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Abstract The interactions between crops and the atmosphere significantly impact surface energy
and hydrology budgets, climate, crop yield, and agricultural management. In this study, a multipass

land data assimilation scheme (MLDAS) is proposed based on the Noah-MP-Crop model. The ensemble
Kalman filter (EnKF) method is used to jointly assimilate the leaf area index (LAI), soil moisture (SM),
and solar-induced chlorophyll fluorescence (SIF) observations to predict sensible (H) and latent (LE)
heat fluxes, gross primary productivity (GPP), etc. Such joint assimilation is demonstrated to be effective
in constraining the model state variables (i.e., leaf biomass and SM) and optimizing key crop-model
parameters (i.e., specific leaf area [SLA], and maximum rate of carboxylation, Vcmax). The performance
of the MLDAS is evaluated against observations at two AmeriFlux cropland sites, revealing good an
agreement with the observed H, LE, and GPP. When using optimized model parameters (SLA and Vcmax)
and jointly assimilating LAI, SM, and SIF observations, the MLDAS produces 34.28%, 26.90%, and 51.82%
lower root mean square deviations for daily H, LE, and GPP estimates compared with the Noah-MP-Crop
open loop simulation. Our findings also indicate that the H and LE predictions are more sensitive to SM
measurements, while the GPP simulations are more affected by LAI and SIF observations. The results
indicate that performances of physical models can be greatly improved by assimilating multi-source
observations within MLDAS.

Plain Language Summary Accurate estimations of water and carbon fluxes in croplands

are required for monitoring crop yield, hydrology, and irrigation scheduling. Thus, many crop models are
aimed at modeling crop dynamics to establish more accurate water, carbon, and energy processes. The
data assimilation (DA) method can combine land surface and vegetation phenological information with a
process-based model to reduce the uncertainty in model variables and optimize model parameters. In this
study, multi-source observations of the land surface and vegetation phenology are assimilated into a land-
surface-crop model to improve the water, carbon, and energy fluxes over croplands. This research involved
the construction of a DA framework with multipass ensemble Kalman filter method. The results show
that the assimilation of soil moisture observations significantly improves the surface heat fluxes estimates,
while the assimilation of vegetation phenological observations significantly improves the vegetation
dynamics and crop yield estimates.

1. Introduction

Accurate predictions of water and carbon fluxes in croplands are essential for determining crop yield, hy-
drologic components, and irrigation schedules and researching climate change (He, Xu, Xia, et al., 2020;
Lokupitiya et al., 2016; Williams, Gornall, et al., 2016; Xu, Guo, et al., 2018). Process-based land surface
models (LSMs) have been developed to represent the complex land/hydrological interactions in earth sys-
tems (Chen & Dudhia, 2001; Dai et al., 2003; Lawrence et al., 2019; McDermid et al., 2017). In particu-
lar, LSMs have been enhanced by incorporating crop-growth and agriculture-management models to cap-
ture photosynthesis, plant growth, and crop yield processes in the Simple Biosphere Model (Lokupitiya
et al., 2009); the Joint UK Land Environment Simulator (Osborne et al., 2015); the Community Land Model
(Drewniak et al., 2012); and the Noah with multiparameterization model, Noah-MP-Crop model (X. Liu
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et al., 2016, 2020). The Noah-MP-Crop model was implemented in the High-Resolution Land Data Assimi-
lation System (F. Chen et al., 2007) and Weather Research and Forecasting model (Skamarock et al., 2007).
It improves the simulations of vegetation dynamics and surface heat fluxes for corn and soybean at both
field and regional scales by using a number of agricultural management data, such as growing degree days
(GDDs) and planting/harvesting dates (X. Liu et al., 2016, 2020; Xu, Chen, et al., 2019; Z. Zhang et al., 2020).
However, uncertainties in input data, model structures, and model parameters inevitably induce uncertain-
ties in the variables simulated by those process-based models (X. Li et al., 2007; T. Xu et al., 2011; Zhang,
Chen, & Gan, 2016; Zhang, Guanter, et al., 2016; Zhang, Xiao, et al., 2016).

Data assimilation (DA) methods originated from estimation theory and cybernetics to merge observational
information into process-based models to mitigate uncertainties in model variables and optimize model
parameters (X. Li et al., 2020; Liang & Qin, 2008; Xia et al., 2019). This is done within variational-based
or ensemble-based DA schemes to improve the model performances (He, Xu, et al., 2019; He, Xu, Bateni,
et al., 2020; He et al., 2018; Lu et al., 2016, 2017, 2020; Margulis et al., 2002; Xu, Bateni, et al., 2018; Xu,
Chen, et al., 2019; Xu, He, et al., 2019; T. Xu et al., 2011, 2015). Studies have assimilated various observa-
tional variables such as land surface temperature (LST), leaf area index (LAI), soil moisture (SM), and
solar-induced chlorophyll fluorescence (SIF) into crop models and/or LSMs, which has improved the esti-
mated crop yields (Ines et al., 2013; X. Li et al., 2018; Wang et al., 2014; Xie et al., 2017), vegetation biomass,
evapotranspiration (ET), and gross primary production (GPP) within LSMs (Huang et al., 2008; Kumar
et al., 2019; Xu, He, et al., 2019; T. Xu et al., 2015). The assimilation of SM observations improved the esti-
mation of SM, runoff, ET (Han et al., 2012; D. Liu & Mishra, 2017; Lu et al., 2016, 2020; Tian et al., 2017),
and drought monitoring and forecasting (Kumar et al., 2014; Yan et al., 2017). Remotely sensed SIF, as an in-
dicator of photochemical processes, provides additional constraints for photosynthesis simulation (Camino
et al., 2019; Y. Zhang et al., 2014; Zhang, Xiao, et al., 2016). Recently, a linear relationship between SIF and
GPP was used to predict GPP under different environmental conditions and vegetation types (Frankenberg
& Berry, 2018; He, Chen, et al., 2019; He, Magney, et al., 2020; Sun et al., 2018; Verma et al., 2017; Zhang,
Xiao, et al., 2016).

However, these efforts only assimilated a single variable and/or constructed a one or dual-pass DA frame-
work within process-based crop models (Kumar et al., 2019; Norton et al., 2018; Pinnington et al., 2018; Tian
et al., 2017; K. Yang et al., 2007). Therefore, this study proposes a multipass land data assimilation scheme
(MLDAS), based on the Noah-MP-Crop model and ensemble Kalman filter (EnKF) method so that LAI,
SM, and SIF observations are simultaneously assimilated to predict sensible heat flux (H), latent heat flux
(LE), gross primary product (GPP), and biomass. The developed MLDAS is tested at two AmeriFlux crop
sites, namely, Mead (Nebraska, USA) and Bondyville (Illinois, USA). The observed H, LE, and GPP from the
eddy covariance (EC) flux towers are used to evaluate the MLDAS performance. The results of EnKF are
compared with the ensemble open loop (EnOL) (i.e., no assimilation of LAI, SM, and SIF measurements)
approach. Finally, the influence of assimilating LAI, SM, and SIF on the H, LE, and GPP estimates within
the MLDAS is assessed.

2. Methodology
2.1. Noah-MP-Crop Model

The Noah-MP LSM is an enhanced Noah LSM (F. Chen & Dudhia, 2001; F. Chen et al., 1996; Ek et al., 2003)
with expanded options and improved physics and multiparameterization options (Niu et al., 2011; Z. L.
Yang et al., 2011). The improved physics options include a two-source energy balance module, a modified
two-stream radiation transfer scheme, a short-term dynamic vegetation growth model, a dynamic ground-
water component, and a multilayer snowpack. The multiparameterization options provide users with mul-
tiple choices of parameterizations in terms of leaf dynamics, surface-layer turbulence treatment, canopy
stomatal resistance, SM limiting factors for stomatal resistance, and runoff and groundwater.

The Noah-MP LSM was recently enhanced with agricultural management models such as crop-growth mod-
els (X. Liu et al., 2016, 2020) and a dynamic irrigation model (Xu, Chen, et al., 2019; Z. Zhang et al., 2020).
It simulates the process of carbohydrates and distributes them to different crop components, such as leaves,
stems, grains, and roots. GDDs are utilized in Noah-MP-Crop to determine the different plant growth stages

XU ET AL.

20f 19



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Journal of Advances in Modeling Earth Systems 10.1029/2020MS002394

from planting to harvest. In addition, numerous agricultural management data (e.g., planting and harvest-
ing dates, fraction of cultivated lands, and fraction of irrigation) are used in Noah-MP-Crop to constrain
agriculture models. Noah-MP-Crop simulates the dynamic evolution of various biomasses (e.g., leaf, stem,
grain, and root mass) and time-varying LAI for corn and soybean, which affects photosynthesis, surface net
radiation, ET, SM, and surface heat fluxes (H and LE) (Kumar et al., 2019; X. Liu et al., 2016). This model
also estimates grain biomass as the “yield” when the crop reaches physiological maturity. The values of
the key parameters in Noah-MP-Crop used in this study are obtained from X. Liu et al. (2016, 2020) and Z.
Zhang et al. (2020).

2.2. Multipass Land Data Assimilation Scheme
2.2.1. Data Assimilation Strategy

The MLDAS is based on the Noah-MP-Crop and EnKF method and dynamically estimates model states and
parameters independently by assimilating multisource remotely sensed or ground-measured observations
in multiple passes. In this study, LAI, SM, and SIF are simultaneously assimilated in the MLDAS to improve
the performance of Noah-MP-Crop.

Specific leaf area (SLA), defined as the leaf area to its dry mass (Garnier et al., 2001; Gunn et al., 1999), is
used to convert leaf mass into LAI in Noah-MP-Crop and represents leaf functioning and plant productiv-
ity, ecological behavior, and growth rate (Cornelissen et al., 2003; Wilson et al., 1999). In this study, SLA is
equivalent to the BIO2LAI parameter used in X. Liu et al. (2016). Plants with high SLA values rapidly pro-
duce biomass and have high growth rates, while plants with low SLA values efficiently preserve nutrients
and decrease photosynthesis and growth rates (Wright & Westoby, 1999). SLA is set to a constant (0.015 for
corn) in the Noah-MP-Crop model, but it may vary throughout the growing season and from year to year
(Bryant, 2011; Rinaldi, 2003; Zhang, Suyker, et al., 2018; Z. Zhang et al., 2020). Therefore, it is necessary to
consider a time-varying SLA within the growing season. This study optimized SLA and updated leaf bio-
mass (LFMASS) simultaneously by assimilating the observed LAI. In fact, three data assimilation strategies
are used for LAI assimilation here: Strategy I: only update LFMASS, Strategy II: only optimize SLA, and
Strategy III: update both LFMASS and SLA. Moreover, surface SM observations (0-0.1 m) are assimilated
into the Noah-MP-Crop model to simultaneously update the four-layer (0-0.1, 0.1-0.4, 0.4-1, and 1-2 m)
SM.

The maximum rate of carboxylation (Vcmax) is a critical parameter in the Noah-MP-Crop photosynthesis
model because it controls the carbon assimilation process (Farquhar et al., 1980; Y. Zhang et al., 2014).
Uncertainty in Vcmax often causes large spreads in GPP estimates across models (Bonan et al., 2011; Hu
et al., 2014). In this study, the SIF observations are assimilated to optimize Vcmax and constrain the photo-
chemical process.

Overall, the LAI, SM, and SIF data are simultaneously assimilated into Noah-MP-Crop to constrain the
model state variables (i.e., LFMASS and SM) and two critical parameters (i.e., SLA and Vcmax) using ML-
DAS with four passes and four parallel EnKFs as follows:

Pass I: optimize SLA with the assimilation of LAI observations; Pass II: update LFMASS with the assimila-
tion of LAI observations; Pass III: update four-layer SM with the assimilation of surface SM observations;
Pass IV: optimize Vcmax with the assimilation of SIF observations.

The flowchart of MLDAS is shown in Figure 1.

2.2.2. Ensemble Kalman Filter Method

The EnKF method proposed by Anderson (2001) is integrated with Noah-MP-Crop and calculates the mod-
el states and parameter error covariance based on the Monte Carlo method, as used in many land data
assimilation scheme (LDAS) studies (Koster et al., 2018; Moradkhani et al., 2005; Reichle et al., 2002; T. Xu
et al., 2015). In the MLDAS framework, the model state variables (i.e., LFMASS and SM) and two critical
parameters (i.e., SLA and Vcmax) are updated separately by using the EnKF method. T is considered the
state vector of the DA scheme used in the four passes of EnKF, representing LFMASS, SLA, SM, and Vcmax.
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Figure 1. Flowchart of the multipass land data assimilation scheme.

At the beginning of the EnKF method, the initial value (T,) is used to create the state vector ensembles by
adding normally distributed random errors (with zero mean and specified variance):

Tip =T + o €h)

where T, represents the jth ensemble member of a state variable at the initial time. w; represents the back-
ground error, which is assumed to have a normal distribution.

In the forecast step, the state vector is predicted according to:
T]Jfkﬂ = M(T}‘fjkvﬂwaku) T H; @

where T{ 1 and Tj{ « are the forecasted state vectors of the jth member at times k+1 and k, respectively.
M(-) represents the model operator (Noah-MP-Crop in this study), and F,, and oy, represent the model
forcing data and parameters at time k+1, respectively. u; is the model error with a zero mean and specified
variance.

At times, when measurements of LAI, SM, and SIF is available, the observation operator is described as:

v =H(Tf )+, 3
where ij « is the model-predicted LAI, SM, and SIF. H(—) represents the observation operator. For LAI
assimilation, the relationship between LAI and LFMASS (LAI = SLA X LFMASS) is described as the obser-
vation operator. For SIF assimilation, the linear relationship between SIF and GPP (SIF = a X GPP + b) is
described as the observation operator. a and b are calibration parameters. 7; is the observation error with a
mean of zero and a covariance of R of the jth member.

The state variable of each member is updated as follows:

e = Tjjjk+1 + K[Ykou - HT_/{kH:| 4)
. . -
K = P/H (HP/H' + R) (5)
ryr L T
P'H = Y [Tj,kﬂ _Tk+]:||:H'(Tj,k+l - Tk+]):| (6)
e 1 j=l
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Table 1
Data Assimilation Strategies Discussed in This Study
Data assimilation experiment Assimilated data The updated model variables/parameters
EnOL No data is assimilated None
EnKF-LAI-I Leaf area index (LAI) Optimize specific leaf area (SLA)
EnKF-LAI-IT Update leaf biomass
EnKF-LAI-IIT Update both SLA and leaf biomass
EnKF-SM Surface soil moisture Update four-layers soil moisture at daily time scale
EnKF-SIF Solar-induced chlorophyll fluorescence (SIF) Optimize Vecmax
EnKF-ALL LA, surface soil moisture, SIF Optimize SLA and Vcmax; update leaf biomass

and four-layer soil moisture

Abbreviations: EnKF, ensemble Kalman filter; EnOL, ensemble open loop; LAI, leaf area index; SM, soil moisture; Vcmax, maximum rate of carboxylation;
SLA, specific leaf area; SIF, Solar-induced chlorophyll fluorescence.

HpH - L ¥ (T = T ) | B (T - T )T
- N Z Jok+1 k+1 Jok+1 k+1 (7)

e 1 Jj=1
where T, and T/.f_ .1 are the analyzed and forecasted state variables of the jth member at time k+1, re-

spectively. K is the Kalman gain matrix. ¥, is the LAIL SM, and SIF observations at time k+1. The LAI,
SM, and SIF observations at updated time k+1 are used in the EnKF system to update the model states and
parameters. P/ is the error covariance matrix of the forecast model states (LFMASS and SM) and parame-
ters (SLA and Vcmax), and ’f{ .1 represents the mean of forecasted state variables at time k+1. [']" represents
the transposed matrix, and N, is the number of ensembles. In this study, the ensemble size for the MLDAS
run is set as 30.

In MLDAS, the model state variables and parameters are updated separately using Equations 4-7. In Pass-
es I, I1, III, and IV, the state variable T in Equation 1 represent SLA, LFMASS, four-layer SM, and Vcmax,
respectively.

To apply the EnKF technique, the model ensembles should be perturbed by adding normally distributed
random errors to the model states. Random errors within a physically reasonable range reflect the uncer-
tainty in observations, background conditions, and propagated states (Bateni & Entekhabi, 2012). In this
study, the model ensembles are obtained by adding normally distributed random errors to the model states
(LFMASS and SM) of Passes I and III and the model parameters (SLA and Vcmax) of Passes II and IV in
Equations 1 and 2. Additive perturbations with a standard deviation of 10 g m™ are applied to the mod-
eled LFMASS (Kumar et al., 2019). The standard deviations of the four-layer SM (0-0.1, 0.1-0.4, 0.4-1, and
1-2 m) are 0.03, 0.03, 0.025, and 0.02 m* m™>, respectively (T. Xu et al., 2015). For SLA and Vcmax, the model
parameter standard deviations are set to 10% of the range of the value (T. Xu et al., 2011, 2015). For the
observation errors, standard deviations of 0.1, 0.05 m> m~>, and 0.15 W m™2 nm ™" sr™" are used as empirical
values for the LAI, SM, and SIF observations, respectively. These standard deviation values are comparable
to those values used in prior LAI, SM, and SIF DA studies (Kumar et al., 2019; Norton et al., 2018; Sabater
et al., 2008; T. Xu et al., 2011, 2015; K. Yang et al., 2007; Zhang, Joiner, et al., 2018). More details about the
MLDAS are listed in Table 1.

3. Experimental Sites and Data Set

The developed MLDAS is tested at the Bondville (US-Bol) and Mead (US-Nel) sites. The Mead (US-Nel,
Nebraska) site is covered by corn and irrigated with a central pivot system. Bondville (US-Bol, Illinois) is
characterized by rainfed with annual rotation between corn and soybean. The simulation period for the
Mead site is from 2003 to 2005, and for the corn year (2001, 2003, and 2005) at the Bondville site.

Half-hourly (Bondville) and hourly (Mead) meteorological forcing data, such as incoming shortwave and
longwave radiation, wind speed, precipitation, air pressure, temperature, and humidity, are used to drive
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the Noah-MP-Crop model (http://ameriflux.lbl.gov/). H, LE, and net ecosystem exchange (NEE) are re-
corded by the EC flux towers (http://ameriflux.Ibl.gov/). GPP is obtained as the difference between the
measured daytime NEE and estimated ecosystem respiration (Hirano et al., 2003; Janssens et al., 2001; Sai-
gusa et al., 2002). The total aboveground biomass, LFMASS, and grain biomass observations are obtained
after the plant material is dried to a constant temperature of 105°C (Williams, Lu, et al., 2016). Soil mois-
ture is measured at depths of 0.02, 0.05, and 0.10 m, which is averaged to be consistent with the topsoil
layer of Noah-MP-Crop. The LAIs are measured by destructive sampling methods (Ma et al., 2017) and
are available for the Mead and Bondville sites from the AmeriFlux databases. The SIF products (with a
5-km spatial resolution and 4-day temporal frequency) are available in the contiguous solar-induced chloro-
phyll fluorescence archive (Zhang, Joiner, et al., 2018; https://osf.io/8xqy6/?view_only=4d14a64b7be644d-
39564c82a371e1d20). The measured LFMASS and LAI are used to calculate SLA. The observed H, LE, GPP,
and aboveground biomass observations are used to evaluate MLDAS simulations. The main soil textures at
the Bondville and Mead sites are silt loam and clay loam, respectively (X. Liu et al., 2016).

The simulations are conducted for five months (May 1 to September 30, i.e., DOY 121-273) covering the
corn growing season. The LAI observations are assimilated into the Noah-MP-Crop when they are avail-
able. The daily averaged (00:00-24:00 local time) SM observations are assimilated every day, and the SIF
observations are assimilated every 4 days. All these observations are assimilated into the Noah-MP-Crop
model at 00:00 (local time); in addition, the model state variables (LFMASS and four-layer SM) are updated
and model parameters (SLA and Vcmax) are constrained. To evaluate the performance of MLDAS, mean
absolute error (MAE), root mean square deviation (RMSD), and correlation coefficient (R) metrics are used
in this study.

4. Results and Discussion
4.1. Assimilation of LAI Observations

Figure 2 compares observations with the LAI estimates from the three assimilation strategies and open
loop simulation. EnOL has the largest RMSD, while the three LAI assimilation strategies ensemble Kalman
filter-leaf area index (EnKF-LAI-I, EnKF-LAI-II, and EnKF-LAI-IIT) have much lower RMSDs. Among the
three LAT assimilation strategies, EnKF-LAI-III performs best because the DA method from EnKF-LAI-III
update both LFMASS and optimizes SLA with the information contained in LAI observations, and retrieves
the statistically optimal value for LFMASS and LAI Moreover, the LAI estimates from EnKF-LAI-III have
higher R and lower RMSD values than those of EnOL, EnKF-LAI-I, and EnKF-LAI-II at Mead and Bond-
ville. The RMSDs of the EnOL LAI retrievals at the Mead and Bondville sites are 0.73 and 0.62 m®> m™,
respectively. EnKF-LAI-III reduces the RMSD by 46.58% and 43.55% for the Mead and Bondville sites,
respectively.

As shown in Figure 3, EnOL significantly underestimated the LAI during the growing season at the Mead
(2004, 2005) and Bondville (2001, 2003) sites but slightly overestimated it during the growing season at
Bondville (2005), which are primarily due to inaccurate model parameters (e.g., GDD and planting and
harvesting dates). In Noah-MP-Crop, dynamic crop growth parameters, such as the accumulated GDD, is
used to determine plant growth stages. The planting and harvesting dates are used to determine the dura-
tion of the growing season of corn and soybeans (Levis et al., 2012; X. Liu et al., 2016; Z. Zhang et al., 2020).
All these parameters are site-specific and empirical and are not easily obtained and applied to various sites.
Furthermore, the specification of SLA requires information on the LFMASS, which is rarely measured for
a large area. However, the LAI estimates from EnKF-LAI-III can capture both the seasonal and daily var-
iations in the measurements with parameter optimization and are closer to the measurements than those
from the EnOL approach.

Figure 4 shows that the optimized SLA from EnKF-LAI-III is close to the measured values at the two sites.
The estimated SLA decreases from 0.03 m* g™' at the early stage of the growing season to 0.01 m* g™" at
the end stage of the growing season, because the corn leaves grow rapidly at the beginning of the growing
season (larger LAI) with a small amount of biomass; later, the leaves become thicker (larger biomass),
while the LAT increases slightly (Z. Zhang et al., 2020). Overall, the key vegetation parameters of Noah-MP-
Crop (i.e., SLA) can be efficiently constrained by assimilating LAI observations. The range of the retrieved
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Figure 2. Scatter plots of the estimated daily leaf area index (LAI) values versus the observations (first row) and the
statistical metrics of the estimated daily LAI (second row) with the three LAI assimilation strategies.

SLA values in this study is comparable to those reported in the literature (e.g., Bateni et al., 2014; Y. Li
et al., 2005; Williams et al., 2017).

4.2. Assimilation of Soil Moisture Observations

As shown in Figure 5, simulated SM from the EnOL method is remarkably lower than observations during
the growing season at Bondville (2003) but slightly overestimated during the growing season at Mead (2003,
2005). Both the daily variations and the magnitudes of the SM estimates from the EnKF-SM agree well with
observations, which also captures main soil-wetting events (as a response to precipitation) and drying spells
at the two sites. EnKF-SM shows slightly worse performance in terms of SM estimates for Bondville in 2003
than in 2001 and 2005. This result occurred because the use of time-invariant SM observation errors and
model errors through the modeling period sometimes did not take advantage of the information in the SM
observations and model estimates.

Table 2 shows that the two-site average MAE (RMSD) of the SM estimates from EnKF-SM is 0.03 m® m™*
(0.04 m* m™*), which is 40.00% (63.64%) lower than the MAE (RMSD) of 0.05 m* m™ (0.11 m® m™>) from
EnOL.

4.3. Assimilation of SIF

In the MLDAS, the linear relationship between SIF and GPP (SIF = a X GPP + b) was used as the observa-
tion operator. The spatial resolutions of GPP measurements from the EC systems and the SIF from satellites
are approximately 500-1,000 and 5,000 m (B. Chen et al., 2008, 2011), respectively. Therefore, the linear
observation operator includes not only photosynthesis information determined by SIF but also spatial-scale
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Figure 3. Comparisons of the leaf area index (LAI) values estimated from ensemble Kalman filter-leaf area index-III (EnKF-LAI-III) and ensemble open loop
(EnOL) with the observations at the Mead and Bondville sites.

effects. As shown in Figure 6, in general, GPP increases with increasing SIF at the two sites. The 4-day inter-
val SIF is strongly correlated with GPP for Mead (R = 0.71) and Bondville (R = 0.80). The GPP/SIF ratio at
Mead is larger than that at Bondville, most likely due to irrigation, leading to an approximately 30% higher
GPP per unit SIF at Mead than at Bondville.

Figure 4. Comparisons of ensemble Kalman filter-leaf area index-III (EnKF-LAI-IIT) optimized specific leaf area (SLA) with observations at the Mead and

Bondyville sites.
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Figure 5. Daily averaged soil moisture (0-10 cm) estimates from ensemble Kalman filter-soil moisture (EnKF-SM) and ensemble open loop (EnOL) versus
ground measurements at the Mead and Bondyville sites. Blue bars represent the daily total precipitation.

Table 2

Vcemax, a key parameter in modeling photosynthesis, varies greatly during the growing season and among
crop species (Makela et al., 2004; Sellers, 1997) and is set to a wide range of values in different models (from
30 to 150 umol m™*s™%; Bonan et al., 2011; Z. Zhang et al., 2020). In this study, the dynamic value of Vemax
is updated by assimilating the SIF observations. As shown in Figure 7, Vcmax reveals seasonal variations
depending on the vegetation conditions. In comparison to other times, in the middle of the growing season
(DOYs 180-220), Vcmax values are higher and produce intense photosynthesis. The dynamic range of Vc-
max retrievals is comparable to those of Hu et al. (2014), Y. Liu (2019), and Misson et al. (2006).

4.4. Estimates of Water-Energy-Carbon Variables With MLDAS

This section discusses the analysis of water-energy-carbon variables (i.e., H, LE, GPP, aboveground biomass,
and grain mass) simulated by MLDAS. As shown in Figure 8, the EnOL approach overestimates (underes-
timates) H (LE) in May and underestimates (overestimates) H (LE) in August and September at the Mead
site, mainly because the model underestimates (overestimates) SM from May to June (July to September,
see Figure 5). In addition, the underestimated LAI from EnOL (July to September; Figure 3) allowed the
land surface to absorb more solar radiation, resulting in higher H (Hardwick et al., 2015). Compared to
the EnOL simulations, the EnKF-ALL simulated diurnal cycles of H and
LE are closer to the measurements, indicating the benefit of assimilating
LAI, SM, and SIF time series in improving the surface fluxes H and LE at

Statistical Indices of the Daily Averaged Soil Moisture Retrievals From the
EnOL and EnKF-SM Approaches at the Two Study Sites

Mead Bondville

EnOL EnKF-SM EnOL EnKF-SM

MAE (m® m™®) 0.03 0.01 0.07 0.04
RMSD (m® m~) 0.09 0.03 0.13 0.05
R(-) 0.72 0.94 0.71 0.92

Abbreviations: EnKF, ensemble Kalman filter; EnOL, ensemble open
loop; MAE, mean absolute error; RMSD, root mean square deviation; SM,
soil moisture.

the Mead site.

Figure 9 shows that the simulated SM from EnOL is much lower than the
2003 observations at the Bondville site, leading to higher H and lower LE,
and EnKF-ALL performs substantially better. The estimated LE from the
EnKF-ALL approach matches the daily variations in precipitation (SM)
and LAI. At the Mead and Bondville sites, LE shows a rising trend in the
vegetation growing period, reaches its maximum in the middle of July,
and decreases as the vegetation senesces. The Mead and Bondville sites
have the lowest H in July and August as a result of the high LE caused by
high LAI and SM availability. In contrast, H dominates over LE in May
because of sparser vegetation cover.
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Figure 6. The relationships between gross primary productivity (GPP) and solar-induced chlorophyll fluorescence
(SIF). The red line represents the fitted linear regression.

As shown in Table 3, the two-site average MAE (RMSD) of the H estimates from EnKF-ALL is 50.56 W m™>
(79.42 W m™2), which is 23.00% (27.73%) lower than the MAE (RMSD) of 65.66 W m ™2 (109.90 W m™?) from
EnOL. For LE, the two-site average MAE and RMSD from EnKF-ALL (EnOL) are 54.60 and 89.59 W m™>
(68.55 and 116.93 W m ™), respectively.

Figure 10 compares the daily GPP estimates from EnOL and EnKF-ALL with the measurements at the
Mead and Bondville sites. The GPP estimates from the EnOL method are remarkably lower than the ob-
servations during the growing season at Mead (2004, 2005) and Bondville (2001, 2003). The GPP values
are slightly overestimated during the growing season at Bondville (2005), which is consistent with the LAI
results from EnOL presented in Figure 3. The discrepancies between the GPP estimates and observations
are primarily due to inaccurate model parameters (e.g., GDD, planting and harvesting dates, SLA, and Vc-
max). The GPP estimated from the EnKF-ALL approach capture both the seasonal and daily variations in
the measurements and is closer to the measurements compared to that from the EnOL approach, implying
that the EnKF-ALL approach can exploit implicit information in the LAI and SIF observations to generate
more accurate GPP estimates. The estimated GPP values increase continuously from May to June with the
growth of the crop, reach their maxima in July (DOYs 182-212) and decrease from July to September be-
cause the crop is mature and harvest. The two-site average MAEs (RMSDs) from the EnOL and EnKF-ALL
approaches are 3.40 (4.13 gC m™>d™") and 1.18 gC m™> d™" (1.99 gC m™> d™"), respectively. In comparison
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Figure 7. The ensemble Kalman filter-solar-induced chlorophyll fluorescence (EnKF-SIF) optimized maximum rate of carboxylation (Vcmax) values at the

Mead and Bondyville sites.
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Figure 8. Monthly averaged diurnal cycle of the modeled sensible and latent heat fluxes from ensemble Kalman filter-ALL (EnKF-ALL) (solid lines), ensemble
open loop (EnOL) (dashed lines) and corresponding observations (solid dots) at the Mead site.

to the EnOL approach, the EnKF-ALL approach cut down the MAE (RMSD) of the two-site average GPP
by 65.29% (51.82%).

Figure 11 shows that the EnOL approach underestimated aboveground biomass at Bondville and over-
estimated aboveground biomass at Mead, but the performance of the Noah-MP-Crop model is improved
with the EnKF-ALL method. The assimilation of LAI, SM, and SIF data effectively captures the rapid crop
growth from May to August and the decline in aboveground biomass at the end of August when corn
started to ripen and decline at Bondville. The two-site average MAE (RMSD) of aboveground biomass es-
timates from EnKF-ALL is 100.25 g m™ (153.67 g m™>), which is 39.47% (50.47%) lower than the MAE
(RMSD) of 165.63 g m™2 (310.25 g m™?) from EnOL. The Noah-MP-Crop model also provides useful crop
yield information (grain biomass) for regional-scale agricultural research and management applications (X.
Liu et al., 2016; Z. Zhang et al., 2020). The retrieved grain biomass values for Bondville are shown in Fig-
ure 11 (bottom line). In Bondville, the EnOL simulation underestimated the grain biomass by approximate-
ly 22.30% compared to ground measurements. Compared to the EnOL approach, the EnKF-ALL approach
greatly improves corn yield by approximately 23.54%.

The performance of EnKF-ALL is compared with those of EnKF-LAI-III, EnKF-SM, EnKF-SIF, and EnOL,
and the results are shown in Figure 12. In comparison to EnOL, EnKF-LAI-III (EnKF-SM) significantly
improves the estimation of LAI (SM) at Mead and Bondville. This is because the assimilation of LAI and SM
data effectively constrain the parameter (SLA) and state variables (LFMASS and SM) within Noah-MP-Crop.

The RMSD (R) values of the H, LE, and GPP retrievals from the EnKF-ALL approach are lower (higher)
than those of EnOL, implying that EnKF-ALL can make full use of information within sequences of LAI,
SM, and SIF to predict more accurate H, LE, and GPP. EnKF-SM significantly improve the H and LE re-
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Figure 9. Monthly averaged diurnal cycle of the modeled sensible and latent heat fluxes from ensemble Kalman filter-ALL (EnKF-ALL) (solid lines), ensemble
open loop (EnOL) (dashed lines) and corresponding observations (solid dots) at the Bondville site.

trievals, indicating that sequences of SM are of vital importance for H and LE retrievals. Similarly, EnKF-
LAI-IIT and EnKF-SIF appropriately improves the H and LE retrievals, indicating that changes in vegetation

Table 3

The MAE, RMSE, and R of Half-Hourly (Hourly) H and LE Retrievals

From the EnOL and EnKF-ALL Approaches at the Two Study Sites

H(Wm™) LE (W m™>)

EnKF- EnKF-

Study sites EnOL ALL EnOL ALL
Mead MAE (W m™?) 57.59  38.52 55.57 45.29
RMSD (Wm™) 10243 7619 108.67 88.30

R(-) 0.66  0.81 0.72  0.83

Bonville MAE (W m™2) 73.72  62.60 81.52  63.90
RMSD (Wm™) 117.36 82.65 12519 90.87

R(-) 0.63 0.77 0.64 0.81

Two-sites average ~ MAE (W m™2) 65.66  50.56 68.55 54.60
RMSD (Wm™) 109.90 7942 116.93 89.59

R(-) 0.65 0.79 0.68 0.82

Abbreviations: EnKF, ensemble Kalman filter; EnOL, ensemble open
loop; H, sensible heat flux; LE, latent heat flux; MAE, mean absolute

error; RMSD, root mean square deviation.

phenology (e.g., LAI dynamics and Vcmax) also affects the partitioning
of the available energy between the turbulent heat fluxes (H and LE).
EnKF-LAI-III, and EnKF-SIF significantly improve the GPP estimates at
the two study sites, indicating that changes in vegetation dynamics are
vitally important for GPP retrievals. However, the GPP estimates from
EnKF-SM are comparable to those from EnOL, which means that GPP is
less sensitive to variations in SM in the Noah-MP-Crop model.

To examine the relative contributions of different assimilation strategy
to the overall results, the differences in the simulations between EnKF
(EnKF-LAI-III, EnKF-SM, EnKF-SIF, and EnKF-ALL) and EnOL are
shown in Figure 13. The statistical results are averaged from three-year
simulations at the two study sites. The assimilation of LAI and SIF led
to increased LAI from July to September. The largest increase in LAI is
observed from June to August. As LAI changes, corresponding changes
in GPP and LFMASS are also found in the model estimates. The assim-
ilation of LAI leads to slightly increased LE because changes in vegeta-
tion dynamics will affect vegetation transpiration (Kumar et al., 2019).
The assimilation of SM has a large impact on SM, H and LE. Increased
(decreased) SM in May (from June to September) leads to decreased (in-
creased) H and increased (decreased) LE. The decrease in SM also leads
to slightly decreased LAI, LFMASS, and GPP (June and July) because
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Figure 10. Time series of daily gross primary productivity (GPP) retrievals from the ensemble Kalman filter-ALL (EnKF-ALL) (red solid lines) and ensemble
open loop (EnOL) (green dashed lines) approaches at the two study sites. The GPP measurements are indicated by open circles.

of its effects on canopy stomatal resistance and photosynthesis (Zhuo et al., 2019). In contrast, EnKF-ALL
showed the opposite trend in LAI, LFMASS, and GPP in July. This is because the assimilation of one varia-
ble will be offset by the assimilation of the other variable, and the assimilation of multiple pairs of variables
will produce indistinguishable results (Gao et al., 2015; Schneider et al., 2017).

5. Conclusions

In this study, the MLDAS was developed based on the Noah-MP-Crop and EnKF. The LAI, SM, and SIF
observations are simultaneously assimilated into the Noah-MP-Crop model within a MLDAS to improve the
simulated H, LE, and GPP. The performance of the MLDAS is tested at two AmeriFlux cropland sites (Mead
and Bondpville), and the main results are as follows:

1. The assimilation of LAI helps update LFMASS and optimize SLA and is able to retrieve the statistically
optimal value for the LFMASS and LAI predictions. The RMSD of the LAI estimates from EnKF-LAI-IIT
at the Mead (Bondville) site are 0.39 (0.35), representing a reduction of 52.05% (43.55%) in the error com-
pared to the EnOL. In comparison to EnOL, EnKF-LAI-III can capture both the observed seasonal and
daily LAI variations with parameter optimization and is closer to the measurements, and the optimized
SLA values are close to the ground measurements at the two sites.

2. The SM assimilation results show a more reasonable response to land surface wetting and drying events
at the two sites. Compared to EnOL, assimilating surface SM reduces the two-site average MAE (RMSD)
of the SM estimates by 40.00% (63.64%).

3. Assimilating SIF helps optimize the seasonal variations in the Vcmax values throughout the whole veg-
etation growing season.
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Figure 11. Comparisons of simulated aboveground biomass and grain biomass at the Mead and Bondville sites between the ensemble open loop (EnOL) and
ensemble Kalman filter-ALL (EnKF-ALL) experiments.

4. In comparison to those from EnOL, the simulated day-to-day fluctuations in the H, LE, and
GPP estimates from EnKF-ALL (by jointly assimilating LAI, SM, and SIF) is more consistent
with the observations, which reduced the two-site average RMSD of H from 109.90 with EnOL
to 79.42 W m™ with EnKF-ALL. For LE, the two-site average RMSD from EnKF-ALL (EnOL) is
89.59 W m™ (116.93 W m™2). The two-site average RMSD of daily GPP retrievals from EnKF-ALL
is 1.99 gC m~2d~!, which is 51.82% lower than the RMSD of 4.13 gC m~2d~! from EnOL. Moreover,
EnKF-ALL also effectively constrained aboveground biomass variations and improved corn yield

estimates.

The performance of EnKF-ALL is compared with those of the EnKF-LAI-III (only LAI assimilation), En-
KF-SM (only SM assimilation), EnKF-SIF (only SIF assimilation), and EnOL approaches. The results show
that the assimilation of SM significantly improves the H and LE retrievals, while the assimilation of LAI
and SIF significantly improves the GPP retrievals. Future studies should focus on applying the developed
MLDAS approach over large-scale domains using remotely sensed LAI, SM, and SIF data.
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