
1.  Introduction
1.1.  The Problem of Continental-Scale Estimation of Snow Water Equivalent

Accurate monitoring of the large-scale dynamics of snowpack is essential for understanding the details of climate 
dynamics and climate change (Robinson et al., 1993). Warming under a changing climate is expected to cause 
snowpack to melt earlier in the year (Xiao, 2021; Zeng et al., 2018) and to reduce the amount of water stored 
as snow (Musselman et al., 2021; Nijssen et al., 2001). This is expected to have broad and potentially severe 
impacts to ecosystem productivity (Boisvenue & Running, 2006), winter flood risk (Musselman et al., 2018), 
groundwater recharge (Ford et al., 2020), agriculture and food security (Qin et al., 2020; Shindell et al., 2012), 
wildfire hazard (Westerling, 2016), and frequency and severity of drought (Arevalo et al., 2021). In western North 
America, snow is the primary source of water and streamflow (Li et al., 2017), while globally it supports the 
water supply needs for more than 1 billion people (Barnett et al., 2005). Therefore, having accurate estimates of 
the quantity of water stored in snowpack, called snow water equivalent (SWE), is critical for the forecasting and 
management of water supply and hydropower (Bales et al., 2006; Mankin et al., 2015).

Abstract  Accurate estimation of the spatio-temporal distribution of snow water equivalent is essential 
given its global importance for understanding climate dynamics and climate change, and as a source of fresh 
water. Here, we explore the potential of using the Long Short-Term Memory (LSTM) network for continental 
and regional scale modeling of daily snow accumulation and melt dynamics at 4-km pixel resolution across the 
conterminous US (CONUS). To reduce training costs (data are available for ∼0.31 million snowy pixels), we 
combine spatial sampling with stagewise model development, whereby the network is first pretrained across 
the entire CONUS and then subjected to regional fine-tuning. Accordingly, model evaluation is focused on 
out-of-sample predictive performance across space (analogous to the prediction in ungauged basins problem). 
We find that, given identical inputs (precipitation, temperature, and elevation), a single CONUS-wide LSTM 
provides significantly better spatio-temporal generalization than a regionally calibrated version of the physical-
conceptual temperature-index-based SNOW17 model. Adding more meteorological information (dew point 
temperature, vapor pressure deficit, longwave radiation, and shortwave radiation) further improves model 
performance, while rendering redundant the local information provided by elevation. Overall, the LSTM 
exhibits better transferability than SNOW17 to locations that were not included in the training data set, 
reinforcing the advantages of structure learning over parameter learning. Our results suggest that an LSTM-
based approach could be used to develop continental/global-scale systems for modeling snow dynamics.

Plain Language Summary  Understanding the spatio-temporal distribution of water in the 
snowpack (known as snow water equivalent) is very important for understanding climate dynamics and climate 
change, and for forecasting and management of global water supplies. In this study, we use Deep Learning (DL) 
to model snow accumulation and melt at 4-km pixel-scale resolution across the conterminous US (CONUS). 
Long Short-Term Memory (LSTM) networks are developed at both continental- and regional-scale, by 
combining spatial pixel sampling and stagewise network pre-training/fine-tuning. We benchmark out-of-sample 
predictive performance against the physical-conceptual temperature-index-based SNOW17 model, and find 
that LSTM networks significantly outperform calibrated versions of the SNOW17 model when given identical 
information. Further, when provided with additional meteorological information, performance of the LSTM is 
improved. The LSTM models also exhibits better transferability than the SNOW17, indicating the potential for 
future development of a DL-based system for modeling continental/global-scale snow dynamics.
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Several different physically based snow models have been developed to simulate the co-evolution of mass and 
energy within the snowpack system, and to thereby provide estimates of SWE. Examples include the tempera-
ture-index based SNOW-17 model (Anderson, 1973), UEB (Tarboton & Luce, 1996), SAST (Jin et al., 1999), 
ESCIMO (Strasser et al., 2002), and SNOWCAN (Tribbeck et al., 2004). More sophisticated snow models that 
focus on advanced representations of stratigraphy or internal dynamics (i.e., grain structure etc.) of the snowpack 
include Crocus (Brun et al., 1992), and the physics-based SNOWPACK model (Bartelt & Lehning, 2002). In 
practice, modelers typically use simpler physical-conceptual land-surface representations such as VIC (Liang 
et al., 1994) to estimate the broad changes in snowpack that might be expected under climate change. Meanwhile, 
the iSNOBAL model has been the modeling engine for spatially distributed SWE estimation within the Airborne 
Snow Observatory (ASO) product (Marks et al., 1999).

Nonetheless, the predictive performance of all such models depends on whether or not their representations 
of the underlying data-generating processes are adequate. To address poor predictive performance stemming 
from inadequate physical representations, modelers have explored a full spectrum of explicit process hypotheses 
(Noah-MP; Niu et  al.,  2011), synthesized multiple working hypotheses into a unifying modeling framework 
(SUMMA; Clark et al., 2011, 2016), linked the parameter values to local basin attributes by imposing spatial 
regularization constraints (Pokhrel et al., 2008) via parameter transfer functions (mHM; Samaniego et al., 2010), 
and explored implementations at finer spatial resolutions (HydroBlocks; Chaney et al., 2016). However, a poten-
tial downside of such methods is the large computational demands imposed when conducting simulations at 
practically useful resolutions over large spatial extents.

Following a complementary approach, statistical data-driven approaches (such as multiple linear regression and 
binary regression trees) have also been widely used to generate estimates of targeted snow variables at conti-
nental- and watershed-scales by exploiting the information provided by field measurements in conjunction with 
observed physiographic and meteorological covariates (see the review in Broxton et al., 2019). Many studies 
have explored machine learning (ML) approaches to the estimation of snow variables (e.g., snow depth, snow-
fall, SWE and the fractional snow cover) include the application of Random Forest and Support Vector Machine 
methods, using a variety of input data such as satellite sensors (Ehsani, Behrangi, et al., 2021; Kuter, 2021; Kuter 
et al., 2018), terrestrial laser scanners (Revuelto et al., 2020), land models (Snauffer et al., 2018), and ground 
observations (Buckingham et al., 2015; Gharaei-Manesh et al., 2016; Tabari et al., 2010). The results of these 
efforts, which draw upon recent advances in machine learning (ML), and particularly deep learning, suggest that 
ML-based methods have the potential to outperform state-of-the-art techniques for many sophisticated domain 
problems (Kratzert, Klotz, Herrnegger, et al., 2019).

In the context of snow hydrology, the artificial neural network (ANN; sometimes called the feedforward multi-
layer perceptron) has been used to improve the estimation of SWE in different ways, such as the Snow Water 
Artificial Neural Network Modeling (SWANN) system (Broxton et al., 2017). Snauffer et al. (2018) used ANNs 
for multi-source data fusion, using SWE data from reanalysis products and manual snow surveys as network 
inputs, and reported improvements in the quality of gridded SWE products. Broxton et al. (2019) combined aerial 
remotely sensed maps of snow depth with snow density maps generated via artificial neural network (ANN) 
processing of field measurements to improve the estimation of SWE. These successes can be attributed to the 
ability of ANNs to learn the nonlinear nature of the relationships between the relevant variables, resulting in 
improved performance over traditional statistical methods (Czyzowska-Wisniewski et al., 2015). Recently, stud-
ies of how to improve SWE estimates have explored the use of multiple data types and a variety of features 
derived from meteorological quantities as inputs to the training of ensemble multilayer perceptron (MLP) models 
(Ntokas et al., 2021; Odry et al., 2020). In general, it seems reasonable that ML-based methods should be able to 
provide relevant and useful information over large spatial domains; see for example, the pixel scale return-level 
design maps of SWE developed for modeling snowmelt-driven floods over the entire continental United States, 
hereafter referred to as CONUS (Cho & Jacobs, 2020; Welty & Zeng, 2021).

1.2.  The Potential Offered by Deep Learning

Deep learning (DL) has recently been proposed as a powerful strategy for hydrological modeling and time-series 
prediction (Shen, 2018; Shen et al., 2018). In particular, the long short-term memory network (LSTM; Hochreiter 
& Schmidhuber, 1997) has been reported to outperform the traditional ANN approach, provided that sufficient 
data is available for model development (Wunsch et al., 2021). In particular, Kratzert et al. (2018) showed that 
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the knowledge encapsulated by the generic pre-trained LSTM network can be transferred to different locations in 
the context of rainfall-runoff modeling. By initializing the LSTM network parameters to those of the pre-trained 
model, and by conducting subsequent local fine-tuning (Kratzert et al., 2018; Yosinski et al., 2014) it should 
be possible to reduce local data requirements, thereby facilitating a variety of hydrological applications such as 
regionalization and prediction in ungauged basins (PUB; Hrachowitz et al., 2013; Sivapalan et al., 2003).

For rainfall-runoff modeling, Kratzert, Klotz, Shalev, et al. (2019) showed that a single regionally trained LSTM 
network can provide better basin-specific predictions than traditional hydrological models locally calibrated 
basin-by-basin. Further, when the regionally trained LSTM was applied to basins whose data was not used for 
model development (i.e., effectively treating them as “ungauged” basins) it performed, on average, better than 
instances of the Sacramento Soil Moisture Accounting Model (SAC-SMA) or the NOAA National Water Model 
that were directly calibrated to those same basins (Kratzert, Klotz, Herrnegger, et al., 2019). These asymmetrical 
comparisons illustrate the ability of a standard LSTM architecture to learn a model structure that performs better 
than a “physics-based” model, by effectively exploiting the relevant information available in the input-output 
data.

1.3.  Problem Definition, Objectives, and Scope of This Work

This study explores the capability of LSTMs for modeling the dynamics of snow accumulation and melt. The 
main goal is to achieve accurate estimates of SWE over a large spatial domain by exploiting available pixel-scale 
datasets while maintaining a reasonable level of computational cost. Our approach involves step-wise training 
(Kratzert et al., 2018) of an LSTM network using a subset of pixel-scale data sampled across the entire CONUS, 
where we first use CONUS-wide network pre-training to initialize the network parameters, followed by regional 
fine-tuning of the network. In particular, our modeling experiments were designed to examine the spatial trans-
ferability of predictive performance, thereby facilitating the application of PUB in the context of snow hydrology 
(Kratzert, Klotz, Herrnegger, et al., 2019).

To explore the best achievable performance for SWE modeling, we train the LSTM networks using different 
combinations of “available” input data, and benchmark the network performance against the temperature-in-
dex-based SNOW17 model (Anderson, 2006; hereafter SN17). Our main interests are in (a) whether the LSTM 
can outperform the SN17 model used by the National Weather Service River Forecast Center (NWS RFC) for 
operational hydrologic prediction, and (b) to what extent the performance of the LSTM is affected by different 
system structure hypotheses, implemented as continental, regional and local training (calibration) strategies.

The scope of our research goes beyond simply pursuing accurate modeling of SWE dynamics, by investigating 
the possibilities of using LSTM-based ML as an upper benchmark in the context of hypothesis testing (Gong 
et al., 2013; Nearing et al., 2020), that can be used to facilitate and guide improvements to physically based mode-
ling of SWE dynamics. In Section 2, we introduce the LSTM-based and SN17 strategies for modeling snow, and 
discuss the data used for this study. Section 3 discusses the details of our experimental design. In Section 4, we 
present and discuss the results. In Section 5, we summarize our findings and discuss the outlook for future work.

2.  Methods
2.1.  Models

2.1.1.  Long Short-Term Memory Network (LSTM)

An LSTM network is a type of recurrent neural network that includes memory cells that have the ability to store 
information over long time periods (Figure S1 in Supporting Information S1). These cells are subjected to three 
“gating” operations that effectively control the weight gradients and facilitate the learning of long-term depend-
encies (Hochreiter & Schmidhuber, 1997). Further, each memory cell functions in a manner analogous to a “state 
vector” in a traditional dynamical systems model, which makes the LSTM architecture an ideal candidate for 
developing models of dynamical systems (Kratzert et al., 2018); for a comprehensive hydrological interpretation 
of the LSTM architecture, please refer to Kratzert et al. (2018). In this study, we adopt the LSTM network archi-
tecture as used by Kratzert, Klotz, Shalev, et al. (2019) where the network architecture equations are summarized 
in the supplementary materials as Equations 1–7.
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2.1.2.  Snow Accumulation and Ablation Model (SNOW17)

The NWS is the US agency responsible for short-term and long-term streamflow predictions across the nation. 
The NWS RFC primarily uses the SNOW17 (hereafter SN17) model (Anderson, 2006) for generating opera-
tional forecasts of snow accumulation and melt in snow-dominated areas. SN17 is a spatially lumped process-
based model that simulates snow accumulation and ablation. It requires three input data sets; air temperature and 
precipitation data are used as meteorological inputs, while information regarding elevation is used to compute 
atmospheric pressure. The model outputs include a rain-plus-snowmelt time series, as well as SWE (Figure S2 in 
Supporting Information S1). In this work, we apply the parsimonious point-scale assumption of full snow cover 
at the pixel-scale. Therefore, it is configured as a physical-oriented empirical temperature index model. We adopt 
the model structure and associated feasible parameter ranges (Table 1) presented by He et al. (2011a, 2011b).

2.2.  Data

2.2.1.  Meteorological Input Forcing

In this study, the LSTM and SN17 models were driven by meteorological forcing at the daily time scale. As 
inputs, we used daily values of precipitation, mean temperature, dewpoint temperature, and vapor pressure deficit 
from the Parameter-Elevation Regressions on Independent Slopes Model data set (PRISM; Daly et al., 1994). 
While PRISM data are more uncertain over complex terrain (Henn et al., 2018), it is arguably the best grid-
ded climate data set available at this time, particularly for the western CONUS. We also used hourly, 0.125° 
near-surface downward longwave and shortwave radiation data from the near-real-time North American Land 
Data Assimilation Phase 2 data set (NLDAS-2; Xia et al., 2012). The hourly downward longwave and shortwave 
radiation data were first averaged to daily timescale and then resampled to 4-km resolution using nearest-neigh-
bor interpolation onto the resulting grid coordinate with respect to PRISM.

2.2.2.  Snow Water Equivalent (SWE) Target Variables

As the target variable for LSTM training and for SN17 calibration, and to evaluate the simulation results, we used 
the University of Arizona (UA) ground-based daily 4-km SWE data product (Broxton, Dawson, & Zeng, 2016; 
Broxton, Zeng, & Dawson, 2016; Zeng et al., 2018). This data set was developed by assimilating in-situ meas-
urements of SWE and/or snow depth at thousands of sites (Broxton, Dawson, & Zeng, 2016; Broxton, Zeng, 
& Dawson, 2016; Dawson et al., 2018) using 4-km gridded PRISM precipitation and temperature data (Daly 
et  al.,  1994) over the CONUS. Accuracy and robustness of the UA snow product, and its use as a reference 
continental snowpack data set, have been assessed via four rigorous evaluation studies including point-to-point 
interpolation (Broxton, Dawson, & Zeng, 2016; Broxton, Zeng, & Dawson, 2016), pixel-to-pixel interpolation 
(Broxton, Dawson, & Zeng, 2016; Broxton, Zeng, & Dawson, 2016), and evaluation against independent snow 
cover extent data and airborne lidar measurements (Dawson et al., 2018). The UA SWE data product was found 
to align closely with the CONUS 1-km SWE product from the Snow Data Assimilation System (SNODAS; 
Barrett, 2003) and to show much better agreement with gamma SWE than the Special Sensor Microwave Imager 

Parameters Explanation Unit Range

SCF Snow fall correction factor - 0.7–1.4

MFMAX Maximum melt factor mm per 6 hr per 𝐴𝐴 C
o 0.5–2.0

MFMIN Minimum melt factor mm per 6 hr per 𝐴𝐴 C
o 0.05–0.49

UADJ The average wind function during rain-on-snow periods mm per mbar per 𝐴𝐴 C
o 0.03–0.19

NMF Maximum negative melt factor mm per 6 hr per 𝐴𝐴 C
o 0.05–0.50

MBASE Base temperature for non-rain melt factor 𝐴𝐴 C
o 0.0–1.0

PXTEMP Temperature that separates rain from snow 𝐴𝐴 C
o −2.0–2.0

PLWHC Percent of liquid water capacity - 0.02–0.3

DAYGM Daily melt at snow-soil interface 𝐴𝐴 mm d
−1 0.0–0.3

TIPM Antecedent snow temperature index parameter - 0.1–1.0

Table 1 
Parameters for the SNOW17 Model Summarized by He et al. (2011a, 2011b) With Ranges Estimated From Anderson (1973)
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and Sounder (SSMI/S) SWE and GlobSnow-2 SWE grid products for various land cover types and snow classes 
(Cho et al., 2020).

2.2.3.  Static Features

To obtain gridded spatial maps of static land-surface characteristics, we used the open-source Geospatial Data 
Abstraction Library (GDAL)'s gdal_translate command-line tool to perform spatial reprojection of the Shuttle 
Radar Topography Mission (SRTM; Jarvis, 2008) digital elevation model elevation data to 4-km resolution; this 
is consistent with the PRISM latitude–longitude grid using average upscaling interpolation.

The “majority” operation was used to upscale the 1-km MODIS land cover climatology data set to the 4-km 
resolution grid (Broxton et al., 2014). We defined forested pixels to be those that included Evergreen Needleleaf, 
Evergreen Broadleaf, Deciduous Broadleaf, Mixed Forests, and Woody Savannas, whereas the remaining land 
cover types were classified as Non-Forested pixels.

3.  Experimental Approach
3.1.  Study Region

All the studies reported in this paper were conducted at 4-km pixel-scale over the CONUS, using a coordinate 
system and spatial coverage that is consistent with the PRISM meteorological forcing and UA SWE datasets. 
Roughly 0.31 million pixels were identified to be “snowy” from a total of approximately 0.46 million total pixels 
associated with the UA snow product data set. This categorization of snowy pixels was based on the snowpack 
climatology, where any pixel with median annual snowy season length less than 30 days, or median annual daily 
maximum SWE less than 10 mm, was classified as being “non-snowy,” as shown in Figure 1 (Zeng et al., 2018).

Next, we selected five regions (shown in Figure 1) to explore the potential for using the LSTM architecture 
as a regional modeling tool, where the objective was to simulate snow accumulation and melt behavior over 
a large number of different pixels at the daily timescale. Three western CONUS regions—the Colorado River 

Figure 1.  Geographic locations of five US regions include two Hydrologic Unit Code 2 (HUC2) basins (Ohio and Missouri) and three other regions in western 
CONUS (Colorado River Basin, Sierra Nevada, and Cascades). The “snowy” pixels are shaded gray and the non-snowy pixels are shaded white. OH = Ohio; 
MO = Missouri; CRB = Colorado River Basin; SN = Sierra Nevada; CC = Cascades. Note that, in this study, snowpack modeling is only performed within the 
CONUS, despite the fact that part of MO basin beyond the northern U.S. border and the part of CRB basin beyond the southern U.S. border are depicted in the figure.
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Basin (hereafter CRB), Sierra Nevada (hereafter SN), and Cascades (hereafter CC)—were selected based on the 
important role that snowpack plays in contributing to their freshwater resources. The high elevation snowpack of 
the Rocky Mountains is known to contribute about 70% of the annual runoff of the Colorado River Basin (Chris-
tensen et al., 2004), while the Colorado River provides fresh water to over 40 million people in seven states and 
two countries (Deems et al., 2013). Also, in the SN and CC mountains (Simpkins, 2018), approximately 75% of 
freshwater originates from snow. To further ensure that the selected regions cover as wide a range of characteris-
tics as possible in terms of geographic location, climatic regimes and local physiographic properties, we selected 
two additional USGS first level regions, namely Ohio (hereafter OH) and Missouri (hereafter MO), designated 
by a two-digit Hydrologic Unit Code (HUC).

The five selected regions cover a variety of topography and land cover regimes. The pixel aspect was derived 
from the SRTM digital elevation model (at its original resolution), and a consistent result was obtained by binning 
into eight directions; the two dominant aspects were determined to be north and south-facing slopes, together 
occupying around 30% of the total pixels over the five regions. For MO, the dominant aspect was determined to 
be north, and for the rest of the regions the dominant aspect was determined to be south. OH, MO and CC have 
mean elevations below 1,500 m (low elevation zone), while CRB and SN are between 1,500 m and 2,500 m with 
18.2% and 16.3% pixels respectively having mean elevations above 2,500 m (high elevation zone; Mote, 2006). 
The OH, MO, and CRB have relatively lower percentages of forested pixels (about 36.6%, 3.81%, 9.69 respec-
tively) whereas the SN and CC are recognized as being forest-dominated, with more than half of the pixels clas-
sified as forested (about 52% and 83%). These factors are known to exert strong controls on the energy balance 
during snowmelt (Garvelmann et al., 2015), and can be highly variable in space and time (Pohl et al., 2006).

3.2.  Experimental Design

Data from the time period 1st October 1981 through 30th September 2000 were used for all model development 
runs—that is, SN17 calibration and LSTM training. For both the steps of calibration/training and testing of the 
models, we used data from the same time period, but from different spatially located pixels. In other words, our 
testing procedure evaluates the ability of each model to extrapolate in space, which is analogous to the problem 
of prediction in ungauged basins (Hrachowitz et al., 2013; Sivapalan et al., 2003). Note that it is computationally 
challenging (nearly impossible) to train either model (SN17 or LSTM) using data from the entire set of ∼0.31 
million snowy pixels; nor does it seem necessary. Instead, we use a process of sampling to select different, but 
representative, subsets of pixels to be used for training and for testing, as described in the following sections. As 
a precedent for this, Huo et al. (2019) have shown (in the context of sensitivity analysis) that the performance of 
a computationally intensive spatially distributed model can be reliably assessed by using only a sample of ∼5% 
of the total number of pixels available over the CONUS (note that Huo et al., 2019 do not target SWE, but instead 
focus on gross primary production and latent heat flux, so their results might not necessarily be transferable).

To investigate the informational value of using different variables as input data, we developed 4 different LSTM 
models. To keep track of the different models, we adopt the following four-part naming convention, where the 
first part refers to the model type (LSTM or SN17), the second part refers to the Pixel Set used (A or B; these will 
be introduced later), the third part refers to the model domain (CONUS, Region or PX), and the fourth part refers 
to the variables used as input data (PT, PTE, 6M, and 6ME). In regard to the latter, CONUS refers to construct-
ing a single model (learning a single set of parameters) that uses the input/output data from the entire country. 
Region refers to building separate models according to the number of selected regions. PX refers to achieving a 
separate “best-fit” model at each pixel. The abbreviation PT refers to precipitation and temperature, PTE refers 
to precipitation and temperature plus elevation, 6M refers to a set of six meteorological variables (precipitation, 
temperature, dew point temperature, vapor pressure deficit, longwave radiation, and shortwave radiation), and 
6ME refers to the set of 6 meteorological variables plus elevation. For more detailed descriptions regarding the 
four-part naming convention for the LSTM networks and SN17 models used in this study, we refer the reader to 
Table S1 in Supporting Information S1.

The study reported here was conducted in several stages. In the first experiment (Section 3.2.1), we trained both 
model architectures (LSTM and SN17) to represent snowmelt dynamics at 15,000 pixels (Pixel Set A) selected 
randomly across the CONUS. This preliminary experiment had two purposes: (a) To determine whether the 
LSTM architecture is able to learn a better mapping relationship from inputs to outputs than the SN17 model, and 
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(b) To examine whether the LSTM network architecture is able to exploit the information provided by meteoro-
logical variables other than those used by SN17, to achieve better model performance.

Then, in the second experiment (Section  3.2.2), we evaluated both model architectures on a different set of 
15,000 pixels (Pixel Set B; none of which were used in the first experiment) but selected in such a manner so 
as to provide equal representation to each of the five study regions mentioned above—OH, MO, CRB, SN, and 
the CC. The goals of this experiment were: (a) To assess whether the model performance obtained in the first 
experiment remains consistent when applied to another different data set, and (b) To examine the possibility of 
regional differences in performance.

In the third experiment (Section 3.2.3), we examined the transferability of LSTM-based models across regions. 
The goal was to investigate the extent to which different spatial regions share a common model structural 
representation.

3.2.1.  Experiment 1: CONUS-Wide Modeling of Snow Accumulation and Melt

The purpose of the first experiment was to investigate the potential of using the LSTM machine-learning architec-
ture as an alternative to the SN17 model structure for pixel-based CONUS-wide modeling of snow accumulation 
and melt. To this end, one single LSTM network was trained using input-output data from the entire country. 
Since training the network using data from more than 0.31 million pixels would be computationally prohibitive, 
we randomly selected 15,000 pixels from “snowy” areas across the CONUS (Figure 3). The goal was to obtain a 
representative subset of ∼5% of the total number of possible snowy pixels. Then, to train the LSTM network, we 
constructed 15 bootstrap sample sets, each consisting of 1,000 different pixels randomly selected from the total 
set of 15,000 snowy pixels. We collectively refer to these 15 bootstrapped sets as Pixel Set A.

Accordingly, the four LSTM models developed for Experiment 1 were all CONUS-wide LSTMs trained on all 
pixels from Pixel Set A. For instance, LSTM-A-CONUS-PT is the model that was trained using only precipitation 
and mean temperature as forcing inputs; no information about local static pixel attributes (such as elevation, etc.) 
was used for development of this model. Similarly, the other three models are LSTM-A-CONUS-PTE, LSTM-A-
CONUS-6M, and LSTM-A-CONUS-6ME.

As benchmarks for comparison, we developed two SN17 models including SN17-A-CONUS and SN17-A-PX. 
Note that SN17 currently uses only precipitation, temperature and elevation as input data. As such, the SN17-A-
CONUS model can be thought of as representing a “lower-benchmark” on SN17 performance at each pixel, since 
this model treats all pixels as having identical functional characteristics, and simply applies the same input-state-
output transformation algorithm to every pixel regardless of its location or local static characteristics. In contrast, 
the SN17-A-PX model can be thought of as representing an “upper benchmark” on SN17 performance at each of 
the calibrated pixels, since the model was tuned specifically to optimize performance at those pixels.

3.2.2.  Experiment 2: Regional Modeling of Snow Accumulation and Melt

For this second experiment, we developed another set of 15,000 pixels, hereafter referred to as Pixel Set B, by 
randomly selecting 3,000 pixels from each of the five study regions (OH, MO, CRB, SN, and CC). Note that these 
five regions represent 13.11%, 3.53%, 13.79%, 67.93%, and 44.14% respectively of the total number of snowy 
pixels across the CONUS. Further, each region includes a different percentage of forested and non-forested areas. 
As a result, Pixel Set B has relatively dense representation of forested regions and is most sparsely representative 
of the MO river basin, which is the largest of the five regions.

Using Pixel Set B, we again trained the LSTM architecture at the CONUS level (a single model for the entire 
country), after which we trained separate LSTM models for each region (five separate models, one for each 
region). The procedure used was as follows. For each region, we partitioned the corresponding 3,000 pixels into 
sets of 1,000 each for training, validation, and testing. For the CONUS-wide model(s) the 1,000 "training” pixels 
from each of the five regions were grouped together to obtain 5,000 pixels to be used for network training (simi-
larly for validation and testing). For each of the regional models, only the corresponding regional pixels were used 
for network training, validation, and testing.

To initialize each CONUS-wide LSTM model, we initialized the weights and biases using the corresponding 
results obtained at the Experiment 1; in other words, the network architectures were considered to have been 
“pre-trained” using the information provided by Pixel Set A. By doing so, we took advantage of the results of 
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Experiment 1 to minimize training costs, while achieving a consistent set of weights and biases for the CONUS-
wide model that could be used when initializing the training of the separate regional models. In this way, we took 
advantage of the benefits of “transfer learning” (Kratzert et al., 2018). Accordingly, we developed four different 
LSTM models at the CONUS level, trained on Pixel Set B including LSTM-B-CONUS-PT, LSTM-B-CONUS-
PTE, LSTM-B-CONUS-6M, and LSTM-B-CONUS-6ME.

Similarly, for each Regional LSTM model, we initialized the weights and biases using the corresponding results 
obtained from the CONUS-wide models trained on Pixel Set B; in other words, the regional network architectures 
were considered to have been “pre-trained” using the information provided by the CONUS-wide model trained 
on Pixel Set B. This approach took advantage of the results of CONUS-wide modeling to minimize training costs. 
Accordingly, we developed four different LSTM models for each Region including LSTM-B-Region-PT, LSTM-
B-Region-PTE, LSTM-B-Region-6M, and LSTM-B-Region-6ME.

As benchmarks for comparison, we developed additional SN17 models including SN17-B-CONUS, SN17-B-Re-
gion, and SN17-B-PX. For model evaluation/testing, we focused on how well the models perform on the 5,000 
testing pixels selected from Pixel Set B (1,000 pixels from each of the five regions). First, we evaluated the 
LSTM-based models against the SN17 benchmarks when using only PTE (precipitation, mean temperature, and 
elevation) as inputs, these being the same inputs used by SN17. The goal was to assess the capability of the LSTM 
network architecture to learn an appropriate representation of snow accumulation and melt over different training 
phases given the same input information that is available to the SN17 model. Then, we assessed which combi-
nation of inputs (PT, PTE, 6M, or 6ME) results in the best LSTM-based CONUS-wide predictions. Finally, we 
examined whether regional training results in better model performance than using the CONUS-wide model(s). 
Note that in all CONUS-wide cases, the LSTM-based models were fine-tuned on Pixel Set B after initializing 
using weights and biases trained on Pixel Set A.

3.2.3.  Experiment 3: Exploring the Benefits of Transfer Learning

For the third experiment, we investigated the extent to which different spatial regions can share a common model 
structure with different parameter values through transfer learning (TL) across regions. Each LSTM-B-Region 
model trained in Experiment 2 was applied to each of the other four regions, resulting in 20 TL models for 
each input combination (PT, PTE, 6M, or 6ME). For instance, for each of the regions MO, CRB, SN and CC, 
the LSTM-B-TL from OH results are obtained by applying the four different TL-LSTM networks (trained with 
different input combinations on the OH Region) to those target regions. Similarly, we have the LSTM-B-TL from 
Missouri, LSTM-B-TL from CRB, LSTM-B-TL from SN and LSTM-B-TL from Cascades models.

The goal of this experiment was to test the extent to which a regional LSTM model structure hypothesis, imposed 
in the form of different kinds of regularization strategies at the input, can be transferred (extrapolated) to other 
locations. We benchmarked these TL-LSTM networks against the three models listed in Experiment 2 (LSTM-B-
Region, SN17-B-Region, and SN17-B-PX) to examine how well the information about system structure extracted 
from one region can be transferred to another. To ensure a clean evaluation, the results were only assessed over 
the 5,000 testing pixels.

3.3.  Objective Function

The objective function used for training the pixel-wise SN17 model was the Nash-Sutcliffe Efficiency (NSE; 
Nash & Sutcliffe, 1970) shown in Equation 1:

NSE = 1 −

∑�
�=1

(

�̂�� − ���
)2

∑�
�=1

(

��� − ��
)2

� (1)

where �� is the mean of observed SWE for each day, �̂�� and 𝐴𝐴 𝐴𝐴
𝑡𝑡

𝑛𝑛 are the modeled and observed SWE at the training 
period time t 𝐴𝐴 (1 ≤ 𝑡𝑡 ≤ 𝑇𝑇 ) for a single pixel.
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The objective function used for CONUS-wide and regional model training was 𝐴𝐴 NSEavg obtained by averaging the 
NSE values computed at each pixel that supplies training data (Kratzert, Klotz, Shalev, et al., 2019) shown as 
Equation 2:

NSEavg =
1
�

�
∑

�=1

�
∑

�=1

(

�̂� − ��
)2

(�(�) + �)2
� (2)

where P is the number of pixels, N is the number of days per pixel, �̂� is the prediction of pixel 𝐴𝐴 𝐴𝐴(1 ≤ 𝑛𝑛 ≤ 𝑁𝑁) , 
𝐴𝐴 𝐴𝐴𝑛𝑛 is the observation, and 𝐴𝐴 𝐴𝐴(𝑝𝑝) is the standard deviation of the SWE in pixel 𝐴𝐴 𝐴𝐴(1 ≤ 𝑝𝑝 ≤ 𝑃𝑃 ) , calculated from the 

training period. The value of 𝐴𝐴 𝐴𝐴 was set to 0.1 to avoid the loss function exploding to infinity for pixels with very 
low SWE variance.

3.4.  Hyperparameter and Training Details

We mostly followed Kratzert, Klotz, Shalev, et al.  (2019) for setting the LSTM hyperparameters; 256 hidden 
states, 1 stacked LSTM layer, a batch size of 256, a dropout rate of 0.4 and a sequentially decreased learning rate 
per 10 epochs from 𝐴𝐴 1.0 × 10

−3
to 5.0 × 10

−4 then to 𝐴𝐴 1.0 × 10
−4 . The LSTMs were run in sequence-to-value mode, 

so that to predict a single daily SWE value the meteorological forcing from 242 preceding days, as well as the 
forcing data of the target day, were used (making the input sequences 243 time-steps long). This input sequence 
length follows suggestions from the land model community, where the snowy season is typically assumed to last 
from October 1st to May 31st resulting in a total of 243 days (Niu & Yang, 2007; Swenson & Lawrence, 2012). 
The relatively large number of hidden states (256) is believed to help circumvent the situation where the predic-
tive performance of the LSTM is sensitive to weight initialization when using a small number of hidden state 
units (Bengio, 2012). The ADAM optimization algorithm was used for training (Kingma & Ba, 2014). Also, a 
single fixed random seed (2925) was applied to train all the LSTM networks. Our results indicated robust perfor-
mance over three independent testing pixel sets (see Section 4.1.3), and therefore no further hyperparameter 
tuning was performed.

Note that in Experiment 1 we trained the LSTM network for a total of 15 epochs, where each epoch used data 
from a different bootstrapped set of 1,000 pixels taken from Pixel Set A. Here, an epoch refers to the LSTM 
training procedure wherein each temporal data sample for the entire set of 1,000 pixels is used once to update 
the values of the network parameters. The results of the 15th epoch were then used to initialize the training for 
Experiment 2, in which the LSTM network was trained for a total of 30 epochs using data from 5,000 training 
pixels selected from Pixel Set B. The results for the epoch having the highest average Kling-Gupta efficiency 
(KGE; Gupta et al., 2009) value over 5,000 validation pixels were then used to initialize the next stage of training 
for the five regional networks with 30 epochs each. Model performance was then assessed for an independent set 
of 5,000 testing pixels.

To calibrate the SN17 models, we used the Shuffled Complex Evolution (SCE) global optimization algorithm 
(Duan et al., 1992). Ten parameters were optimized, with the parameter range and model structure following He 
et al. (2011a). A standard batch calibration procedure was employed in which all training pixels were processed 
simultaneously at each iteration, in contrast to LSTM training where we randomly sampled pixels to make up 
each training batch to achieve faster convergence (LeCun et al., 2012).

3.5.  Evaluation Metrics for Assessing Model Performance

To assess the consistency, reliability, accuracy, and precision of the models, we used several metrics, including 
NSE (Nash & Sutcliffe, 1970, Equation 2), the three components of KGE (Gupta et al., 2009) from Equations 3 
to 6, and the scaled KGE (hereafter KGEss; Khatami et al., 2020, Equation 7):

𝛼𝛼
KGE =

𝜎𝜎𝑠𝑠

𝜎𝜎𝑜𝑜

� (3)

𝛽𝛽
KGE =

𝜇𝜇𝑠𝑠

𝜇𝜇𝑜𝑜

� (4)
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𝛾𝛾
KGE = 𝛾𝛾 =

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠

𝜎𝜎𝑠𝑠𝜎𝜎𝑜𝑜

� (5)

KGE = 1 −

√

(

(𝛾𝛾KGE − 1)
2
+ (𝛽𝛽KGE − 1)

2
+ (𝛼𝛼KGE − 1)

2
)

� (6)

KGE𝑠𝑠𝑠𝑠 = 1 −
(1 − KGE)

√

2
� (7)

where 𝐴𝐴 𝐴𝐴𝑠𝑠 and 𝐴𝐴 𝐴𝐴𝑜𝑜 are the standard deviation, and 𝐴𝐴 𝐴𝐴𝑠𝑠 and 𝐴𝐴 𝐴𝐴𝑜𝑜 are the mean of the simulated and observed SWE time 
series respectively, 𝐴𝐴 𝐴𝐴 is the Pearson correlation coefficient and 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 is the covariance between the simulated and 
observed values.

4.  Results and Discussion
4.1.  Experiment 1: CONUS-Wide Modeling of Snow Accumulation and Melt

Figures 2 and 3 present a statistical assessment of the potential for using the LSTM architecture to model CONUS-
wide snow accumulation and melt. The results show CDFs of testing-pixel performance over 15,000 pixels from 
Pixel Set A for the four CONUS-wide LSTM models (LSTM-A-CONUS-PT, -PTE, -6M, and -6ME) that use 
different input data sets, the lower-benchmark SN17-A-CONUS model, and the upper-benchmark SN17-A-PX 
model used as the bases for comparison. Note that each of these six models uses a single architecture to model 
snow accumulation and melt dynamics across the entire CONUS. Recall that the lower-benchmark SN17-A-CO-
NUS model and the four LSTM models each use a single set of CONUS-wide parameters, while the SN17-A-PX 
model is individually trained to each pixel.

4.1.1.  Comparative Overall Performance of the LSTM and SN17 Model Architectures

The NSE aggregate performance results (Figure  2) show clearly that the LSTM architecture provides better 
modeling of the general dynamics of snow accumulation and melt than the SN17 model architecture. All of the 
CDFs are shifted much further to the right, closer to the ideal value of 1.0. With a single network architecture and 
set of parameters applied to the entire CONUS, each of the four LSTM models (solid lines) achieves significantly 
better distributions of testing-pixel NSE scores than the lower- and upper-benchmark SN17 models (blue and red 
dashed lines respectively). In particular, the LSTM network architecture, with CONUS-wide sets of parameters 
(red, orange, purple, and green solid lines), provides better performance than the SN17-A-PX model for which 
parameters were optimized locally at each pixel. The unavoidable conclusion is that the SN17 model architec-
ture does not adequately capture the structural nature of the input-state-output transformations that express the 
dynamics of snow accumulation and melt.

Figure 2.  Aggregate Nash-Sutcliffe Efficiency performance for the Long Short-Term Memory networks (solid lines) and the 
benchmark SN 17 models (dashed lines) when applied to the 15,000 pixels from Pixel Set A.
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4.1.2.  Ability of the LSTM and SN17 Architectures to Exploit Information in the Input Data

Although the 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 metric indicates better aggregate performance of the LSTM architecture, it does not provide 
much insight into the reasons why. Note also that the use of different time periods to compute the aggregated 
NSE performance criterion can be informative (Schaefli & Gupta, 2007; Schaefli et al., 2005). Here, we use the 

𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 performance metric and its components to provide better discrimination between the models. The top 
row (a–d) of subplots in Figure 3 compares the results when both model types are provided with similar input data 
(precipitation, temperature, and elevation).

First, both the LSTM-A-CONUS-PT and LSTM-A-CONUS-PTE networks (red and orange solid lines respec-
tively) achieve significantly better 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 performance than the SN17-A-CONUS model (blue dashed line). 
Further, the 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 component shows that a major reason for this is that the LSTM is better able to simulate the 
shape and timing of snowmelt. So, even without any information regarding “local” properties of the landscape, 
the LSTM-A-CONUS-PT (which was not provided local elevation information) model is able to learn an input-
state-output mapping that is better than that encoded by the SN17 model (which was provided with elevation 
information). In other words, the LSTM architecture is able to make better use of the information about snow 
dynamics provided by the input (precipitation and temperature) data.

Second, the LSTM-A-CONUS-PTE network with elevation information (orange solid line) is clearly better than 
the LSTM-A-CONUS-PT network without elevation information (red solid line). In particular, the use of elevation 
information results in a much better mass balance, as indicated by the 𝐴𝐴 𝐴𝐴

𝐾𝐾𝐾𝐾𝐾𝐾 curve being closer to the ideal value 
of 1. This indicates, as might be expected, that there is considerable predictive value provided by the “local” 
information about elevation.

Third, the LSTM-A-CONUS-PTE network, with a single set of CONUS-wide parameters, achieves almost identi-
cal 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 performance to that of the SN17-A-PX model that was calibrated individually to each pixel (note that 
both these models use the same physical input information). This indicates that the LSTM architecture is able 
to successfully learn a set of parameters that enables it to be confidently applied to pixels that were not used for 
network training.

The subplots in Figure 3 compare the results when the LSTM network architecture is provided with different 
types of input data (red, orange, purple, and green solid lines). As indicated above, there is significant improve-
ment when going from PT where only precipitation and temperature are provided (red solid line) to PTE where 
elevation information is also provided (orange solid line). However, even further improvement is achieved by 
the 6M network (purple solid line) that is provided with additional meteorological variables. Note that only the 

Figure 3.  Aggregate performance, in terms of Kling-Gupta efficiency (KGE)ss and the three KGE components, for the Long Short-Term Memory networks (solid 
lines) and the benchmark SN 17 models (dashed lines) when applied to the 15,000 pixels from Pixel Set A.
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first two of these inputs (precipitation and temperature) are used by the SN17 
model. So, providing the network with additional meteorological information 
(here dew point temperature, vapor pressure deficit, longwave radiation and 
shortwave radiation) is clearly beneficial. However, the 6ME model, which is 
provided with the six meteorological variables plus elevation, shows a clear 
decline in overall 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 performance. This seems to suggest that the infor-
mation provided by elevation may be redundant when the meteorological 
information is provided (i.e., the meteorological variables already encode the 
useful information that would otherwise be provided by elevation).

Overall, the 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 metric and its components show that the LSTM-A-CO-
NUS-6M model provides a much better representation of range of variability 
and water balance (curves are shifted closer to the center, where the ideal 
value is 1; Figures  3f and  3g), achieving a median 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 performance 
of 0.94 compared with the SN17-A-PX model (median 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴   =  0.93). 
In general, all of the models tend to underestimate the variability of snow-
melt (𝐴𝐴 𝐴𝐴

𝐾𝐾𝐾𝐾𝐾𝐾
< 1 ; Figures  3b and  3g). Both the LSTM-A-CONUS-PTE and 

LSTM-A-CONUS-6M models provide better representations of snow mass 
balance (𝐴𝐴 𝐴𝐴

𝐾𝐾𝐾𝐾𝐾𝐾 closer to 1; Figures 3c and 3g) than the other 2 LSTMs. Use of 
only precipitation and mean temperature (LSTM-A-CONUS-PT) results in a 
tendency to positive bias, likely because it does not have access to humidity 
relevant information (vapor pressure deficit, dew point temperature) and is 
therefore unable to learn an accurate rain-snow partitioning threshold within 
the gating operation (Wang et al., 2019). Meanwhile, the SN17-A-PX model 
tends to underestimate mass balance suggesting that one should perhaps 
consider using other objective functions for pixel-wise training than NSE (or 
KGE, not shown, which results in similar underestimation bias).

In summary, the ability to exploit the information provided by a wider suite 
of meteorological variables enables the CONUS-wide implementation of the 
LSTM architecture to achieve a better representation of the dynamics of snow 
accumulation and melt, as assessed in terms of the ability to match the target 
SWE variable. However, even when provided with the same physical inputs 
as SN17, the LSTM architecture provides better results; such an implementa-
tion might be unavoidable when only Snow Telemetry (SNOTEL) informa-
tion is available.

4.1.3.  Evaluation on Pixel Set B

We next evaluated the LSTM-A-CONUS-6M model trained using Pixel-Set-A 
on a different set of 15,000 pixels from Pixel Set B. Figure 4 summarizes the 
spatial distributions of the five performance metrics separately for first inde-
pendent sets (see other two sets in Figure S3 in Supporting Information S1) 
of 5,000 pixels from Pixel Set B. Table  2 shows that, overall, the model 
continues to provide good predictive performance on all three independent 
datasets, with only 31.69% and 30.22% of the pixels having more than 𝐴𝐴 ± 10% 
bias in the values of 𝐴𝐴 𝐴𝐴

𝐾𝐾𝐾𝐾𝐾𝐾 and 𝐴𝐴 𝐴𝐴
𝐾𝐾𝐾𝐾𝐾𝐾 respectively. Further detailed evaluation 

performed on each of the five regions (see Experiment 2) reinforced these 
findings (see Figure S1 in Supporting Information S1). Overall, these results 
indicate that the CONUS-wide LSTM-A-CONUS-6M model achieves a high 

degree of robustness with regard to predictive performance. As such, no further tuning of the LSTM model hyper-
parameters was performed in the later parts of this study.

The CDF plots related to Figure 4 are presented in Figure S4 in Supporting Information S1. Generally, MO and 
CRB have an overall better performance in terms of KGEss and NSE whereas the two forested areas, SN and 
CC, perform relatively worse, with OH being in between. A similar conclusion is found by examining the three 
KGE components, except that the OH shows a relatively large negative bias for the standard deviation error 

Figure 4.  Spatial map indicating skill of the LSTM-A-CONUS-6M model 
(trained on Pixel Set A) when tested on an independent testing pixel set from 
Pixel Set B.
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(𝐴𝐴 𝐴𝐴
𝐾𝐾𝐾𝐾𝐾𝐾 ). Table S2 in Supporting Information  S1 summarizes the Pearson 

correlation coefficient (𝐴𝐴 𝐴𝐴 ) for the pair of SWE hydrographs within the study 
period. MO and CRB have the two lowest average 𝐴𝐴 𝐴𝐴 values for all the pairs 
(0.47 and 0.47 respectively) which suggests that the LSTM-A-CONUS-6M 
model trained over the entire country provides better performance when the 
region covers a more diversified climatic regime. Moreover, the model has 
worse average performance at forested (as opposed to non-forested) pixels, 
where the average KGEss skill difference between the two area equals 0.015, 
0.079 and 0.023 over OH, SN, and CC respectively. Further, the KGEss skill 
is only 0.55 and 0.75 for Mixed Forest and Woody Savanna pixels in the SN 
region, suggesting the need to either construct separate local models, or to 
add relevant local attributes to the CONUS-wide models to improve overall 
LSTM model performance.

4.2.  Experiment 2: Regional Modeling of Snow Accumulation and Melt

4.2.1.  Results of CONUS-Wide Fine Tuning

Experiment 2 was conducted in stages, where the first stage was another round 
of CONUS-wide network training. In the following discussion, we refer to 
the LSTM networks obtained by training on Pixel Set A as the “pre-trained” 

CONUS-wide networks. Initialized from the weights and bias parameters of these pre-trained networks we 
conducted a further stage of CONUS-wide network training using Pixel Set B (called the “fine-tuned” CONUS-
wide networks). The results of this second round of network training are the LSTM-B-CONUS-PT, -PTE, -6M, 
and -6ME CONUS-wide models, as described in Section 3.2.2.

Performance comparison of the pre-trained (using Pixel-Set-A) and the fine-tuned (using Pixel-Set-B) CONUS-
wide LSTM networks is shown in Figure 5. The results show performance on the 5,000 independent testing 
pixels from Pixel Set B. Note that while, performance was already quite good based on Pixel-Set-A training, the 
model skill, as measured by the median value of KGEss, improves by ∼0.08/∼0.06/∼0.08 for the PT/PTE/6ME 
models respectively, and by only ∼0.01 for the 6M model. This reinforces the earlier finding that use of a full 
suite of meteorological variables results in an efficient basis for training the LSTM network. However, providing 
the network with additional information about elevation (-6ME model) does not result in further improvement.

This added value of fine-tuning is further demonstrated in Figure 6, which shows the change in model skill from 
LSTM-A-CONUS-6M to LSTM-B-CONUS-6M. The left column of subplots shows the geographical distribution 
of change in model skill (blue indicates improvement) while the right column shows the corresponding perfor-
mance difference CDFs individually for each of the five regions. In the right column, the metric 𝐴𝐴 𝐴𝐴

𝐾𝐾𝐾𝐾𝐾𝐾

∗  is defined 
as 𝐴𝐴 1 − |1 − 𝛼𝛼

𝐾𝐾𝐾𝐾𝐾𝐾
| and the metric 𝐴𝐴 𝐴𝐴

𝐾𝐾𝐾𝐾𝐾𝐾

∗  is defined as 𝐴𝐴 1 − |1 − 𝛽𝛽
𝐾𝐾𝐾𝐾𝐾𝐾

| so as to better illustrate the change in skill. 
Accordingly, positives values in the right column of subplots indicate improved performance of LSTM-B-CO-
NUS-6M over LSTM-A-CONUS-6M with respect to the corresponding metric.

Accordingly, of the 5,000 testing pixels, 58.0% have improved NSE while 57.8% have improved KGEss (with 
59.6%, 54.2% and 55.8% improvement for the 𝐴𝐴 𝐴𝐴

𝐾𝐾𝐾𝐾𝐾𝐾 , 𝐴𝐴 𝐴𝐴
𝐾𝐾𝐾𝐾𝐾𝐾 , and 𝐴𝐴 𝐴𝐴

𝐾𝐾𝐾𝐾𝐾𝐾 components respectively). More than half of 
the pixels show improvements for NSE and all three components of KGE for the regions other than OH. In OH, 
as many as 60% of the pixels show a decrease in KGEss skill (due to 𝐴𝐴 𝐴𝐴

𝐾𝐾𝐾𝐾𝐾𝐾 ). This may be because Pixel-Set-A 
contains a larger number of non-forested snowy pixels (77%) over the CONUS than Pixel-Set-B (62%). Since the 
CONUS-wide model has to select network parameters that balance performance over both forested and non-for-
ested areas, the result seems to be improved over forested areas (which are better represented by Pixel-Set-B) at 
the expense of non-forested areas.

4.2.2.  Regional Training of the LSTM Models

Initialized from the weights and bias parameters of the fine-tuned CONUS-wide networks we next trained a 
separate LSTM network for each of the five regions, again using Pixel-Set-B (we refer to these as the “fine-
tuned” regional networks). Overall, at the CONUS-level, the regional tuning results in the median CDF of KGEss 

Evaluation over Pixel Set B

Model skill

Percentage 
of pixels for 
independent 
Test Set 1

Percentage 
of pixels for 
independent 
Test Set 2

Percentage 
of pixels for 
independent 
Test Set 3

Percentage 
of pixels 

for all test 
sets

𝐴𝐴 | 1 − 𝛽𝛽
KGE

| > 10% 31.92% 31.74% 31.40% 31.69%

𝐴𝐴 |1 − 𝛽𝛽
KGE

| > 10% 30.24% 30.20% 30.22% 30.22%

𝐴𝐴 𝐴𝐴
KGE

> 0.95 82.08% 82.42% 80.92% 81.81%

𝐴𝐴 KGEss > 0.95 32.72% 30.84% 31.06% 31.54%

𝐴𝐴 NSE > 0.95 41.18% 40.34% 41.84% 41.12%

𝐴𝐴 𝐴𝐴
KGE

< 0.85 2.20% 1.96% 1.88% 2.01%

𝐴𝐴 KGEss < 0.70 3.96% 3.90% 4.22% 4.03%

𝐴𝐴 NSE < 0.70 3.72% 3.70% 3.70% 3.71%

Table 2 
Summary Statistics for the LSTM-A-CONUS-6M Model Evaluation Results 
Over Pixel Set B
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improving by a small amount—by 0.013, 0.012, 0.013, and 0.025 for the PT, PTE, 6M, and 6ME models respec-
tively (see Figure S5 in Supporting Information S1). While the 6ME model shows the largest improvement, its 
overall performance is still worse than for the other models (consistent with previous results).

In contrast with the CONUS-wide fine-tuning stage (Figure 6), regional fine-tuning results in even more improve-
ment of model skill across the five regions (Figure 7). The range of improvement is from 55% (SN) to 65% (MO) 
for 𝐴𝐴 𝐴𝐴

𝐾𝐾𝐾𝐾𝐾𝐾 , from 56% (SN) to 62% (CRB) for 𝐴𝐴 𝐴𝐴
𝐾𝐾𝐾𝐾𝐾𝐾 , and from 77% (SN) to 88% (OH) for 𝐴𝐴 𝐴𝐴

𝐾𝐾𝐾𝐾𝐾𝐾 . Overall, 81% of the 
testing pixels show improved NSE skill, while 64% show improved KGEss (60%, 59% and 81% for 𝐴𝐴 𝐴𝐴

𝐾𝐾𝐾𝐾𝐾𝐾 , 𝐴𝐴 𝐴𝐴
𝐾𝐾𝐾𝐾𝐾𝐾 , 

and 𝐴𝐴 𝐴𝐴
𝐾𝐾𝐾𝐾𝐾𝐾 components respectively). Meanwhile 85% (68%) of the forested pixels show greater improved NSE 

(KGEss) skill than the CONUS-wide fine-tuning 54% (51%) over the SN region. A general conclusion is that 
allowing the LSTM network to account for regional differences helps improve predictive performance, especially 
over forested areas.

4.2.3.  Comparison With SN17 Benchmarks

The results reported above indicate that the best performing model is the LSTM-B-Region-6M deep learning 
network architecture trained separately to each region. In this section, we evaluate the extent to which the LSTM 
architecture is able to “learn” a better input-output mapping than is encoded by the SN17 model, when both 
modeling strategies are provided with the exact same input information (precipitation, temperature, and eleva-
tion) over different phase of model development. Figure 8 summarizes the progression of performance of the 
LSTM architecture (evaluated over the 5,000 Pixel-Set-B testing pixels), starting with the pre-trained LSTM-A-
CONUS-PTE, proceeding to the fine-tuned LSTM-B-CONUS-PTE, and finally to the five fine-tuned LSTM-A-
Region-PTE models (here grouped together as one larger CONUS-wide model with regional differentiation). As 
benchmarks for comparison we show the SN17-A-CONUS model (black dashed line) and corresponding SN17-
B-CONUS model (red dashed line), each of which uses a single set of parameters to represent the entire CONUS, 
the SN17-B-Region model (blue dashed line) that uses five different parameter sets (one set for each of the five 
regions), and an “upper-benchmark” SN17-B-Pixel model (black dotted line) that is individually calibrated to 

Figure 5.  Aggregate performance of the trained CONUS-wide Long Short-Term Memory networks after fine-tuning using Pixel Set B compared to when pre-trained 
using Pixel Set A, where the evaluation is conducted over 5,000 independent testing pixels from Pixel Set B.
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each of the 5,000 testing pixels (thereby reflecting the best possible performance achievable at those pixels by the 
SN17 model architecture given the available data).

First, we notice that, as might reasonably be expected, the SN17 and LSTM models get progressively better (in 
terms of all of the reported metrics) as we proceed from the CONUS to Regional versions. However, this progres-
sive improvement is much more significant for the SN17 model (see KGEss, 𝐴𝐴 𝐴𝐴

𝐾𝐾𝐾𝐾𝐾𝐾 and 𝐴𝐴 𝐴𝐴
𝐾𝐾𝐾𝐾𝐾𝐾 metrics) than for the 

LSTM models. Further, the LSTM architecture has learned a far better representation of the snow-accumulation 
and melt input-output mapping than is expressed by the SN17 model architecture. In terms of the NSE metric, 

Figure 6.  Difference in model skill between the CONUS-wide Long Short-Term Memory (LSTMs) trained on Pixel Set B 
and Pixel Set A, when using the six meteorological variables, evaluated over the 5,000 testing pixels from Pixel Set B. Note 
that 𝐴𝐴 𝐴𝐴

𝐾𝐾𝐾𝐾𝐾𝐾

∗ = 1 − |1 − 𝛼𝛼
𝐾𝐾𝐾𝐾𝐾𝐾

| , 𝐴𝐴 𝐴𝐴
𝐾𝐾𝐾𝐾𝐾𝐾

∗ = 1 − |1 − 𝛽𝛽
𝐾𝐾𝐾𝐾𝐾𝐾

| . Movement of the CDFs to the right (to more positive values) indicate 
that the LSTM-B-CONUS models have better performance than the corresponding LSTM-A-CONUS models. OH = Ohio; 
MO = Missouri; CRB = Colorado River Basin; SN = Sierra Nevada; CC = Cascades.
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all three LSTM models (A-CONUS, B-CONUS, and B-Regional) achieve median NSE values above 0.95, while 
the best comparable SN17 model (SN17-B-Regional) achieves a median NSE value of around 0.82. Note that 
the SN17-B-Pixel results, which represents a “best possible” SN17 model since the model was calibrated to the 
testing pixels is still worse (with a median NSE value of around 0.87) than all three of the LSTM models. In 
contrast, the KGEss metric indicates that the pre-trained LSTM-A-CONUS-PTE model is only slightly better than 
the SN17-B-Region model and worse than the SN17-B-Pixel benchmark. Meanwhile the LSTM-B-CONUS-PTE 
and LSTM-A-Region-PTE models have the best performance.

Figure 7.  Difference in model skill between the regional Long Short-Term Memory (LSTM) and CONUS-wide LSTMs 
trained on Pixel Set B, when using the 6 meteorological variables, evaluated over the 5,000 testing pixels from Pixel Set B. 
Note that 𝐴𝐴 𝐴𝐴

𝐾𝐾𝐾𝐾𝐾𝐾

∗ = 1 − |1 − 𝛼𝛼
𝐾𝐾𝐾𝐾𝐾𝐾

| , 𝐴𝐴 𝐴𝐴
𝐾𝐾𝐾𝐾𝐾𝐾

∗ = 1 − |1 − 𝛽𝛽
𝐾𝐾𝐾𝐾𝐾𝐾

| . Movement of the CDFs to the right (to more positive values) 
indicates that the LSTM-B-Region models have better performance than the corresponding LSTM-B-CONUS models. 
OH = Ohio; MO = Missouri; CRB = Colorado River Basin; SN = Sierra Nevada; CC = Cascades.
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Finally, it should be noted that although the improvement from LSTM-B-CONUS-PTE to LSTM-A-Region-PTE is 
both clear and consistent, it is not very large; this indicates that a trained CONUS-wide LSTM model (based on 
PTE data) is capable of providing almost as good performance as a regionally trained one. Further this CONUS-
wide LSTM is better than the regionally trained SN17 model and is even better than the “optimized” SN17-B-
Pixel model that was calibrated to achieve best possible performance at the “testing” pixels; this latter finding is 
consistent with the “prediction in ungauged basins” results reported by (Krazert, Klotz, Herrnegger, et al., 2019; 
Krazert, Klotz, Shalev, et al., 2019) in the context of rainfall-runoff modeling.

4.2.4.  Some General Remarks

In general, the relatively good performance of the LSTM-based models should (perhaps) not be too surprising 
since it is likely that a much larger amount of information has been assimilated by the deep learning process than 
was available to the developers of the SN17 model architecture. What does seem remarkable is that the collec-
tive-regionally-differentiated (“fine-tuned” CONUS-wide) LSTM model is not very much better than the single 
CONUS-wide representation, suggesting that the latter may be capable of providing acceptably good predictions 
of SWE at locations that are not necessarily similar, in terms of local attributes, to the conditions experienced by 
the model during training; in other words, the conditions determining the dynamics of snow accumulation and 
melt depend largely on meteorological drivers, whereas the local conditions may have only marginal impact, at 
least at the scale of the individual pixels used for this study.

We illustrate this point by examining mass balance error (i.e., (𝐴𝐴 |1 − 𝛽𝛽
𝐾𝐾𝐾𝐾𝐾𝐾

| )) as summarized in Table 3. For exam-
ple, the regionally differentiated performance of the CONUS-wide (LSTM-B-CONUS) model drops only slightly 
in MO and CRB, where the average error drops by merely 0.34% (from 4.85% to 4.51%) and 2.02% (from 
6.99% to 4.97%). The single CONUS-wide representation clearly has higher transferability between non-forested 
regions even though they may include a wide range of climate regimes in terms of latitude coverage.

As mentioned earlier, accounting for regional differences via sampling helps improve predictive performance 
over forested areas. Here, we observe significant reduction in bias (by 8.11% and 4.30% respectively) in SN and 

Figure 8.  Aggregate performance of the Long Short-Term Memory models (solid lines) benchmarked against the SN17 models (dashed lines) when both are given the 
same input information (precipitation, temperature and elevation), evaluated over the 5,000 testing pixels from Pixel Set B.
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CC. The maximum bias in OH and SN also decreases considerably (by 93.31% and 141.03% respectively). The 
improvement in SN likely comes from the large total number of local pixels in Pixel Set B. Overall, significant 
decreases of maximum mass balance error in SN (by 14.29%) and CC (by 27.68%) during the regional fine-tun-
ing indicates the importance of exploiting the local meteorological information when predicting forested region 
snowpack. The remaining large value of the maximum bias (SN: 85.29%; CC: 63.38%) suggests that the model 
may need to be provided with local information at a finer spatial resolution, and that the current LSTM gating 
function may have difficulties learn the effects of vegetation interception when provided only the 6M meteoro-
logical context.

4.2.5.  Time Series Illustrating Daily Snowpack Dynamics

Figure 9 shows that the regional LSTM is able to properly simulate the seasonal cycle dynamics of snow accumu-
lation and melt quite well. The figures show, for 10%, 50%, and 90% percentiles of KGEss, time-series compari-
sons of simulated and observed SWE selected from Pixel Set B testing pixels for the LSTM-B-Region-6M model, 
SN17-B-Region, and SN17-B-PX model. Additional examples for the CONUS-wide LSTM and other versions of 
the SN17 model are presented in Figure S6 in Supporting Information S1 with the associated KGEss statistics 
and pixel information summarized in Table S3 in Supporting Information S1. Although a very large number of 
cases was investigated in this study, the results presented here can be considered to be representative and hence 
useful for understanding how informative the chosen metrics are about the characteristics of any given simulation.

Further, we broaden the list of statistical goodness-of-fit measures to include the normalized total SWE bias, as 
well as a timing measure related to the reproduction of annual day of peak SWE at the pixel scale. From Figure S7 
in Supporting Information S1, we see that the LSTM clearly has smaller total SWE biases compared to the corre-
sponding different SN17 models. Notice again that a CONUS-wide LSTM strategy (e.g., LSTM-A-CONUS-6M) 
would only perform better than the regionally fine-tuned model in terms of total normalized bias for the MO 
basin because the former covers a more diversified snowpack regime (Table S3 in Supporting Information S1).

On the other hand, the LSTM does not reproduce the occurrence of annual maximum SWE date better than 
the SN17 models (Figure S8 in Supporting Information S1) Note that SN17 is also not able to reproduce this 
important timing measure. Given that our current LSTM development strategy uses a fixed number of 243 past 
time-steps as the input sequence length, it would be useful to explore the benefits of varying the memory window 
size as a possible way of enhancing the ability of the LSTM to better capturing timing-relevant signatures of snow 
dynamics.

LSTM-A-CONUS-6M (total 15,000 testing pixels)

Models/Regions OH MO CRB SN CC

Avg. of 𝐴𝐴 |1 − 𝛽𝛽
KGE

| 8.01% 4.85% 6.99% 17.35% 10.40%

Max. of 𝐴𝐴 |1 − 𝛽𝛽
KGE

| 132.86%(4) 41.41% 58.57% 240.61%(8) 74.64%(1)

No of pixel 𝐴𝐴 |1 − 𝛽𝛽
KGE

| ≥ 1.0 1 - - 49 -

No of pixel 𝐴𝐴 |1 − 𝛽𝛽
KGE

| ≥ 2.0 - - - 3 -

LSTM-B-CONUS-6M (total 5,000 testing pixels)

OH MO CRB SN CC

  Avg. of 𝐴𝐴 |1 − 𝛽𝛽
KGE

| 5.68% 4.52% 4.97% 9.24% 6.10%

  Max. of 𝐴𝐴 |1 − 𝛽𝛽
KGE

| 39.65% 38.84% 38.25% 99.58%(1) 91.06%(5)

LSTM-B-Region-6M (total 5,000 testing pixels)

OH MO CRB SN CC

  Avg. of 𝐴𝐴 |1 − 𝛽𝛽
KGE

| 4.85% 4.07% 4.07% 7.85% 5.20%

  Max. of 𝐴𝐴 |1 − 𝛽𝛽
KGE

| 32.68% 35.63% 31.86% 85.29%(1) 63.38%(5)

Note. The integer adhere to the large maximum mass balance error within the bracket refers to the International Geosphere-Biosphere Programme (IBGP) land classes 
as presented in Broxton et al. (2014). 1: Evergreen needleleaf; 2: Evergreen broadleaf; 4: Deciduous broadleaf; 5: Mixed forests; 8: Woody savannas.

Table 3 
Summary Mass Balance Error (𝐴𝐴 |1 − 𝛽𝛽

KGE
| ) for the LSTM-A-CONUS-6M, LSTM-B-CONUS-6M, and LSTM-B-Region-6M Models Evaluation Results Over Pixel Set B
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4.3.  Experiment 3: Exploring the Benefits of Transfer Learning

In Experiment 1, we demonstrated the ability of a CONUS-wide LSTM to make accurate and robust predictions 
at continental scale, across different pixel sets. In Experiment 2, we showed that a regionally trained LSTM also 
shows promising performance when tested on independent pixels within the same region. Here, we explore the 
potential for transfer learning (TL), in which we evaluate the extent to which an LSTM trained to one region can 
be used outside of the original regional for which it was developed. This is achieved by applying the regional 
LSTM network (LSTM-B-Region) trained from one region to the remaining four corresponding regions and eval-
uating performance on 1,000 testing pixels selected (within that region) from Pixel Set B. The evaluation results 
in total 20 TL evaluations for each type of LSTM (PT, PTE, 6M, 6ME) that uses different input information.

4.3.1.  Evaluation Metric for Transfer Learning

To quantify the KGEss performance of each regional TL-LSTM network, we compute the area under the CDF 
curve integrated between 0 and 1 (i.e., positive values of KGEss). We then obtain the 𝐴𝐴 𝐴𝐴𝑆𝑆→𝑇𝑇  TL metric by subtract-
ing the integrated area from 1.0 as shown by Equation 8:

𝜙𝜙𝑆𝑆→𝑇𝑇 = 1 −

1

∫
0

𝑓𝑓𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑆𝑆→𝑇𝑇 )𝑑𝑑 (𝐾𝐾𝐾𝐾𝐾𝐾𝑠𝑠𝑠𝑠)� (8)

Figure 9.  Comparisons between UA observations and SWE predicted by LSTM-B-Region-6M, SN17-B-Region, and SN17-
B-PX models. The pixels are from 5,000 testing pixels in Pixel Set B and represent locations corresponding to the a) 10th, b) 
50th, and c) 90th percentiles of KGEss performance of the model. The results are shown from WY1983 to WY1985.
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The symbol 𝐴𝐴 𝐴𝐴 refers to the source region where the TL network was developed, 𝐴𝐴 𝐴𝐴  refers to the target region that 
the network is applied to, and 𝐴𝐴 𝐴𝐴𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 indicates the KGEss performance CDF of the TL network. Because KGEss 
performance is generally positive for all of the cases examined, we neglect area under the CDF curve correspond-
ing to KGEss less than 0. Accordingly, the 𝐴𝐴 𝐴𝐴𝑆𝑆→𝑇𝑇  metric is bounded between 0 and 1 with larger values indicating 
better TL performance. Finally, the degree of transferability of each regional LSTM is evaluated as the ratio 
written as Equation 9:

𝑅𝑅𝑆𝑆→𝑇𝑇 =
𝜙𝜙𝑆𝑆→𝑇𝑇

𝜙𝜙𝑇𝑇

� (9)

where 𝐴𝐴 𝐴𝐴𝑇𝑇  refers to the metric (Equation 8) computed for the model when trained specifically to the target region 
(i.e., not transferred). Accordingly, we compare the regional TL-LSTM networks against three benchmarks, 
including the regional LSTM model trained to the target region (𝐴𝐴 𝐴𝐴𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

 ), the regional SN17 model trained to 
the target region (𝐴𝐴 𝐴𝐴𝑇𝑇𝑆𝑆𝑆𝑆17−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 ) and the SN17 pixel model trained to the target region (𝐴𝐴 𝐴𝐴𝑇𝑇𝑆𝑆𝑆𝑆17−𝑃𝑃𝑃𝑃
 ). Thus, values of 

𝐴𝐴 𝐴𝐴𝑆𝑆→𝑇𝑇  larger than 1.0 indicate that the TL model is able to outperform the benchmark model, while values less 
than one indicate poor ability to exploit transfer learning.

4.3.2.  Evaluation of Regional TL Networks Against Three Benchmarks

We first compare the TL-LSTMs against the target region LSTMs (see Figure 10). We put less attention on the 
results of 6ME network (Figure S8 in Supporting Information S1) than the PT, PTE, and 6M network because 
it has the worst performance while requiring more input information. In general, this suggests that “elevation” 
information can be considered to be redundant when the set of six meteorological variables is made available. 
Overall, we see that the LSTM-PT networks, which require fewer input data provide better TL performance 
(Figure 10a) than the PTE (Figure 10b) and 6M networks (Figure 10c), as indicated by the majority of the 𝐴𝐴 𝐴𝐴𝑆𝑆→𝑇𝑇  
values being close to or larger than 1.0. This suggests that the LSTM-gating operations have been able to learn a 
better universal representation of the processes that control the rain-snow partitioning and snowmelt dynamics, 
by exploiting only the information provided by precipitation and mean temperature. This finding also suggests the 
existence of a tradeoff between model transferability and model complexity (in the sense of the number of input 
variables used for training the LSTM network; Lute & Luce, 2017). However, whether this finding is general 
requires further investigation and consideration of issues such as data quality and quantity (Schoups et al., 2008).

As shown by Figures 10b and 10c, the TL results deteriorate when elevation is included as an input for LSTM 
network training. In particular, the 𝐴𝐴 𝐴𝐴𝑆𝑆→𝑇𝑇  metric for LSTM-B-TL from CRB decreases to 0.88 (6M) and 0.65 (PTE) 
when applied to Ohio, while conversely the LSTM-B-TL from Ohio decreases to 0.92 (6M) and 0.57 (PTE) when 
applied to CRB. So, the inclusion of elevation as training information tends to cause the LSTM to learn a regional 
representation that does not transfer well to other regions.

Similarly, the PTE and 6M versions of the Cascades LSTM-B-TL do not transfer well to the other four regions, 
and especially to the three non-forest regions (for which the 𝐴𝐴 𝐴𝐴𝑆𝑆→𝑇𝑇  values are all less than 0.50). This makes sense, 
since the Cascades is a relatively unique region where the spatial coverage is relatively narrow and is located at 
higher latitudes, so that a representation is learned that is locally specific and therefore does not transfer well to 
geographical regions that are not similar. However, this result may also be due to the way that we have fine-tuned 
the LSTM network, because the 6ME results (Figure S9 in Supporting Information S1) also transfer poorly from 
CRB and SN to OH and MO. Because we have allowed all of the weights and biases to be tunable at each level of 
network training, the regional CC networks for PTE and 6M have likely forgotten some of the general learning 
achieved through CONUS-level training. It is possible that freezing some of the weight and biases during regional 
training may help to address the reasons for poor network transferability (Ma et al., 2021).

Next, we compare the TL-LSTMs to the target region SN17 benchmarks (SN17-Regional and SN17-PX). We 
see that about 80% (Figure 10d). And more than half (55%; Figure 10g) of the TL-LSTMs that used only precip-
itation and mean temperature as inputs outperform (indicated by the blue-green color) the corresponding target 
region SN17-Regional and SN17-PX models. When using all six meteorological inputs (6M) this success rate 
decreases to only 64% (Figure 10f) and 52% (Figure 10i) against the target region SN17-Regional and SN17-PX 
models respectively. Although the TL-LSTM using PTE use the exact same type of input information as SN17, 
its transferability shows a further decrease to 52% and 36%. So, although the LSTM may not be fully exploiting 
the information provided by the elevation data, LSTMs trained for other regions are still able (to a certain extent) 
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to outperform the regionally or pixel-trained SN17 models. This suggests that future investigations may focus 
on how to improve the SN17 model by either incorporating more meteorological variables, or by enhancing the 
parameterized process representations within the model.

Finally, we note that the LSTM architecture exhibits better regional transferability than the SN17 model structure 
(Figure S10 in Supporting Information S1). This points to a fundamental difference between what is achieved 
when training an LSTM network as opposed to calibrating the SN17 model, where the former corresponds more 
closely to a structure learning problem (Gharari et al., 2021), while the latter is restricted to only parameter learn-
ing given a predefined model structure.

4.3.3.  Remarks on Spatial Proximity Assumption for Region Delineation

Finally, we note that the success of network transferability seems to be related to the spatial proximity of the 
source and target regions. From Figure 10, we see that TL networks tend to transfer well only to the nearest 
adjacent regions. For example, the TL networks that use only precipitation and temperature (PT in Figure 10a), 
transfer well from MO to OH and CRB, and from SN to CRB and CC. As an exception, the same PT network struc-
ture transfers well from CC to CRB even though they are not geographically adjacent to each other. In general, 

Figure 10.  Results of the transfer learning experiments. In the top row, the transferred Long Short-Term Memory (LSTM) networks are compared to their local-region 
trained counterparts. In the middle row, the transferred LSTM networks are compared to the corresponding local-region-trained SN17 models. In the bottom row, 
the transferred LSTM networks are compared to the corresponding local-pixel-trained SN17 models. Values larger than 1.0 indicate good relative performance of the 
transferred LSTM models. OH = Ohio; MO = Missouri; CRB = Colorado River Basin; SN = Sierra Nevada; CC = Cascades.
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however, one might speculate that the traditional method for region delineation may not be optimal from the point 
of view of knowledge transferability. Future study could focus on the use of other approaches for grouping pixels, 
based on important climatologic characteristics such as aridity, seasonality and fraction of precipitation falling as 
snow (Knoben et al., 2018), and seasonal precipitation and temperature patterns (Beck et al., 2018), or by data-
based clustering of pixels based on patterns within the available data.

5.  Conclusions, Remarks, and Outlook
5.1.  Conclusions

In this study, we have investigated the potential for continental-scale LSTM-based modeling of snow accumula-
tion and melt dynamics at the 4-km pixel scale over the CONUS. We have further investigated whether regional 
differences, based on geographical proximity, can be exploited to result in improved model performance. We 
followed a hierarchical training strategy in which a general LSTM architecture was first learned by assuming 
that a single network could represent SWE dynamics across the entire CONUS, followed by regional fine-tuning. 
We also investigated the benefits of using different kinds of input information, beyond that required by the SN17 
model used by the US National Weather Service.

Overall, our results indicate that a single LSTM network, trained using data sampled from across the entire 
CONUS can provide remarkably good performance, as assessed via a variety of metrics, and that further region-
al-scale fine-tuning of the network results in only marginal improvement. Of particular relevance to future attempts 
to improve process-based representations (e.g., to improve the structure of SN17) is that the most accurate and 
robust performance is achieved when the network can access a variety of meteorological information (precipita-
tion, temperature, dew point temperature, vapor pressure deficit, longwave radiation, and shortwave radiation), 
indicating that precipitation, temperature, and local elevation are not, by themselves, sufficiently informative to 
model the variability of snow dynamics at the continental scale. Further, when this range of meteorological infor-
mation is provided to the network, the local information provided by elevation becomes redundant.

Comparison of the LSTM-PTE network with the physical-conceptual temperature-index-based SN17 model 
(where both are provided the same input information) indicates that the gating-operation and cell-states archi-
tecture of the LSTM enables it to learn a better representation of snow accumulation and melt dynamics than is 
encoded by SN17, and that by doing so a single CONUS-wide LSTM can significantly outperform an implemen-
tation of SN17 that is locally calibrated to each pixel. This result continues to hold even when regionally trained 
LSTMs are tested for regional transferability, suggesting considerable potential for improving physical-based 
representations to be applied CONUS-wide at the pixel resolution. In this context, LSTM-based modeling can 
serve as a valuable data compression tool that can assist the process of scientific hypothesis testing (Nearing 
et al., 2020), by providing insights regarding what kinds of information may be missing from existing process-
based representations.

Of course, the data-intensive nature of LSTM-based modeling poses a potential barrier to the application of 
such techniques to data-scarce parts of the world where real-world meteorological forcing and SWE data are not 
widely available or have only limited temporal coverage. However, one reason for our sequential experimental 
design (proceeding from generic/global to specific/regional) was to explore the extent to which the use of a 
“pre-trained” LSTM network might be a reasonable way to circumvent the need for large amount of “local” train-
ing data (see also Kratzert et al., 2018). Our results indicate that such a strategy may indeed be viable, and future 
work should continue to explore to what specific/local extent this strategy can be pursued. In particular, it could 
be useful to investigate the smallest homogenous-local areal extents that can be differentiated while continuing 
to realize robust performance improvements. In this regard, studies will also need to be done regarding the mini-
mum number of pixels for which data must be provided to efficiently achieve stable versions of trained CONUS-
wide, Regional, and Local LSTM networks, and to assess what factors must be considered when designing a 
robust stratified sampling strategy for selecting representative pixels to ensure maximally informative data sets 
for training, evaluation and testing. This latter will need to consider snow-process-relevant diversity in terms of 
local ancillary variables related to various properties such as topographic and vegetation (Broxton et al., 2020).

In this study, a fixed time lag of 242 preceding days, along with the current days' information, is used to calcu-
late the hidden state and cell input when updating the “state-dependent” parameters for each gating operation 
over the training period. This means that the cell state is initialized at zero at the beginning of every batch. This 
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assumption regarding the nature of the average snowy season, when applied to the LSTM network, is shown to be 
capable of resulting in overall better performance than achieved by the various SN17 models. Further, the results 
of the transfer learning experiments suggest the existence of a tradeoff between model transferability and model 
complexity. In practice, one may have to individually optimize the sequence lengths for the CONUS-wide and 
regional-wide LSTMs. Future work should explore how changes to sequence length and the approach to initial-
izing the cell state would affect the network performance and its impact on the results of transferability when 
different regionalization hypotheses are applied (Section 4.3.3).

5.2.  Remarks on Model Benchmarks

Here, we have demonstrated only that a single ML algorithm (LSTM) can provide better performance than 
a single physical-conceptual temperature-index-based algorithm (SN17). While this is a good start, it clearly 
leaves many questions unasked and unanswered. In particular, we have not yet conducted a comparison with a 
variety of physically/process-based models—to cleanly perform such a comparison is nontrivial (Kratzert, Klotz, 
Shalev, et al., 2019; Lees et al., 2021) since different models may use different input information. However, this 
is certainly something that should be explored in future work. It would be helpful to investigate the performance 
of the LSTM networks in relation to other state-of-the-art models regarding whether the bias obtained is similar. 
By doing so, we can expect a high potential for gaining deeper insights into the relative strengths of data-based 
and physics-based approaches.

We note that a problem when comparing “physically based” models against data-based ones is that the former 
is typically constrained by conservation principles to limit the amount of SWE accumulation in a day to be less 
than or equal to the incoming precipitation. Precipitation undercatch encoded in the data, can be a source of bias 
that affects the comparison. Under such circumstances, a physically based model can be expected to consistently 
simulate lower values for snow accumulation, whereas a data-based approach that is restricted by mass balance 
constraints may be able to produce a better-quality simulation (Hoedt et al., 2021). In this regard, when the under-
lying data used is not internally consistent and adequate data preprocessing does not occur to remove biases from 
the data, data-based methods can have a real advantage.

5.3.  Outlook

We expect that LSTM-based modeling of snow dynamics can be used to learn a universal model structure by 
leveraging the commonalities of meteorological data at various spatial locations and resolutions, thereby provid-
ing benefits in terms of hydrological modeling for data-scarce regions (Ma et  al.,  2021). Our study suggests 
that our LSTM-based strategy has the potential to be expanded to the development of continental and even 
global-scale systems for forecasting snow dynamics. In such systems, uncertainty quantification can be achieved 
either by applying Monte Carlo dropout (Fang et al., 2020; Klotz et al., 2021) or the use of multiple ML-based 
algorithms (Fleming & Goodbody, 2019). Given the large amount of data that is potentially available, further 
rigorous testing of the LSTM-based approach at pixel-scale resolution should be performed in both space and 
time (Gupta et al., 2014) with an emphasis on simulation performance with regard to various snow signatures 
including April 1st SWE and snow residence time (Lute & Luce, 2017; Zeng et al., 2018). Further, depth func-
tions can be used to understand whether any given simulation lies more at the edge, the middle or even outside the 
clusters represented by the training data in a multi-variate sense, which may help with being able to understand 
the transferability of the models in a more general sense than examined in this paper (Chebana & Ouarda, 2011).

It also seems reasonable that combining LSTMs with other ML techniques, such as Convolutional Neural 
Networks (CNNs; LeCun et al., 1989), may be able to better exploit both the spatial and temporal information in 
the data set (Ehsani, Zarei, et al., 2021; Shi et al., 2015). Taking spatial information into account could help in 
better understanding snow dynamics and the relevance of each input variable, as the CNN layer-wise relevance 
propagation method could be used to produce heat maps that highlight areas and variables that are more relevant 
in order to produce certain SWE patterns (Bennett & Nijssen, 2021b).

Finally, physical explainability of ML-based results is a central contemporary challenge, one that is key to wide-
spread acceptance of Artificial Intelligence (AI). So far, the success of ML has not been translated into signifi-
cantly improved knowledge of the processes underlying snow dynamics. More efforts should be made to tackling 
this issue in a hydrologic (Fleming, Vesselinov, & Goodbody,  2021) and meteorological context (McGovern 
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et al., 2019). In fact, this can be advanced by symbiotic integration of physically based and data-based models that 
facilitate the development of physics-AI synergy modeling approaches (Reichstein et al., 2019). Recent attempts 
have included replacing internal process equations with networks that have the ability to learn from data (Bennett 
& Nijssen, 2021a), the embedding of physically based representations into ML networks (Jiang et al., 2020), and 
the imposition of mass balance constraints into ML (Hoedt et al., 2021; Nearing et al., 2021).

In our view, another potential approach is to use symbolic regression to facilitate the development of hybrid 
modeling systems that can learn “physically understandable” process representations (Udrescu & Tegmark, 2020) 
while adhering to the principle of parsimony (Occam's Razor; see discussion by Weijs & Ruddell, 2020) thereby 
turning the pure “black-box” model into the opaque “glass-box” model (Rai, 2020). One of the directions that 
we intend to pursue is to automate the search for physically consistent parameter transfer functions by a process 
of learning from large data sets (Feigl et al., 2020; Gharari et al., 2021; Klotz et al., 2017). Notice however that 
pursuing this direction may be subject to an “accuracy-interpretability” dilemma that has been suggested to arise 
from a perhaps irreconcilable conflict between a model's predictive accuracy and the possibility of understanding 
its behaviors (Florez-Lopez & Ramon-Jeronimo, 2015). It would be valuable to devote more attention to investi-
gating the use of DL interpretation methods to facilitate AI-assisted scientific discovery (Jiang et al., 2022). By 
doing so, the advances in AI might more properly be able to leverage existing theories, helping to revolutionize 
the next generation of earth and environmental sciences (ESS) models in the near future (Fleming, Watson, 
et al., 2021).

Data Availability Statement
The PRISM daily 4-km temperature and precipitation data are available at http://www.prism.oregonstate.edu/. 
The NLDAS-2 data are available online (http://www.emc.ncep.noaa.gov/mmb/nldas/). The University of Arizona 
snow data are available at the NSIDC data center (https://doi.org/10.5067/0GGPB220EX6A).
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