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Abstract We quantify and isolate the sources of projection uncertainty in annual-mean sea-air CO2

flux over the period 2006–2080 on global and regional scales using output from two sets of ensembles
with the Community Earth System Model (CESM) and models participating in the 5th Coupled Model
Intercomparison Project (CMIP5). For annual-mean, globally-integrated sea-air CO2 flux, uncertainty grows
with prediction lead time and is primarily attributed to uncertainty in emission scenario. At the regional
scale of the California Current System, we observe relatively high uncertainty that is nearly constant for all
prediction lead times, and is dominated by internal climate variability and model structure, respectively in
the CESM and CMIP5 model suites. Analysis of CO2 flux projections over 17 biogeographical biomes reveals
a spatially heterogenous pattern of projection uncertainty. On the biome scale, uncertainty is driven by a
combination of internal climate variability and model structure, with emission scenario emerging as the
dominant source for long projection lead times in both modeling suites.

1. Introduction

Since the beginning of the industrial revolution, atmospheric concentrations of carbon dioxide (CO2) have
increased by 40%, driving increases in global temperature [Ciais and Sabine, 2013]. Less than half of the CO2

emitted from anthropogenic activities has remained in the atmosphere; the remaining CO2 has been taken
up by natural carbon sinks: the ocean and the terrestrial biosphere. The global ocean has absorbed ∼30% of
the CO2 released by fossil fuel burning, cement manufacture, and land use since 1765 [Ciais and Sabine, 2013].
Accurate projections of future climate change require quantitative projections of CO2 uptake by the ocean.

Earth System Model (ESM) simulations project the future evolution of ocean carbon uptake on timescales
ranging from subannual to centennial. However, quantitative projections from ESMs across these timescales
are subject to considerable uncertainty, particularly at regional scales [Roy et al., 2011; Friedrich et al., 2012;
Frölicher et al., 2014; Tjiputra et al., 2014; Hauck et al., 2015; Laufkötter et al., 2015]. If ESMs are to be used to
quantify future changes in ocean carbon uptake across these timescales and at regional spatial scales, their
uncertainties must be well known and well understood. Hawkins and Sutton [2009] describe three main types
of projection uncertainty:

1. Uncertainty due to internal variability. Internal variability is the unforced climate variability that arises from
natural internal processes within the climate system. In the tropics, the dominant mode of internal cli-
mate variability is the El Niño–Southern Oscillation. In the extratropics, internal variability is characterized
by several major climate modes: the North Atlantic Oscillation, Atlantic Multidecadal Oscillation, Pacific
Decadal Oscillation, and Southern Annular Mode (SAM), to name a few. Internal variability has the potential
to dampen or amplify—for a few years to several decades—the long-term trends in ocean carbon uptake
that are associated with anthropogenic CO2 emissions. For example, on the basis of a model hindcast sim-
ulation, Lovenduski et al. [2015a] find that periods with positive trends in the SAM are associated with a
temporary weakening of the Southern Ocean CO2 sink.

2. Uncertainty due to emission scenario. Future emissions of greenhouse gases will drive changes in the ocean
carbon sink, ultimately determining future radiative forcing and climate. However, future emissions are
highly uncertain, given our inability to project the complex changes in society and technology upon which
they depend. As a result, future simulations are conducted for “scenarios,” spanning a range of forcing
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intensity and climate outcomes. For instance, modeling centers participating in the 5th Coupled Model
Intercomparison Project (CMIP5) were requested to simulate the future climate under four Representative
Concentration Pathway (RCP) emission scenarios: RCP2.6, RCP4.5, RCP6.0, and RCP8.5 [Meinshausen et al.,
2011]. Projections of future ocean carbon uptake from ESMs are greatly influenced by the choice of emis-
sion scenario. For example, the cumulative oceanic storage of anthropogenic carbon in CMIP5 models by
2100 ranges from 110–220 Pg C under RCP2.6 to 320–635 Pg C under RCP8.5 [Ciais and Sabine, 2013].

3. Uncertainty due to model structure. Model structure is a catch-all term used to describe how the physical
world is represented in an ESM, including the mathematical expressions, numerical methods, and parame-
terizations employed in that representation. Model structure determines the behavior of the model, leading
to differing climate sensitivities and carbon-climate feedbacks. These structural differences yield different
climate change responses to the same radiative forcing; different carbon cycle responses result from dif-
ferent climates and structural differences between the carbon cycle formulations. For example, the CMIP5
model simulations run under RCP8.5 project a wide range of cumulative anthropogenic carbon storage
by 2100 (320–635 Pg C) [Ciais and Sabine, 2013] due to both internal variability and structural uncer-
tainty. Analysis of carbon feedbacks from a coordinated set of ESM experiments run under a 1% per year
CO2 increase suggests that some fraction of this spread is due to the different formulations of the carbon
cycle models in CMIP5 [Arora et al., 2013], with the remaining structural uncertainty driven by the physical
climate system.

On the basis of surface air temperature projections in CMIP3 models, Hawkins and Sutton [2009] show that
the fractional contribution of the three sources of uncertainty varies with prediction lead time and spatial
averaging scale. Their results suggest that on the global scale, model structure and internal variability domi-
nate the surface air temperature projection uncertainty for short lead times (<50 years), whereas the emission
scenario is the primary source of projection uncertainty for long lead times (>50 years), reflecting spread
across the SRES A2, A1B, and B1 scenarios. Total projection uncertainty at regional scales is higher than on
the global scale, with large contributions from internal variability and model structure for all prediction lead
times [Hawkins and Sutton, 2009]. While not yet partitioned and described in the literature, these same sources
of uncertainty impact model projections of sea-air CO2 flux. Here we isolate and quantify the evolution of
the three sources of sea-air CO2 flux projection uncertainty on global and regional scales using output from
multiple ESM simulations of future climate.

Numerous studies suggest that the use of a large ensemble of simulations from a single climate model is key
to estimating uncertainty in regional-scale climate change projections [see Deser et al., 2016, and references
therein]. Such ensembles typically include ∼30 members, each of which is subject to an identical external
forcing but starts from a slightly different atmospheric or oceanic state. While it has become fairly common
practice to use a large ensemble of simulations to estimate projection uncertainty in the atmospheric physi-
cal state, the use of large ensembles has just begun to gain traction in the ocean biogeochemical community
[Frölicher et al., 2009; Rodgers et al., 2015; McKinley et al., 2016; Long et al., 2016; Frölicher et al., 2016]. Large
ensembles are computationally expensive, and the computational cost can increase significantly for simula-
tions that include tracers for ocean biogeochemistry. Here we make use of output from two sets of ensembles
using the Community Earth System Model (CESM) with fully resolved ocean carbon and biogeochemistry. The
first, the CESM Large Ensemble (CESM-LE), simulates the period 1920–2100 with 38 members under historical
and RCP8.5 external forcing [Kay et al., 2015]. The second, the CESM Medium Ensemble (CESM-ME), simulates
the period 2006–2080 with 15 members under RCP4.5 external forcing [Sanderson et al., 2015]. Here we ana-
lyze annual-mean sea-air CO2 flux over 2006–2080 in both CESM ensembles and in the CMIP5 models to
quantify the uncertainty in CO2 flux projections.

2. Modeling Methods
2.1. The CESM Ensembles
The CESM ensembles were conducted with CESM version 1, a configuration consisting of atmosphere, ocean,
land, and sea ice component models [Danabasoglu et al., 2012; Lawrence et al., 2012; Hunke and Lipscomb,
2008; Holland et al., 2012]. The ocean model has nominal 1∘ horizontal resolution and 60 vertical levels.
Mesoscale eddy transport is parameterized with an updated version of Gent and McWilliams [1990], where
the eddy-induced advection coefficient, 𝜅, is diagnosed as a function of space and time. Diapycnal mix-
ing is represented using the K-Profile Parameterization of Large et al. [1994], and mixed layer restratification
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Figure 1. Annual-mean, global-mean surface temperature anomaly (relative to 1961-1990 base period) for the 1850
control and individual ensemble members for the CESM-LE and CESM-ME ensembles. Adapted from Kay et al. [2015] and
Sanderson et al. [2015].

by submesoscale eddies is parameterized using the method of Fox-Kemper et al. [2011]. The biogeochemi-
cal ocean model incorporates multinutrient colimitation with three explicit phytoplankton functional types
[Moore et al., 2004, 2013], full carbonate system thermodynamics, sea-air CO2 fluxes, and a dynamic iron cycle
[Doney et al., 2006; Moore and Braucher, 2008]. Phytoplankton calcification is unaffected by variations in the
saturation state of calcite or aragonite. For the CESM ensemble integrations, shortwave absorption in the
ocean is computed using a specified chlorophyll climatology, rather than the prognostic field, thereby ren-
dering the ocean biogeochemistry passive with respect to impacts on physical climate. Atmospheric CO2

concentrations are prescribed in CESM-LE and CESM-ME; thus, ocean CO2 fluxes do not feed back on the
modeled climate.

As described in Kay et al. [2015] and Sanderson et al. [2015], the CESM ensembles began with an 1850 con-
trol simulation with constant preindustrial forcing (Figure 1). The ocean model physical state was initialized
to observations for this integration, while the ocean biogeochemical fields were initialized to a state derived
from a separate 600 year spin-up. The other component models were initialized from previous CESM1 sim-
ulations. The first ensemble member was initialized from a randomly selected year in the 1850 control run
(year 402; Figure 1) and integrated forward from 1850 to 2100. The remaining CESM-LE ensemble members
were integrated from 1920 to 2100 using initial conditions from 1 January 1920 in the first ensemble member
plus round-off level ((10−14) K) perturbations to the initial air temperature field. These tiny perturbations
led to a randomization of the internal climate variability among the individual ensemble members (Figure 1),
such that dominant modes of variability are out of phase within a decade or so. The CESM-ME ensemble
members were each initialized from the corresponding historical simulation in CESM-LE (Figure 1) [Sanderson
et al., 2015]. A total of 38 (15) ensemble members were generated in this fashion for the CESM-LE (CESM-ME)
experiment, though it was later discovered that ocean biogeochemical fields in six ensemble members from
both CESM-LE and CESM-ME were corrupted due to an initialization error and could not be analyzed. All
ensemble members have the same specified external forcing: historical forcing from 1920 to 2005 and either
RCP8.5 or RCP4.5 forcing from 2006 onward.

McKinley et al. [2016] provide a thorough validation of the CESM-LE sea-air CO2 flux in their manuscript
(see their Figure 1, Extended Data Figure 1, and Extended Data Tables 1 and 2), so we highlight only the key
points here. The simulated mean sea-air CO2 flux from CESM-LE over 1982–2011 compares favorably to the
flux estimated from observations [Landschützer et al., 2014, 2015] for the global average and over most biomes.
Two notable exceptions to this are the Southern Ocean marginal sea-ice biome, where CO2 uptake in CESM-LE
is too weak, and the East Pacific equatorial biome, where CO2 outgassing in CESM-LE is too strong. The trends
and interannual variability in modeled CO2 flux over this period are largely consistent with those estimated
by these same observations [McKinley et al., 2016].

2.2. The CMIP5 Model Suite
The CESM ensembles are a tremendous numerical tool for assessing projection uncertainty due to inter-
nal variability and emission scenario. However, since these experiments include only a single climate model,
they cannot address uncertainty arising from variation in model structure. To quantify this latter aspect of
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Table 1. The CMIP5 Models Analyzed in This Study

CMIP5 Model Ocean BGC Model Reference RCPs

BCC-CSM1.1 OCMIP Wu et al. [2013] 8.5

CESM1-BGC BEC Long et al. [2013] 4.5, 8.5

CMCC-ESM PELAGOS Vichi et al. [2011] 8.5

GFDL-ESM2M TOPAZ2 Dunne et al. [2013] 2.6, 4.5, 6.0, 8.5

HADGEM2-ES Diat-HadOCC Collins et al. [2011] 2.6, 4.5, 6.0, 8.5

IPSL-CM5A-MR PISCES Dufresne et al. [2013] 2.6, 4.5, 8.5

MIROC-ESM NPZD Watanabe et al. [2011] 2.6, 4.5, 6.0, 8.5

MPI-ESM-LR HAMOCC Ilyina et al. [2013] 2.6, 4.5, 8.5

NorESM1-ME HAMOCC5 Tjiputra et al. [2013] 2.6, 4.5, 6.0, 8.5

uncertainty, we also analyze output from CMIP5. Under the protocols adopted for CMIP5, modeling centers
performed a long, preindustrial control simulation (≥500 years) and two transient climate experiments: the
first covers the period from 1850 to 2005, when the models were forced with a common set of historical
anthropogenic forcings, while the second covers the period from 2006 to 2100 and is described by a collec-
tion of RCPs [Taylor et al., 2012]. More than 20 modeling groups performed CMIP5 simulations, but only a
subset of these included ocean biogeochemistry [Taylor et al., 2012]. Table 1 shows the CMIP5 model simu-
lations analyzed in this study. Note that not all modeling centers simulated all four emission scenarios. The
CESM simulations included in CMIP5 were conducted with a different CESM configuration than that used in
the CESM-LE and CESM-ME. In particular, the atmosphere component used for CMIP5 was the Community
Atmosphere Model, version 4 (CAM4), while the CESM-LE/ME used CAM5. Also, the absorption of shortwave
radiation in the ocean was computed using prognostic chlorophyll in the CMIP5 version [Lindsay et al., 2014].

3. Results
3.1. Globally Integrated CO2 Flux
Globally integrated, annual-mean sea-air CO2 flux from CESM-LE, CESM-ME, and CMIP5 over 2006–2080 are
shown in Figures 2a and 2b (thin lines). Negative numbers correspond to ocean uptake, and all global inte-
grals were calculated on their native model grids. While all simulations indicate globally integrated ocean
carbon uptake over this period, the magnitude of the projected uptake is clearly sensitive to emission scenario
(multimodel mean for a given scenario shown as thick lines in Figures 2a and 2b) and model structure. The
spread in global carbon uptake in the CMIP5 ensemble ranges from∼1 Pg C yr−1 at 2006 to 6 Pg C yr−1 in 2080.

To quantify uncertainty, we express an individual model solution as T(m, s, t), which is the globally integrated
or regional mean CO2 flux as a function of model m, emission scenario s, and time t.

The uncertainty in globally integrated sea-air CO2 flux can be quantified on the basis of ensemble spread, or
the standard deviation of all the projections in a given year,

U(t) =
√

varw
m,s(T(m, s, t)), (1)

where varw
m,s is the weighted variance across all models and scenarios, using a weighting scheme that accounts

for the number of ensemble members simulating each emission scenario. To compare uncertainty estimates
derived from the CESM ensembles with those from CMIP5, we scale the respective metrics of model spread
(equation (1)) by their weighted ensemble means,

USCALED(t) =
1.96 ⋅ U(t)|T(m, s, t)

m,s| (2)

where USCALED is the scaled uncertainty (95% confidence level, assuming a normal distribution), a unitless
quantity, and T(m, s, t)

m,s
is a weighted mean across all models and scenarios at a given time. Figures 2c

and 2d show the scaled uncertainty in the projection of globally integrated sea-air CO2 flux from the CESM
ensembles and CMIP5, respectively. Uncertainty grows with prediction lead time in both model suites, and
the uncertainty in CMIP5 is larger than that in the CESM ensembles at all lead times.
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Figure 2. Annual-mean, globally integrated sea-air CO2 flux projections (Pg C yr−1) from the CESM ensembles and
CMIP5, and the associated scaled uncertainty and sources of uncertainty in the projections.

We use the method outlined in Hawkins and Sutton [2009] and Hawkins and Sutton [2011] to isolate the three
sources of projection uncertainty in air-sea CO2 flux. The total variance, U(t)2 is equal to the sum of the variance
due to internal variability, U2

V , the variance due to emission scenario, US(t)2, and the variance due to model
structure, UM(t)2,

U(t)2 = U2
V + US(t)2 + UM(t)2

, (3)

where we assume that the three sources of uncertainty are independent of each other, though one previous
study suggests that this may not be strictly true because of small interaction between model and scenario
uncertainties (see Yip et al. [2011] for further details).

The variance due to internal climate variability is calculated as

U2
V =

∑Nem
n=1 vart(R(m, s, t))

Nem
, (4)

where vart is the temporal variance, Nem is the total number of ensemble members in a given modeling suite,
and R(m, s, t) is a time series of residuals from the forced signal of climate change, F(m, s, t),

R(m, s, t) = T(m, s, t) − F(m, s, t). (5)

In the CESM ensembles, the forced signal is the ensemble mean for a given emission scenario and time, F(s, t),
smoothed with a 4th order polynomial fit to accommodate the different number of ensemble members for
each scenario (i.e., to correct for the fact that the variance in the ensemble mean (thick lines in Figure 2a) is
higher in CESM-ME than in CESM-LE owing to the different ensemble sizes). In the CMIP5 suite, the forced
signal, F(m, s, t), is estimated separately for each individual model projection by fitting a 4th order polynomial
over the years 2006–2080. As in Hawkins and Sutton [2009], we make the assumption that the internal variance
does not change with time and is unaffected by emission scenario.
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The variance due to emission scenario is the cross-scenario variance of the multimodel mean forced signal:

US(t)2 = vars

(∑Nm
n=1 F(m, s, t)

Nm

)
, (6)

where Nm is the number of ensemble members in a given emission scenario.

The variance due to model structure is the multiscenario mean of the intermodel variance in the forced signal:

UM(t)2 = 1
Ns

Ns∑
s=1

varm(F(m, s, t)), (7)

where Ns is the number of scenarios in a given model suite. In this statistical framework, the sum of the three
uncertainty terms equals the total uncertainty, as derived by Yip et al. [2011] (see their equation (19), and note
that we assume that the model-scenario interaction term is negligible).

Figures 2e and 2f show the fraction of the total variance due to each source of projection uncertainty in the

globally integrated CO2 flux,
U2

V

U(t)2
, US(t)2

U(t)2
, and UM(t)2

U(t)2
for internal variability, emission scenario, and model struc-

ture, respectively. In the CESM ensembles, where there are only two possible sources of projection uncertainty,
we find that internal climate variability contributes to more than 50% of the variance for short prediction
lead times (<2015), with emission scenario becoming the dominant source of uncertainty thereafter. By 2080,
variance due to emission scenario is virtually 100% of the total variance. In the CMIP5 suite, model struc-
tural variance contributes to more than 50% of the total for short lead times (<2025), with emission scenario
becoming the dominant source of variance thereafter. By 2080, variance due to emission scenario is >90% of
the total. Internal climate variability contributes to less than 15% of the variance for all projection lead times
in CMIP5. Since the internal variability is statistically indistinguishable between the CESM and CMIP5 model
suites (U2

V,CESM = 0.012 ± 0.001 (Pg C yr−1)2; U2
V,CMIP5 = 0.016 ± 0.006 (Pg C yr−1)2), the diminished frac-

tional variability due to internal variance in CMIP5 is due the enhanced fractional variability in the other two
sources of uncertainty. In CMIP5, the variance due to model structure nearly doubles from ∼0.1 (Pg C yr−1)2

in 2006 to ∼0.2 (Pg C yr−1)2 in 2080, due to differences in climate sensitivities across the models that manifest
more strongly with increasing lead time. Nevertheless, results from our globally integrated CO2 flux analysis
with both modeling suites suggest that at lead times greater than 20 years, projection uncertainty is pri-
marily driven by scenario uncertainty. As we will see in the next sections, this conclusion does not hold on
regional scales.

3.2. Regional Focus: The California Current System
Studies assessing uncertainty in regional projections of temperature or precipitation find larger overall uncer-
tainty and an enhanced role for internal variability, relative to projections at the global scale [Hawkins and
Sutton, 2009, 2011; Deser et al., 2016]. Here we illustrate this effect by quantifying the uncertainty partition-
ing for annual-mean sea-air CO2 flux at a regional scale. We focus on the California Current System (pink area
in Figure 3d inset), which is a region of particular interest for sea-air CO2 flux projection, as ocean carbon
uptake leads to ocean acidification, and previous studies document a high susceptibility to ocean acidification
here [Feely et al., 2008; Gruber et al., 2012]. Further, this region is characterized by naturally high variability in
carbonate chemistry which can affect future projections of acidification [Hauri et al., 2013; Leinweber and
Gruber, 2013; Turi et al., 2016].

Figures 3a and 3b show projections of the annual-mean CO2 flux from CESM-LE, CESM-ME, and the CMIP5
models averaged over the California Current System from 2006 to 2080. The California Current System is
defined here as the region within 800 km of the coast and from ∼33∘N to 46∘N [as in Turi et al., 2014], and
the regional averages are calculated on their native model grids, to capture near-shore values that might oth-
erwise be masked with a regridding interpolation scheme. The CMCC-ESM showed highly unrealistic sea-air
CO2 flux values in this region; thus, we excluded it from our analysis of the CMIP5 suite. The individual pro-
jections (thin lines) from the CESM ensembles reveal ocean CO2 uptake (negative numbers) for all ensemble
members, but some CMIP5 ensemble members have a source of CO2 during some periods. There is substan-
tial overlap between integrations from different scenarios, suggesting only a small role for emission scenario
in projection uncertainty in this region (Figures 3a and 3b).

The scaled uncertainty, USCALED(t), in California Current System sea-air CO2 flux for the two modeling suites
(Figures 3c and 3d) indicates larger uncertainty in this region, relative to the global scale for all projection lead
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Figure 3. Annual-mean California Current System average sea-air CO2 flux projections (mol C m−2 yr−1) from the CESM
ensembles and CMIP5, and the associated scaled uncertainty and sources of uncertainty in the projections. Inset in
panel (d) shows a map of the California Current System region (pink).

times (cf. Figures 2c and 2d; note the different y axis). Whereas the globally integrated CO2 flux uncertainty
revealed growing uncertainty with higher prediction lead times, the California Current System CO2 flux uncer-
tainty only slightly increases with lead time in CMIP5 and remains relatively constant for all lead times in the
CESM ensembles. As was the case at the global scale, the regional projection uncertainty in CMIP5 is larger
than that in the CESM ensembles for all lead times.

We identify the sources of uncertainty in the California Current System regional-mean sea-air CO2 flux pro-
jections (equations (3)–(7)) and show the results in Figures 3e and 3f, where the fraction of the total variance
due to internal variability, emission scenario, and model structure are calculated separately for each model
suite. In the CESM ensembles, we find that internal climate variability dominates the uncertainty until ∼2070,
with emission scenario playing a relatively small role. This is also visible in Figure 3a, where the CESM-LE
and CESM-ME ensemble members exhibit some overlap for all lead times, and divergence between the two
ensembles is not observed until the end of the time series. That nearly 100% of the uncertainty in the CESM
ensembles is driven by internal climate variability until 2030 suggests an important role for internal climate
variability in projections of CO2 flux in this region for several decades. In the CMIP5 suite, model structure con-
tributes to more than 60% of the total variance for all lead times, with internal variability playing a secondary
role and emission scenario a tertiary role. We note that the relative fractional contributions of internal and
scenario uncertainty in CMIP5 is similar to that observed in the CESM ensembles: internal climate variability
drives a larger fraction of the uncertainty for all but the longest lead times. As was the case at the global scale,
the internal variance in California Current System regional-mean CO2 flux is similar between the two model-
ing suites (U2

V,CESM = 0.044 ± 0.002 (mol m−2 yr−1)2; U2
V,CMIP5 = 0.037 ± 0.005 (mol m−2 yr−1)2), so the smaller

fractional variability in internal variance in CMIP5 is due to the larger fractional variability in model structure.
In summary, these results indicate that the high projection uncertainty observed in this region in the CESM
ensembles (CMIP5 models) is largely driven by uncertainty in internal variability (model structure). Thus, at
the regional scale, we have observed an important role for model structure and internal variability that was
not evident in projection uncertainty at the global scale.
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Figure 4. (first row) Scaled uncertainty in sea-air CO2 flux projections and fractional variance (%) due to (second row) internal variability and (third row) emission
scenario for each biome in (first column) 2010, (second column) 2045, and (third column) 2080 in the CESM ensembles.

3.3. Uncertainty on the Biome Scale
We quantify the regional uncertainty in sea-air CO2 flux projections across the globe by averaging local CO2

flux over 17 biogeographical biomes. This is achieved by regridding the fluxes from the model suites to a
regular 1∘ × 1∘ grid and then applying the mean biomes provided in Fay and McKinley [2014]. The scaled
uncertainty, USCALED(t), in the area-weighted CO2 flux for each biome in the CESM ensembles is shown for
three prediction lead time sin Figure 4. In 2010 (prediction lead time of 5 years), the scaled uncertainty

Figure 5. For each biome, the year when uncertainty due to emission
scenario begins to dominate over uncertainty due to internal variability
in the CESM ensembles.

ranges from near-zero in some biomes
(e.g., the Southern Ocean seasonally ice-
covered biome) to >1 in others (e.g., the
west Pacific equatorial biome), indicating
a spatially heterogenous pattern of uncer-
tainty across the biomes. In 2045, the
scaled uncertainty appears very similar to
that of 2010, suggesting that uncertainty
on the biome scale is relatively con-
stant with prediction lead time, consis-
tent with our findings in the California
Current System. In 2080, most biomes
show an increase in scaled uncertainty
relative to 2045, with a few exceptions
(e.g., the Northern Hemisphere seasonally
ice-covered biome).

In the CESM ensembles, there are only
two sources of projection uncertainty:
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Figure 6. (first row) Scaled uncertainty in sea-air CO2 flux projections and fractional variance (%) due to (second row) internal variability, (third row) emission
scenario, and (fourth row) model structure for each biome in (first column) 2010, (second column) 2045, and (third column) 2080 in CMIP5.

internal variability and emission scenario. For each biome, we calculate the fraction of the total variance due to

these two sources of uncertainty for all prediction lead times; Figures 4d–4i show the fractional contributions

from the two uncertainty sources for 2010, 2045, and 2080. This analysis reveals that for each biome, inter-

nal variability dominates the uncertainty for medium-to-long prediction lead times, with emission scenario

dominating the uncertainty thereafter. Figure 5 shows the year when uncertainty due to emission scenario

begins to dominate over uncertainty due to internal variability in the CESM ensembles (i.e., the year when the

red and green lines cross in a version of Figures 2e and 3e made for each biome). This analysis reveals that

the crossover point is as early as 2040 in some biomes (e.g., Southern Ocean and North Atlantic subpolar sea-

sonally stratified biomes), and later than 2080 in others (e.g., the west Pacific equatorial biome). The spatial

pattern associated with the crossover point (Figure 5) is quite similar to that of anthropogenic CO2 uptake

[DeVries, 2014]: places with high anthropogenic CO2 uptake over the historical period (e.g., North Atlantic

and Southern Ocean) have early crossover times. Here the emission scenario is the most important source

of projection uncertainty earlier than in other regions. It is important to note that Figure 5 is fundamentally

different from “time of emergence” (ToE) maps that are percolating into the ocean biogeochemical literature
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Figure 7. For each biome, the year when uncertainty due to emission scenario begins to dominate over uncertainty due
to model structure in CMIP5.

[Keller et al., 2014; Rodgers et al., 2015; Lovenduski et al., 2015b; Henson et al., 2016; McKinley et al., 2016]. ToE
indicates when a trend will emerge from background variability but provides little information about the
sources of projection uncertainty.

The scaled uncertainty in the biome-averaged sea-air CO2 flux in the CMIP5 models is shown in Figure 6. This
analysis reveals high uncertainty for short-to-medium prediction lead times over most biomes (Figures 6a and
6b). As in the CESM ensembles, the longest prediction lead times are associated with the highest uncertainty
(Figure 6c). The fraction of the total variance due to model structural uncertainty is large in all biomes, with
internal variability and emission scenario contributing to only a small fraction of the variance (Figures 6d– 6n)
and is the dominant source of projection uncertainty for all lead times in all but four of the biomes (Figure 7).
Thus, our analysis of projection uncertainty in the CMIP5 suite on the biome scale suggests an important role
for model structure, consistent with our findings in the California Current System.

4. Conclusions

We analyze output from the CESM ensembles and the CMIP5 suite to quantify the projection uncertainty in
sea-air CO2 flux and to partition the projection uncertainty into its three main sources: internal variability,
emission scenario, and model structure. We find that projections of sea-air CO2 flux exhibit high uncertainty,
particularly at regional scales and for long prediction lead times. The three sources of projection uncertainty
vary with prediction lead time, spatial averaging scale, and from region to region. Uncertainty in globally inte-
grated CO2 flux projections from both model suites is dominated by emission scenario for nearly all prediction
lead times. In the California Current System and over most ocean biomes, the dominant sources of projec-
tion uncertainty are internal variability and model structure for the CESM ensemble and the CMIP5 suite,
respectively, with emission scenario playing only a small role in all but a few biomes.

We note that while the CESM ensembles provide a robust estimate of internal climate variability, the same
cannot be said about the CMIP5 model suite. Most modeling centers provided only one realization of the
future climate system to the CMIP5 archive for each emission scenario, and internal variability in these models
is therefore estimated via the residuals from a polynomial fit to the CO2 flux time series. Further, the internal
variability signal is averaged across all ensemble members in order to estimate the uncertainty, yet a previ-
ous study has shown that internal variability in CO2 flux varies from model to model [Resplandy et al., 2015].
Additionally, we assume here that internal variability in CO2 flux does not change with time and is unaf-
fected by emission scenario. While this assumption may be valid for projections of atmospheric temperature
[Thompson et al., 2015], it has not yet been tested for the nonlinear ocean carbonate chemistry system. Further
investigation is thus merited on these topics. For ocean CO2 flux, one possible route forward is a comparison
of output from multiple large initial condition ensemble experiments [e.g., Schlunegger et al., 2016].

Where should we invest our resources so as to reduce uncertainty in sea-air CO2 flux projections? Our results
point to a clear role for model structural uncertainty in regional projections of sea-air CO2 flux and suggest
that improvements to model structure will significantly reduce the projection uncertainty on these scales.
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One possible route to successful prediction would be to devise a weighting scheme for models based on
their skill at producing historical observations [Hawkins and Sutton, 2009], though observational estimates of
sea-air CO2 flux are few [e.g., Landschützer et al., 2014; Rödenbeck et al., 2014], and we would expect different
models to have varying degrees of predictive skill over different regions. At the very least, the impact of struc-
tural differences on the modeled CO2 fluxes should be explored in more detail, and the next generation of
CMIP models should be evaluated to see if model structural uncertainty has been reduced. Our findings also
suggest that internal climate variability plays an important role in projection uncertainty on regional scales,
but given the aleatoric nature of the climate system, reductions in this source of uncertainty seem unlikely.
Finally, given the important role of emission scenario uncertainty in sea-air CO2 flux projections both globally
and in some regions (e.g., the North Atlantic and Southern Oceans), efforts to narrow this source of uncertainty
would go a long way toward improving projections here.
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