.  This underscores why it is essential that conservation 

strategies developed for the recovery of vulnerable species support both rare and common 

phenotypes. The phenotypic diversity expressed by California Central Valley spring-run Chinook 

salmon has  thus far enabled these populations to persist despite habitat loss and degradation 

along their migratory corridor, warming temperatures, and an increasingly volatile  

Mediterranean climate24,40. We show for the first time that the late-migrating strategy is the  

life-support for these populations during current periods of extreme warming. Therefore, 
6  
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conservation priorities should focus on supporting this rare and climate-adapted behavior, 

particularly given that climatic extremes such as extended droughts and marine heatwaves are 

predicted to increase in frequency and severity in the future41,42. Late migrants experience very 

different selective pressures to the other migratory phenotypes, during both their freshwater 

and ocean phases. For example, entering the ocean in a different season at a larger size 

potentially reduces intraspecific competition and risk of mismatch with peak prey production 

during early ocean residence, a critical period for cohort success43. However, by rearing over 

summer in freshwater late migrants forgo growth opportunities that early and intermediate 

migrants experience by feeding earlier in the more productive ocean. This within-population 

phenotypic diversity is thus critical to spreading risk and ensuring that at least some fraction of 

the population is successful under differing environmental conditions. 

For salmon and other species impacted by habitat contraction, restoring and maintaining a 

diverse mosaic of habitats and thermal refugia across the freshwater landscape will be critical 

to support life history diversity and long term persistence22. For spring-run Chinook salmon, 

predicted stream temperatures under our climate change scenarios demonstrate the necessity 

for maintaining and expanding thermally suitable rearing habitat in order to support diverse 

growth rates and a broad spread of emigration timings. Juvenile salmon in the Central Valley 

are known to experience high mortality rates during their seaward migration in the spring 

particularly during droughts44,45. This is further evidenced by the poor representation of early 

and intermediate migrants in the adult returns in 2012, 2014 and 2018, which were all 

characterized by hot and dry emigration conditions. Late migrants have evolved a drought-

resilient strategy of leaving in the fall when the migratory corridor is cooler, but they must be 

able to survive the heat of the spring and summer in headwater habitats for this to be a viable 

strategy. Improving access to cold water refugia through habitat restoration, targeted water 

management below dams, and/or reintroductions to high elevation habitats above impassable 

dams, might be vital for preserving the late migrant life-history type now and under future 

climate scenarios46,47. While the predicted amount of summer rearing habitat above dams may 

be modest under 2080 conditions (125km; Supplementary Table S3), this reliable cold water 

could play a disproportionate role in preventing extirpation during multi-year droughts. In 
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191 addition, improving growth and survival conditions for early and  intermediate migrants along  

degraded migratory corridors could  be instrumental to bolster productivity and resilience,  

particularly in wetter years when earlier migrants play an important role in population success.  

Salmonid species  are renowned for  their  extensive migratory plasticity, with  

anadromous forms spending a few months to  many years in freshwater48. While phenotypic  

trait diversity in salmon species is often discussed in the context of genetic differentiation and 

microevolution49,50,  the life history diversity observed in these genetically  similar  spring-run 

populations31  highlights  the important interaction between physiology and environmental  

variability in the expression of divergent juvenile  emigration strategies51.  Although physiological 

plasticity can increase species’  resilience to climate change52, it is unclear whether salmonids  

can adapt their thermal tolerances  quickly enough to  keep pace with predicted rates  of  

warming. This is particularly problematic for populations at  lower latitudes53  and those facing  

additional stressors  (e.g., contaminant loads,  limited food) that further contract their  thermal  

window by affecting  their metabolic performance54. As environmental conditions continue to  

shift  rapidly  with climate change, maximizing habitat options  across the landscape to enhance  

adaptive capacity and support climate-resilient behaviors  may be crucial to prevent extinction  

events within salmonids  and other thermally vulnerable species23,52,55.  

 

Methods  

1.  Otolith  87Sr/86Sr analysis  

Otoliths were prepared at UC Davis  per established techniques56. The otoliths’ sagittal 

plane  (see Fig 3. in Woodson et al.32) was sectioned on both sides using  600 and 1500 grit 

wet/dry sandpaper to expose the primordia and surrounding microstructure. The surface  

achieved a further fine polish using  3µm and 1 µm  Al2O3 lapping films. Finished samples were  

mounted to  a 1cm square glass pedestal using Gorilla GlueTM. The otoliths’ dorsal side was  

photographed in 20x magnification using a Qimaging digital camera (MicroPublisher 5.0 RTV)  

mounted to  a Olympus BX60 microscope. Following imaging otoliths were analyzed for 
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strontium isotopes at the UC Davis Interdisciplinary Center for Inductively-Coupled Plasma 

Mass Spectrometry by laser ablation on their Multi Collector Inductively Coupled Mass 

Spectrometer. We used the otolith strontium isotope methods described in Barnett-Johnson et 

al.57,58 to reconstruct juvenile freshwater habitat-use and migration histories. In brief, the 

strontium isotope ratio (87Sr/86Sr) of freshwater habitats (the “isoscape”) varies as a function of 

rock geology and weathering patterns59, and because there is no biological fractionation of 

strontium isotopes, the otoliths faithfully record the signature of the surrounding water and 

dietary sources. Strontium isotopes are a particularly powerful tool in the California Central 

Valley, because the spatial heterogeneity in rock types results in significant differences in 

isotope signatures among most of the salmon-bearing watersheds. Consequently, variations in 
87Sr/86Sr and strontium concentration across Central Valley watersheds has proven useful for 

determining population of origin58,60 and reconstructing juvenile rearing and migration 

behavior44,61. 

2. Movement reconstruction 

Otolith radius was used as a proxy for fish size at natal and freshwater exit (see 

Supplementary Information section 2.2). The otolith radius for each 87Sr/86Sr measurement was 

estimated by measuring the distance from the otolith core to the center of each laser pit along a 

standardized 90˚ axis56. Strontium isotope profiles representing changes in 87Sr/86Sr values as a 

function of otolith distance from the core were created for each otolith. Specific location 87Sr/86Sr 

threshold values were used to identify the movement of Central Valley spring-run Chinook 

juveniles from one rearing region to the other. These values come from a Central Valley isoscape 

database61. We considered four distinct regions in this study: Natal tributary (i.e., Mill and Deer 

Creeks), Sacramento River, Sacramento-San Joaquin Delta (hereafter “Delta”), and San Francisco-

San Pablo Bay (hereafter “Bay”) & Ocean. We used changes in 87Sr/86Sr along the otolith transect 

to identify two key habitat shifts to reconstruct the size at which individuals exited (1) the natal 

tributary, and (2) freshwater (exit location is Chipps Island, river kilometer 73). Otolith radius at 

natal exit was calculated by linearly interpolating between otolith distances at the 87Sr/86Sr 
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measurements on either side of the upper Sacramento River (point of Mill and Deer Creek exit 

and Sacramento River entry) strontium threshold value. We used the lowest 87Sr/86Sr value found 

for the upper Sacramento River region in the Central Valley isoscape database. If for a given fish 

this threshold was never crossed (i.e., 87Sr/86Sr values are all above the threshold), we 

determined it by visually identifying the closest point to the Mill/Deer Creek habitat 87Sr/86Sr 

threshold value in the strontium profiles. This could happen if a fish migrated quickly after 

emergence to the Sacramento River, which is characterized by higher 87Sr/86Sr values than the 

natal tributary. Similarly, otolith radius for freshwater exit was calculated by linearly interpolating 

between otolith distances at the 87Sr/86Sr measurements on either side of the Chipps Island (point 

of Delta exit and Bay entry) strontium threshold value. Finally, the Sacramento River at Freeport 
87Sr/86Sr value threshold was used to identify the migration of spring-run juveniles from the 

mainstem Sacramento River to the Delta. 

3. Clustering analysis 

We conducted a clustering analysis62 on the strontium profiles obtained from the otolith 

microchemistry analysis to investigate whether we could statistically identify groups of fish 

exhibiting similar juvenile rearing strategies among Mill and Deer Creek populations. Strontium 

profiles were considered as smooth curves or functions sampled at a finite subset of some 

interval (here the distance from the otolith core); the statistical methods for analyzing such 

data are described as “Functional Data Analysis” (FDA; see Ramsay and Silverman63 for an 

overview of FDA). With FDA methods each profile is modeled in an infinite functional space 

rather than considered as a discrete vector in a multidimensional space (as modeled in 

multivariate data analysis). The clustering analysis performed in this paper included the 

following steps: 

1) A smoothing spline was fitted to each profile to predict continuous 87Sr/86Sr values 

for otolith radius distances between 0 and 1000 µm (using the smooth.spline 

function in R64). This allows us to obtain a smooth version of the profiles for any 
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distance from the otolith core to 1000 µm so that a direct comparison of all Mill and 

Deer Creek strontium profiles of different lengths can be achieved. 

2) Each smoothed profile was then transformed into a functional data object (i.e., 

decomposed in terms of linear combinations of known basis functions), using a B-

splines basis (using the fda package in R63). 

3) A functional principal component analysis (FPCA) was performed on those functional 

objects (using fda package in R). This allowed us to identify the principal modes of 

variation of the functional dataset, and reduce data dimensions which has been 

shown to help for clustering pattern recognition and processing time62. 

4) We used a model-based clustering method, where the data were represented by a 

series of Gaussian Mixture Models (GMM) for which each point (i.e., each profile) 

was associated with a probability of belonging to each potential cluster65. The 

mixture model parameters were estimated using the Expectation-Maximization (EM) 

algorithm. 

5) The Bayesian Information Criterion (BIC) was used to select the best model with the 

optimal number of clusters (using mclust package in R66). 

4. Early-life growth rate estimation 

To estimate habitat-specific juvenile growth rates we measured the otolith increment 

widths using Image Pro Premier 9.0 (Media Cybernetics) in each isotopically distinct habitat 

region56. Each otolith reading was assigned a score of “certainty” on a scale of 1-5, with 1 = 

unusable, 2 = hard to read the majority of increments, 3 = hard to read some of the increments, 

4 = easy read, and 5 = perfect publication quality. This index is a combination of the reader’s 

confidence in the accuracy of the increment placement and the quality or readability of the image 

(i.e., how likely it is that another reader would get the exact same increment width 

measurements). Otoliths with poor readability (with a score of 3 or lower) were eliminated from 

the analysis. A total of 86 otoliths were used for growth rate estimations. 

5. Central Valley spring-run streams temperature suitability mapping  
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To explore why Deer and Mill Creeks may exhibit multiple juvenile life histories and how life 

history expression may change with climate change, we compared current and future thermal 

conditions along every current and historical spring-run stream. Temperature was obtained 

from a mean monthly stream temperature model20. In brief, FitzGerald et al.20 employed a 

spatial stream temperature model to predict mean monthly stream temperature for nearly 

every river km in the western U.S. In the Central Valley, the test sample r2 was 0.813 and the 

mean absolute prediction error (MAPE) was 1.024°C. We first clipped this stream temperature 

dataset with the current and historical Central Valley spring-run distributions67. In general, the 

distribution and stream networks matched, but a few reaches with spring-run did not have 

stream temperature. We averaged the monthly temperature at each stream segment from 

2005-2015, representing our study period. In the Central Valley, stream temperatures are 

predicted to increase by 0.6°C by 2040 and 1.0°C by 208068, so we applied these deltas to the 

temperature dataset. 

We then examined stream temperature suitability for juveniles rearing in May and August 

of 2005-2015, 2040, and 2080. We focused on months when temperature stress is most likely 

to impact rearing success for early and intermediate migrants (May) and late migrants (August). 

A river reach was defined as suitable when it provided optimal temperature for spring run 

juvenile growth. Here we used a fixed temperature threshold of 15°C because temperatures 

greater than ~15°C result in decreased growth rates and increased mortality rates, yet we 

acknowledge that there is likely some variation in this threshold according to local water 

quality, food availability, and the life stage considered54,69. 

Data Availability 
The datasets generated and used for the otolith strontium isotope and early-life freshwater 

growth analyses, and to produce Figs 1-4 & S1-S3 are available on GitHub at 

https://github.com/floracordoleani/MillDeerOtolithPaper70. The stream temperature and 

spring-run Chinook spatial distribution shapefiles generated for the juvenile spring-run Chinook 

thermal habitat suitability assessment and used in Figs 5 & S4 are available on DRYAD at 

https://doi.org/10.5061/dryad.bk3j9kdc971. 
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Code Availability 
The code for the otolith strontium isotope and early life growth analyses is posted on GitHub at 

https://github.com/floracordoleani/MillDeerOtolithPaper. 
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Figure 1. Spring-run Chinook salmon life history diversity. Left panel: map of historical and current 

distribution of California Central Valley spring-run Chinook salmon, with the two Lassen tributary 

populations in this study highlighted in dark blue. Delta = Sacramento-San Joaquin River Delta, Bay = 

estuary between Suisun and San Francisco Bays, and Chipps Island = freshwater exit location. Right 

panel: Otolith strontium isotope profiles (grey lines) separated into early, intermediate and late 

migrants. Life-history types were classified using cluster analyses based on otolith isotope-by-radius data 

for all years combined (see Methods and Supplementary Information section 1.2). A representative 

profile from each cluster (± 2SD) is shown in bold. The first part of the profile (0 to ~200µm; represented 

by a grey rectangle) corresponds to the incubation period when the fry is nourished by the maternal yolk 

in the gravel. 
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Figure 2. Migrant size distributions at natal and freshwater exit. (a) Raw catch data and size 

distribution of juveniles caught in the Mill and Deer Creek rotary screw traps between 1995 and 2010. 

Each color represents a life history type based on its size and date at emigration: red = early, green = 

intermediate, yellow = late migrants (see Supplementary Information section 2.1). Numbers near each 

density profile represent fish counts per life history type. Otolith radius (proxy for fish size) distributions 

for each life-history type when they emigrated out of the natal stream (b) and out of freshwater (c). 

Colors correspond to life history types denoted in Figure 1. Numbers above each density peak represent 

fish counts per life history type. Note that the juvenile emigration years associated with return years 

from the otolith analysis (2004-2015; Supplementary Table 2) do not entirely match with the emigration 

years from juvenile trapping data (monitoring performed from 1995 to 2010). 
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Figure 3. Migrant sizes and life history diversity across years. (a) Otolith radius (proxy for juvenile fish 

size) distributions for each adult return year (RY) and its most likely juvenile emigration years (EY, shown 

in parenthesis) at natal and freshwater exit, showing interannual differences in the size distribution of 

the juvenile emigrants that survived to adulthood. Density distributions are standardized by year. (b) 

Contributions of each life-history type to the adults returns. In multiple years, late emigrating juveniles 

comprised the majority of returning adults. 

17 



  

 

 

 

 

 

 

 

417

418

419

420

421

422

415 

416 Figure 4.  Early-life salmon  growth across life history  types.  (a)  Fish daily otolith increment  width (a  

proxy for fish growth rate)  averaged over the first 15  days after emergence and  plotted against the  

otolith increment number (a  proxy for  age in days) at natal exit, for each life history type. Filled circles  

show  individuals that were still in their  natal tributary at day 15, and used for the early-life growth  

analysis, while open circles represent individuals that had left  their natal tributary before day 15 and  

reared elsewhere. A linear regression is  represented  by the black line, with the grey shade showing the 

95% confidence interval. Even excluding the fast-growing individuals (open circles), there is  a negative  

18  
 



 
 

      

     

     

    

     

   

    

    

   

423

424

425

426

427

428

429

430

431

relationship (R2 and p-value) between age at natal exit and initial growth rates. (b) Boxplot comparing 

cumulative increment width at day 15 (a proxy for somatic growth achieved in the first 15 days), 

between the three migratory phenotypes. Only fish that spent at least 15 days in the natal stream were 

included. The horizontal line in each box represents the median value, lower and upper hinges of the 

boxes correspond to the 25th and 75th percentiles. The upper whiskers extend from the hinge to the 

largest value no further than 1.5*interquartile range (IQR) from the hinge. The lower whisker extends 

from the hinge to the smallest value, 1.5*IQR of the hinge, at most. The black dots are the actual 

measurements. Boxes not sharing the same letter are significantly different (Tukey test with significance 

level α = 0.05, DF = 75). 
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433 Figure 5. Central Valley  habitat  suitability mapping under current  and future climate conditions.  

Rearing temperature suitability (temperature < 15°C38) in accessible (orange lines) and inaccessible (i.e.,  
20  

 

434 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

435 blocked by impassable dam; blue lines) river reaches in  the California Central Valley, focusing on  months  

when temperature stress is most likely to impact rearing success for early and intermediate  migrants  

(May; left panels) and late migrants (August; right panels). We  examined suitability (defined as  

temperature  < 15°C, see  Methods)  during our study  period (top panels) and  under a future climate 

change scenario (2080, bottom panels).  The inset  maps highlight our study streams (Mill and Deer  

Creeks) and nearby spring-run streams.  Major current and historical spring-run  streams are labeled, with  

extirpated populations in blue font, and  populations at low risk of extirpation72  in bold.  The gray lines  

represent reaches  that are thermally unsuitable for rearing (mean  monthly temperature > 15°C). The 

black lines represent reaches where temperatures could not be predicted reliably (e.g., reservoirs). See  

Methods for  details on  temperature mapping.  
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