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Abstract

The population of harbor seals (Phoca vitulina vitulina) along

the coast of Maine, U.S.A., has experienced rapid growth in

abundance following passage of the Marine Mammal Pro-

tection Act in 1972 but current information on trends in

abundance is lacking. In this study, we apply a Bayesian

hierarchical model to aerial survey data of nonpups and

pups. Prior to 2001, estimates of growth rates from 8-year

moving averages reached a high of 2.1% and 9.4% per year

with posterior probabilities of positive growth of .97

and >.99 for nonpups and pups, respectively. Between

2001 and 2012, estimated growth rates for nonpups

decreased to a low of �1.9% per year with a posterior prob-

ability of negative growth of .95. Between 2012 and 2018, pos-

terior estimates of growth were close to zero suggesting little

change in abundance of nonpups. Estimates of growth for pups

were close to zero between 2001 and 2012 but reached a low

of �2.5% per year with a posterior probability of negative

growth of 0.94 at the end of the time series suggesting a

decrease in pup abundance between 2012 and 2018. The total

abundance estimate for 2018 is 61,336 (CV = 0.08).
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1 | INTRODUCTION

Change in a population size over time offers insight to the status of the population and the underlying environment

on which it depends. Trends in population abundance may reflect depletion or augmentation of a prey base, ecosys-

tem changes, predation, habitat condition, or disease (Lucas & Stobo, 2000; Matthews & Pendleton, 2006; Taylor

et al., 2007). Information from trend estimation can offer important information critical to guiding conservation and

management decisions (Taylor et al., 2007; Wade, 2000) and is often a legal requirement for many government agen-

cies (Hovestadt & Nowicki, 2008). For example, under the Marine Mammal Protection Act (MMPA) stock assessment

reports must include information on trends and abundance for all species in U.S. waters (Read & Wade, 2000),

although federal budget levels preclude this actually happening for many species.

Despite the importance of quantifying and understanding changes in abundance, for many marine mammal

populations estimating trends remains an elusive goal due to sparse data and gaps in survey effort (Jewell

et al., 2012; Taylor et al., 2007). Many populations are depleted or cryptic; therefore, assessment data are limited

(Jewell et al., 2012; Moore & Barlow, 2013). For other populations there are funding limitations which complicate

the ability to survey frequently leading to gaps between survey years (Taylor et al., 2007). To address these chal-

lenges some studies have adopted a Bayesian hierarchical approach (Johnson & Fritz, 2014; Moore & Barlow, 2013).

The hierarchical framework can allow for estimation of missing states as well as the sharing of information across

data sets or surveys, which can improve estimation and increase precision (Goodman, 2004; Johnson & Fritz, 2014).

Also, the use of prior information can be included when direct information is lacking (Goodman, 1994). Finally, results

from Bayesian analyses can be more easily communicated in terms of probabilities and have been shown to be suc-

cessful in detecting trends when more traditional methods fail (Wade, 2000). Taking advantages of these attributes,

a number of studies have been able to estimate trends from sparse data and provide results that are useful to inform

management and conservation decisions (Boveng et al., 2018; Moore & Barlow, 2013; Thompson et al., 2005).

For many seal populations, applications of Bayesian approaches have proven to be an invaluable tool in estimat-

ing trends (Boveng et al., 2018; Thompson et al., 2005; Ver Hoef & Frost, 2003). For example, using a Bayesian

state-space model Thompson et al. (2005) were able to link sparse data with more current data to investigate trends

in a harbor seal (Phoca vitulina vitulina) population impacted by phocine distemper virus (PDV). Similarly, Boveng

et al. (2018) combined prior information and a population dynamics model to investigate trends in a data-poor popu-

lation of harbor seals in Alaska. Seal populations are particularly amenable to trend analysis using hierarchical

methods because the observation process can be modelled directly (Ver Hoef & Frost, 2003) and often there are

good sources of prior information when direct information from a survey is missing (Thomas et al., 2019). More gen-

erally, data from seal surveys have a much higher power to detect trends than most other species of marine mam-

mals (Taylor et al., 2007). As seal populations continue to experience stress from virus outbreaks (Brasseur

et al., 2018), interspecific competition with other seals (Bowen et al., 2003), and threats from climate changes

(Johnston et al., 2015), it is necessary to apply robust statistical techniques to existing data sets to provide updated

information on current trends even when survey data are sparse.

In this paper we take a Bayesian approach to investigate trends and update abundance estimates for Atlantic

harbor seals in the northeastern United States. Harbor seals are year-round inhabitants of the coastal waters of east-

ern Canada and Maine and occur seasonally throughout New England and the Mid-Atlantic (Baird, 2001; Desportes

et al., 2010). In U.S. waters, harbor seals of different age and sex classes are concentrated in coastal Maine from May

to early June for pupping (Gilbert et al., 2005; Waring et al., 2006). Some pupping may occur in areas outside of
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Maine, but it is considered to be small and infrequent (Hayes et al., 2019), and branding studies in other regions sup-

port strong adult female site fidelity for breeding areas (Härkönen & Harding, 2001). Like many harbor seal

populations this population was subject to hunting and bounties up until the 1960s but has since been protected fol-

lowing the passage of the MMPA in 1972. To monitor this population, aerial surveys were conducted intermittently

starting in 1981 (see Gilbert et al., 2005 for details). Counts from this survey increased by an average of 22% per

year between 1981 and 2001 (Gilbert et al., 2005).

Changes in the Gulf of Maine ecosystem over the past three decades may have influenced the demography in the

harbor seal population. For instance, there has been a substantial increase in the gray seal (Halichoerus grypus) popula-

tion (Wood et al., 2020), which are a known to negatively impact harbor seal abundance in other populations (Bowen

et al., 2003; Thompson et al., 2019). Also, several mass mortality events or unusual mortality events (UMEs; see

Gulland, 2006) have affected this population of seals since 1991, with the most recent occurring in 2018 (https://

www.fisheries.noaa.gov/national/marine-life-distress/active-and-closed-unusual-mortality-events#active-umes). Some

of these UMEs have been associated with phocine distemper virus (PDV), the same virus that significantly impacted

harbor seal populations in Europe in 1988 and 2002 (Dietz et al., 1989; Earle et al., 2011). However, because a formal

analysis has never been conducted for this population, trends in abundance are currently considered unknown (Hayes

et al., 2019). In addition to trends, there is no abundance estimate for 2018 the most recent year of survey data. The

last estimate of abundance was based on a 2012 survey (Waring et al., 2015), and under the MMPA if an estimate of

abundance is not updated within 8 years, the abundance of the stock is considered unknown (Moore & Merrick, 2011).

In this study, we analyze data from five aerial surveys conducted between 1993 and 2018 during the pupping sea-

son with a Bayesian hierarchical model. Our model includes latent states for unobserved years and unobserved environ-

mental covariates, an informative prior distribution on the proportion of seals hauled out under ideal conditions, and

temporal autocorrelation that acts as a nonparametric smoother on the shape of the trend over time. The objectives of

our study are (1) to estimate trends in pup and nonpup abundance using a methodological approach that accommo-

dates sparse data; and (2) to provide an estimate of abundance for 2018, which is the most recent survey year.

2 | METHODS

2.1 | Data collection and processing

We utilized data from aerial surveys conducted in 1993, 1997, 2001, 2012, and 2018 along the coast of Maine from

the Maine-New Hampshire border to the Canada-United States border (Figure 1). Surveys were flown during the

pupping season (Table 1), when most of the population was thought to be concentrated in the region (Gilbert

et al., 2005) and timed to coincide with the peak pupping period estimated to be around May 23 (Skinner, 2006). We

conducted all surveys within 2 hr of either side of low tide. Surveys conducted before 2012 were described in detail

in Gilbert et al. (2005), and the 2012 survey was described in Waring et al. (2015). In 2001 replicate surveys were

conducted in different portions of the study area in two time periods: May 16–20, and May 27–June 4. In 2012 not

all seal haul-out ledges could be surveyed due to a shortened survey window, so randomly selected regions within

the entire study area were surveyed using a probability-based design (Waring et al., 2015). All other years represen-

ted a presumed census of all pupping sites in the population.

In 2018, a NOAA Twin Otter aircraft was used to survey the same seal haul-out ledges as those surveyed in all

previous years. All ledges of known historic occupancy were surveyed, but if new ledges were occupied, they may

have been missed. The Twin Otter surveyed seal haul-out ledges at an altitude of 228 m (750 ft), and oblique photo-

graphs were taken from a left-side rear pop-out window using a Canon EOS 7D and fixed 300 mm f:4.5 lens. Digital

images were georeferenced, analyzed for overlap, and then pups and nonpups were counted with a paint-dot tech-

nique in Adobe Photoshop (version 2015.5) by two readers. Counts were compared and differences were rectified

by jointly reviewing the image, otherwise an average of the two total counts was taken.
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We surveyed a total of 990 ledges. We initially analyzed the data at the ledge level but found models were

extremely slow to converge. Therefore, we grouped ledges into 25 bay units that were the same as, or divisions of,

the units used for previous analyses of harbor seal abundance (Gilbert et al., 2005; Waring et al., 2015). For the

2001 survey, we used the replicate with the highest count as the observation for that year and bay unit. We

assumed the general random movement among individuals in all bay units prevented any bias in counts.

2.2 | Statistical model

To model the number of observed seals in each bay unit in each surveyed year we assumed counts of seals follow a

Poisson process:

yi,t �Poisson λi,tð Þ,

F IGURE 1 Atlantic harbor seal survey sites for coastal Maine. Individual haul-out ledges (gray dots) were
surveyed and then aggregated into larger bay units (triangles) to model trends in abundance.
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where yi,t is the observed number of seals in bay unit i at time t and λi,t is the expected number of seals in bay unit

i at time t. We model the expected number of seals as a linear function of environmental variables and random

effects:

λi,t ¼ exp θiþZi,tþ
XK

k¼1
βkxk,i,t

� �
, ð1Þ

where is the kth covariate value observed in bay unit i in year t, β is the kth coefficient, θi is an intercept term, and Zi,t

is a random effect term. We model the random effects as an autocorrelated process such that

Z�MVN 0,Σð Þ,

where Z is a vector of the random effects and Σ is a covariance matrix where the covariance is defined as

cov Zi:u,Zi,vð Þ¼ σ2exp
j u�v j

ϕ

� �
, ð2Þ

TABLE 1 Year and date range for each bay unit surveyed for harbor seal abundance from 1993–2018.

Bay unit 1993 1997 2001 2012 2018

BHBIHE May 31–June 3 June 4 May 17–June 1 June 1 May 22–23

BHBIHW June 3–4 May 29–June 4 May 17–June 1 June 1 May 23

BHBMR June 3 May 29–June 4 May 17–31 May 31–June 1 May 22

BHBSI June 3 June 4 May 17–June 1 June 1 May 22

BHBUP June 3 June 4 May 17–31 May 30 May 22

BOSHB June 9–11 May 28–30 May 17–June 4 NS May 21–25

CASB June 11 May 30 May 18–29 May 28 May 21–25

CASBE June 11 May 30 May 17–29 May 28 May 21–25

CELPT June 11 May 30–31 May 18–29 NS May 23

COBSB May 28 June 2 May 27–30 NS May 24

EB May 28–31 June 2 May 18–30 May 27 May 24

ENGB May 28 June 2 May 18–27 NS May 24

FBMDI May 31 June 3–4 May 17–June 1 May 27 May 22–23

MACHB May 28 June 2 May 18–30 May 27 May 24

MUSCB June 4–11 May 28 May 16–June 4 May 28 May 21–25

OUTIS June 9 May 27–28 May 17–June 4 NS May 19–23

PBEA June 3–4 May 27–29 May 16–June 1 May 28–June 2 May 19–25

PBMC June 4 May 27–28 May 16–June 4 June 2 May 19–25

PBMW June 3–4 May 27 May 16–June 1 May 27 May 19–23

PBUP June 4 May 27–29 May 16–June 1 NS May 23

PBVL June 3–4 May 27–29 May 16–June 1 May 28–June 1 May 19–25

PBVLW June 4 May 27 May 16–June 1 May 28–June 1 May 19–25

PNDB May 31 June 3 May 18–30 NS May 24

WB May 31 June 2–3 May 18–30 NS May 24

Note: NS indicates that the bay unit was not surveyed.
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where ϕ > 0 is the parameter that controls the rate of decay in autocorrelation, σ2 > 0 is the variance and u � v

represents the difference in years between two observations of bay unit i. This covariance function acts as a

nonparametric smoother that allows for flexible shapes in the trend similar to a GAM (Johnson &

Fritz, 2014; Munch et al., 2005). Because of the limited number of observed years, we assumed a relatively

simple covariance function where ϕ is the same for all sites and there is no covariance among sites such

that cov(Zi,u, Zj,v) = 0 in all cases where i ≠ j. Thus, we assumed the same covariance function is shared by

all bay units. Biologically this assumes that all unmeasured demographic forces that cause temporal auto-

correlation are equal across all bay units. Given the relatively small geographical area of the study, we con-

sider these assumptions to be reasonable.

2.3 | Covariates

For each ledge surveyed, we collected information on survey time relative to low tide, and survey time relative to solar

mid-day. These factors have been shown to significantly affect the number of harbor seals hauled out (Boveng

et al., 2003; Frost et al., 1999; Ver Hoef & Frost, 2003). Tidal information was from https://tidesandcurrents.noaa.gov/

relative to Rockland Maine. As the time of low tide differs only by approximately 30 min over the length of the coast, we

did not adjust survey time at each ledge relative to low tide in Rockland.

Because our analysis was at the bay unit level, we calculated the mean value and variance for time from low tide and

time from solar midday across all observed ledges within a bay unit. To model the effect of time from low tide on seal

counts, we used the absolute value under the assumption that time from low tide was most important and not whether

the tide is rising or dropping. So, for example, a value of �2 (i.e., 2 hr before low tide) and 2 (2 hr after low tide) would

both be given a value of 2. We modeled all environmental covariate effects as linear functions. We included all covariates

in the analysis of both the nonpup data and the pup data. For the pup data we also included Julian date as a covariate.

For this variable we included a quadratic effect to allow some flexibility in estimating the timing of peak pupping.

We only had covariates for years 2001, 2012, and 2018, because the time that each individual ledge was sur-

veyed was not available in the historic data. For years without covariates, we assumed that sampling occurred over a

similar range of conditions as the years with covariates. We treated the true value of the covariates as an

unobserved state with a prior distribution. Therefore, we used the years with covariate values to develop informed

priors on sampling conditions without covariate values such that

xk,i,t �Normal μk ,σkð Þ,

where μk is the mean value of the kth observed covariate of interest across all years and bay units and σk is the variance.

Because sampling protocols were similar in the earlier surveys, we assumed no systematic change in the distribution of

these covariates over time. To test the sensitivity of our assumed priors, we increased the variance threefold and

assessed and calculated the percentage change in the posterior standard deviation of the abundance estimates.

2.4 | Trends and abundance

To estimate trends and calculate final estimates of abundance, we first standardized counts across bay units to a

common set of ideal environmental conditions when the maximum number of seals are hauled out. We assumed

ideal conditions occur when both time from solar midday and time from low tide are at zero and there is no variance

in the conditions across the bay unit (i.e., when the value of all covariates is set to zero). Therefore, we treated true

count under ideal conditions as a latent state such that
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Ni,t ¼ exp θiþZi,tð Þ, ð3Þ

where Ni,t represents the true number of seals hauled out under ideal conditions. For each year, we calculated the

abundance of seals at ideal conditions by summing across bay units as

Nt ¼
X

Ni,t: ð4Þ

Next, we fitted linear regressions to these standardized estimates following the method of Johnson and Fritz (2014),

however, to do so it is first necessary to augment missing observations. To estimate during the unsampled years we

sampled the random effects from their multivariate conditional distribution and some across to calculate as above.

We next calculated linear estimates of change in standardized abundance using simple linear regression by regressing

abundance on time. We chose an 8-year period because this window of time is considered a reliable threshold for

conducting MMPA stock assessments (Wade & Angliss, 1997). For every Markov chain Monte Carlo (MCMC) draw

from the posterior of abundance we calculated the slope of abundance over time with a simple linear regression.

To calculate the percent change in abundance we performed the analysis on the log of abundance. We estimated

trends for nonpups and pups separately.

To attain final estimates of abundance we needed to adjust for the fraction of seals not hauled out under ideal

conditions as there is some proportion of seals not hauled out even when conditions are ideal (Boveng et al., 2003).

Therefore, our final abundance estimates for each year with survey data are calculated as

At ¼Nt

p
, ð5Þ

where p is the fraction hauled out under ideal conditions. Simpkins et al. (2003) estimated p to be 0.835 (SE = 0.026)

for a population of harbor seals in Alaska. We do not have an estimate of for this population but Waring et al. (2015)

estimated the average fraction hauled out over a range of survey conditions. Their estimate of 0.43 (SE = 0.06) is

much lower than the estimate of Simpkins et al. (2003) because it is not adjusted to ideal conditions. To use all the

available information, we developed two separate methods to incorporate these different estimates of haul-out

probability and their uncertainty into our analysis.

2.4.1 | Method 1

For the first approach, to calculate a final estimate of abundance we used the estimate of 0.835 and standard error

of 0.026 for the proportion of seals hauled out under ideal conditions reported by Simpkins et al. (2003) to develop a

Beta prior distribution such that

p1 �Beta a1,b1ð Þ,

where p1 is the proportion of seals hauled out under ideal conditions and a1 and b1 are parameters of a Beta distribu-

tion chosen so that its mean and standard deviation equal the estimate and standard error reported in Simpkins

et al. (2003), respectively. We then calculate the final adjusted abundance estimate as

A1,t ¼Nt

p1
ð6Þ

where A1,t represents the final estimate of seal abundance from Method 1 for survey year t.
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2.4.2 | Method 2

The Simpkins et al. (2003) estimate may not be appropriate for our study as it was estimated during a different sea-

son and for a different population of harbor seals than the current study. We therefore implemented a second

approach where we derived an estimate for the fraction of seals hauled out under ideal conditions directly from our

model estimates and the correction factor estimate of Waring et al. (2015). Similar to Method 1 we use the estimate

of 0.43 and standard error of 0.06 for the overall proportion of seals hauled out in Waring et al. (2015) to develop an

informative Beta prior distribution such that

pW �Beta aW,bWð Þ,

where pW is the proportion of seals hauled out over a range of conditions and aW and bW are parameters of the Beta

distribution chosen so that its mean and standard deviation equal the estimate and standard error reported in Waring

et al. (2015), respectively. Next, we assume that the ratio of the observed count to the final abundance estimate

should equal such that

pW ¼Countt
A2,t

, ð7Þ

where Countt is the combined sum of raw counts across all bay units in year t and A2,t is our final abundance estimate

from Method 2 for year t. Similar to Method 1, we assume Nt needs to be adjusted by the proportion of seals hauled

out under ideal conditions such that

A2,t ¼Nt

p2
, ð8Þ

where p2 is our estimated proportion of seals hauled out at ideal conditions. Both p2 and A2,t are unknown; however,

we can rearrange equations and calculate p2 as

p2 ¼
pWNt

Countt
, ð9Þ

where p2 represents our study-specific estimate of the proportion of seals hauled out under ideal conditions analo-

gous to p1. We calculated p2 for each year that included a full survey (i.e., we excluded 2012). We then averaged p2

across years as our final estimate.

For Method 2, we estimated p2 separately for pups and nonpups. For both methods, we calculated abundance

estimates separately for pups and nonpups. For total abundance we summed the two quantities to derive a posterior

distribution for total abundance. Final estimates were calculated by averaging estimates of abundance from Method

1 and Method 2 giving equal weight to both methods. We calculated NMIN from the lower bound of the 80% credible

interval obtained from the posterior distribution of the averaged abundance estimates.

We fitted all models using MCMC sampling implemented with the JAGS software (Plummer, 2003). We included

a burn-in of 200,000 samples and two chains of 800,000 with a thinning rate of 800. We assessed convergence by

examining trace-plots and calculating Gelman-Rubin diagnostics. For model selection, we applied the Watanabe-

Akaike information criterion (WAIC) as this metric performs well with hierarchical models (Hooten & Hobbs, 2015).

To assess goodness of fit, we calculated Bayesian p-values for nonpup and pup models separately.
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3 | RESULTS

3.1 | Environmental covariates

Model selection based on WAIC values indicated that the model that included time from low tide and time from solar

midday was the best model for the nonpup count data, although minor differences in WAIC values indicated support

for alternative models (Table 2). Bayesian p-values of .46 indicated a good fit of the model to the data. There was a

significant negative effect of both average time from low tide and average time from solar midday on seal count as

evidenced by 95% credible intervals that did not include zero (Table 3). This negative effect indicates that nonpup

counts decreased the farther away from low tide and solar midday that a survey is conducted. Sensitivity analysis

showed that a threefold increase in the variance of the informed priors resulted in a <4% increase in the variance of

the abundance estimates.

For the pup count data, WAIC values indicated that the model with average time from low tide as the only

covariate was the best model (Table 4). However, similar to the nonpup analysis, minor differences in WAIC values

indicated support for alternative models. Bayesian p-values of .42 indicated a good fit of the model to the data.

There was a significant negative effect of time from low tide on pup count as evidenced by 95% credible intervals

TABLE 2 Model selection using Watanabe-Akaike information criterion (WAIC) for different models fit to the
nonpup harbor seal data. Models included average observed time from low tide (T), variance in observed time from
low tide (VT), average observed time from solar midday (S) and variance in average observed time from solar midday
(VS). For each model, the difference in WAIC from the top model (ΔWAIC) are provided.

Model WAIC ΔWAIC

T + S 1,576 0

T + S + VT 1,579 3

T + S + VS 1,579 3

T 1,582 6

TABLE 3 Posterior estimates and 95% credible intervals for nonpups.

Parameter Definition Estimate SD Upper Lower

β1 Average time from low tide �0.23 0.08 �0.06 �0.39

β2 Average time from solar midday �0.08 0.04 �0.01 �0.16

Variance in random effects 0.28 0.03 0.34 0.24

Temporal range parameter 1.30 0.96 3.72 0.38

TABLE 4 Model selection results using Watanabe-Akaike Information Criterion (WAIC) for different models fit to
the pup harbor seal data. Models included average observed time from low tide (T), variance in observed time from
low tide (VT), average observed time from solar midday (S), variance in average observed time from solar midday (VS)
and Julian Date (JD). For each model, the difference in WAIC from the top model (ΔWAIC) are provided.

Model WAIC ΔWAIC

T 960 0

T + JD + JD2 962 2

T + VT + S + JD 965 5

T + VT + S + VS + JD 965 5
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that did not include zero (Table 5). Sensitivity analysis showed that a threefold increase in the variance of the

informed priors resulted in a < 7% increase in the variance of the abundance estimates.

3.2 | Trends

The overall trend in nonpup harbor seal abundance predicted from the model showed evidence of a slight increase in

abundance until approximately 2001, where abundance appears to peak and then showed a slight decreasing trend

over time (Figure 2a). Posterior estimates of the 8-year moving average of percent increase ranged from a high of

2.1% with a posterior probability of positive growth of .97 early in the time series to a low of �1.9% with a posterior

probability of negative growth of .95 towards the middle of the time series (Figure 2b).

The trend for pup abundance was similar to the trend for nonpups with a slight increase in abundance until

2001 and then declining thereafter (Figure 3a). Posterior estimates of the 8-year moving average of percent

increase ranged from a high of 9.1% with a posterior probability of positive growth that was >.99 early in the time

series to a low of �2.5% with a posterior probability of negative growth of .94 towards the end of the time series

(Figure 3b).

TABLE 5 Posterior estimates and 95% credible intervals for pups.

Parameter Definition Estimate SD Upper Lower

β1 Average time from low tide �0.34 0.15 �0.01 �0.69

Variance in random effects 0.61 0.09 0.87 0.49

Temporal range parameter 4.23 3.95 15.09 0.43

F IGURE 2 Estimates of standardized abundance (i.e., counts adjusted to ideal conditions) from 1,000 MCMC
draws from the posterior distribution (gray line) and 95% Bayesian credible intervals (dotted lines) for nonpup harbor
seals from the top model(a) and average percent change in nonpup abundance with 95% Bayesian credible intervals
(vertical lines) around the posterior mean over a trailing 8-year moving window starting from 1993 (b). Blue dots
indicating mean abundance estimates for years with survey data and vertical red bars showing years with Unusual

Mortality Events are shown in panel (a).
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3.3 | Abundance

Final abundance estimates varied depending on the method used to estimate abundance. Estimates of the propor-

tion of seals hauled out at ideal conditions was 0.61 for nonpups and 0.60 for pups with posterior standard devia-

tions of 0.10 and 0.13, respectively. These estimates are lower than the estimate of 0.84 from Simpkins et al. (2003)

and higher than the estimate of 0.43 from Waring et al. (2015). As a result, abundance estimates using only Method

1 (Table 6) are substantially lower than abundance estimates using only Method 2 (Table 7). For 2018, the most

F IGURE 3 Estimates of standardized abundance (i.e., counts adjusted to ideal conditions) from 1,000 MCMC
draws from the posterior distribution (gray line) and 95% Bayesian credible intervals (dotted lines) for pup harbor
seals from the top model (a) and average percent change in pup standardized abundance with 95% Bayesian credible

intervals (vertical lines) around the posterior mean over a trailing 8-year moving window (b). Blue dots indicating
mean abundance estimates for years with survey data and vertical red bars showing years with Unusual Mortality
Events are shown in panel (a).

TABLE 6 Harbor seal abundance estimates using the proportion of seals hauled out under ideal conditions from
Simpkins et al. (2003) (Method 1 described in text).

Stage Year Estimate SD CV Upper Lower

Pups 1993 7,204 1,607 0.22 11,135 4,844

Nonpups 1993 43,165 4,700 0.11 53,234 34,813

Total 1993 50,661 4,918 0.10 60,921 41,828

Pups 1997 8,780 1,820 0.21 13,108 5,967

Nonpups 1997 43,594 4,685 0.11 54,064 35,079

Total 1997 52,781 4,939 0.09 63,074 43,822

Pups 2001 15,416 2,313 0.15 20,522 11,416

Nonpups 2001 52,173 5,258 0.10 62,041 42,207

Total 2001 67,923 5,661 0.08 78,685 57,230

Pups 2012 13,840 2,897 0.21 20,437 9,381

Nonpups 2012 39,730 4,733 0.12 49,201 31,262

Total 2012 53,799 5,421 0.10 64,534 43,868

Pups 2018 11,466 2,576 0.22 17,484 7,321

Nonpups 2018 40,040 4,364 0.11 48,350 31,515

Total 2018 51,878 4,951 0.10 61,693 42,404
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recent estimate of abundance for this population, the abundance estimate was 51,858 with a NMIN of 47,641 from

Method 1 versus an abundance estimate of 70,663 with an NMIN of 64,798 from Method 2. The model averaged total

abundance estimate for 2018 is 61,336 (CV = 0.08), with a NMIN of 57,637 (Table 8). Regardless of method,

TABLE 7 Harbor seal abundance using the proportion of seals hauled out over a range of conditions from Waring
et al. (2015) (Method 2 described in text).

Stage Year Estimate SD CV Upper Lower

Pups 1993 10,039 1,586 0.16 13,902 7,980

Nonpups 1993 58,935 8,164 0.14 79,751 46,795

Total 1993 69,294 8,341 0.12 90,453 56,921

Pups 1997 12,239 1,868 0.15 16,583 9,687

Nonpups 1997 59,699 8,225 0.14 79,614 47,720

Total 1997 71,956 8,393 0.12 91,679 59,986

Pups 2001 21,398 3,128 0.15 29,366 16,953

Nonpups 2001 70,875 9,775 0.14 94,222 56,774

Total 2001 92,588 10,300 0.11 117,732 78,284

Pups 2012 19,292 3,038 0.16 26,641 15,204

Nonpups 2012 53,626 7,897 0.15 73,626 42,224

Total 2012 73,741 8,463 0.11 94,410 61,219

Pups 2018 15,973 2,454 0.15 21,823 12,695

Nonpups 2018 54,270 7,445 0.14 72,285 43,397

Total 2018 70,663 7,805 0.11 89,842 58,774

TABLE 8 Model averaged abundance estimates for harbor seals by life history stage (nonpups vs. pups) and their
totals. Abundance estimates were averaged among two separate methods for estimating the fraction of seals hauled
out under ideal conditions.

Stage Year Estimate SD CV Upper Lower

Pups 1993 8,688 1,307 0.15 12,047 6,913

Nonpups 1993 51,110 4,875 0.10 62,947 43,745

Total 1993 60,092 5,030 0.08 71,791 52,469

Pups 1997 10,553 1,462 0.14 14,201 8,342

Nonpups 1997 51,892 4,859 0.09 63,125 44,225

Total 1997 62,500 4,986 0.08 74,100 54,387

Pups 2001 18,470 1,803 0.10 22,921 15,719

Nonpups 2001 61,851 5,598 0.09 75,167 52,937

Total 2001 80,484 5,851 0.07 93,894 71,292

Pups 2012 16,600 2,374 0.14 22,652 13,171

Nonpups 2012 46,949 4,997 0.11 58,203 39,070

Total 2012 64,148 5,444 0.08 75,804 54,907

Pups 2018 13,836 2,071 0.15 18,930 10,696

Nonpups 2018 47,371 4,461 0.09 57,674 39,977

Total 2018 61,336 4,816 0.08 72,132 53,577
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estimates of abundance indicated that abundance was highest in 2001 and lowest in 1993 for nonpups, pups and

the combined total (Tables 6–8).

4 | DISCUSSION

Using a Bayesian hierarchical method to model sparse survey data for harbor seals in Maine allowed us to augment

missing data and combine information across all surveys to estimate trends and abundance. Prior to this study,

updated information on trends and abundance was lacking for this population. Our analysis provides evidence that

both nonpup and pup abundance continued to grow in the 1990s until the early 2000s followed by a decrease in

nonpup abundance between 2001 and 2012 and a decrease in pup abundance between 2012 and 2018. Overall,

changes in abundance between 2012 and 2018 were minor suggesting that this population currently is stable.

Previous to our analysis, Johnston et al. (2015) provided some evidence that this harbor seal population might

have declined between 2000 and 2012. However, their study used bycatch and strandings data as indices of abun-

dance so they could not provide estimates of the rate of decline. Our results broadly corroborate the speculation of

Johnston et al. (2015) but provide new information by extending the analysis to 2018 and providing stage-specific

rates of decline for both pups and nonpups. Waring et al. (2015) used the 2012 survey data used in this study to

update abundance estimates and showed that the estimate was 23% lower than the 2001 estimate reported in

Gilbert et al. (2005). However, because of the uncertainty in the estimate, they could not conclude if this decline was

statistically significant and did not formerly test for a decline in abundance. Our posterior probability shows a high

probability of negative growth for nonpups between 2001 and 2012 but little evidence for change in pup

abundance. By extending the analysis out to 2018, we found little evidence that nonpups are continuing to decline

although there is some evidence of a decline in pup abundance.

It is difficult to isolate mechanisms influencing trends in this population due to limited information on demo-

graphic parameters. Increases in competition from gray seals and predation from white sharks may be exerting some

influence. Gray seal populations have increased by as much as 26.3% in some regions within the Gulf of Maine (den

Heyer et al., 2021; Wood et al., 2020). In some of these areas where gray and harbor seals overlap, such as south-

eastern Massachusetts, counts of harbor seals in spring have progressively declined since 2009, and haul-outs histor-

ically occupied by harbor seals are now occupied by gray seals (Pace et al., 2019). Similarly, harbor seal declines at

Sable Island, Canada were attributed to increased competition from the increasing gray seal population on the island

(Bowen et al., 2003). In addition to gray seals, white sharks have also increased dramatically in the Gulf of Maine in

recent decades (Curtis et al., 2014). Lucas and Stobo (2000) showed that predation from white sharks may have also

contributed to the rapid decline of harbor seals on Sable Island. Although it is difficult to directly quantify the effect

of these factors on abundance in this population, our analysis suggests that they are not currently causing the same

rapid declines as was observed on Sable Island.

Mortality caused from disease may also be influencing abundance trends in this population. A number of UMEs

have been documented in this population during the time series of survey effort including in 2003, 2006 and, 2011

(Hayes et al., 2019). In particular, increased mortality observed in 2006 and 2011 was attributed to PDV (Hayes

et al., 2019). In European populations, mortality from PDV events totaled more than 23,000 in 1988 and 30,000 in

2002 (Härkönen et al., 2006). Some local population suffered mortality as high as 60%. Although we do not have

direct estimates of mortality for this population, strandings data of observed mortalities from the UMEs in 2006 and

2011 where under 1,000 animals which is less than 2% of the 2001 estimate (D. Fauquier, personal communication)

Therefore, mortality caused from these events does not appear as severe as European populations. One possibility is

that this population is at or near its carrying capacity. Abundance may have exceeded carrying capacity in 2001 and

PDV may be acting as a density-dependent mechanism keeping the population at equilibrium.

The long-term impact of PDV on trends can vary among populations. In the Wadden Sea, mortality was severe but

followed by rapid growth resulting in relatively quick rebounds in abundance (Brasseur et al., 2018). Conversely,
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populations of British harbor seals showed no evidence of an increase in abundance 5 years following a PDV event in

2002 (Lonnergan et al., 2007). The strandings data from the UMEs in 2006 and 2011 shows that mortalities appeared

to be predominantly pups. This increased pup mortality may partly explain the difference in trends we observed in our

analysis. A large mortality of pups between the 2001 survey and the 2012 survey may have resulted in a reduced num-

ber of immature juveniles in 2012 but not necessarily a decrease in breeding females resulting in a decrease in overall

nonpup abundance but not pup abundance. However, by 2018 these depressed year classes may have resulted in

fewer breeding females, and therefore, a decrease in pups but no change in nonpups between 2012 and 2018. Interest-

ingly, mortality from the most recent PDV event in 2018 was predominantly made up of subadults and adults. It is also

important to note this event occurred after the 2018 survey and appears to be the most severe (>1,600 mortalities),

therefore, continued monitoring will be necessary to estimate the current trajectory of this population.

In addition to demographics, there are several factors that may have influenced counts and ultimately estimates

of abundance that were difficult to control for in this study. In our study we assumed haul-out probabilities are con-

stant among years. Other studies have shown little interannual variation in haul-out probabilities for harbor seals

(Simpkins et al., 2003; Thompson et al., 2005); however, these studies were conducted during the molting season,

and we cannot necessarily conclude that changes in haul-out behavior are minimal during the pupping season.

Another factor that could vary among surveys is the timing of pupping. Brasseur et al. (2015) observed a consistent

change in the timing of pupping to an earlier date in a Dutch population of gray seals. Changes in the timing of pup-

ping would not only impact our counts of pups but could also impact the immigration of nonpups into the study site.

Finally, changes in movement patterns and out of the study area particularly among juveniles could affect estimates

of nonpups (Waring et al., 2015).

In addition to trends, another goal of our analysis was to update the abundance estimate for the most recent

year of survey data. Unlike previous abundance estimates that only use one year of survey data and one correction

factor (Gilbert et al., 2005; Waring et al., 2015), we produce an abundance estimate using the entire timeseries of

survey data and include multiple correction factors. The Simpkins et al. (2003) correction factor by itself may not be

appropriate for this study as it was estimated during the molting season and corrected for more environmental con-

ditions than were included in this study. However, because of the limited information on seal haul-out behavior

under ideal conditions, we include this value in conjunction with the information from Waring et al. (2015) to reflect

the uncertainty in this unknown parameter. A full assessment of uncertainty is critical to facilitating robust decision

making in wildlife management (Regan et al., 2005; Taylor et al., 2000). Ignoring components of uncertainty can

result in poor management decisions and undesirable outcomes (Artelle et al., 2013; Taylor et al., 2000). In our analy-

sis, we incorporated multiple sources of prior information with the goal of properly characterizing the extent of

uncertainty. The results from our analysis allow for the option of pursuing a more or less precautionary approach

depending on management objectives and trade-offs among various stakeholders.

Our analysis of this data set highlights the advantages of a Bayesian hierarchical approach for trend and abun-

dance estimation. The dataset used in this analysis was relatively sparse with many unobserved years between sur-

veys and included one partial survey where not all bay units were observed. Also, there was missing information on

environmental covariates as well as auxiliary information on correction factors that need to be incorporated to

achieve unbiased estimates of abundance. The Bayesian hierarchical framework used here is able to augment missing

data by modelling each bay unit as a latent state (Johnson & Fritz, 2014). In addition, the semiparametric structure

allows for flexibility in estimating the shape of the trend over time. Finally, we were able to incorporate information

from other studies while propagating the uncertainty to the final abundance estimates through the construction of

informative priors. Bayesian approaches also offer advantages to the management of marine mammal management

as the output can be easily integrated into a decision analysis framework (Wade, 2000). The results from this study

should provide critical information to aid in the management of this stock of harbor seals in the future.

There are a number of ways surveys can be implemented that will increase the power to detect trends and achieve

more precis estimates of abundance even when resources to conduct frequent, large-scale surveys are limited (Cressie

et al. 2009; Taylor et al., 2007). First, we recommend including replicate surveys whenever possible. In our study there
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was only one year with replicate surveys (2001), but this did not provide enough information to separate observation

error from process error. Including replicates within a survey year can decrease the noise from the observation process

and result in more precise inferences (Cressie et al., 2009). In addition, if replicates are spread out over the course of a

sampling season there will be more opportunity to capture/model shifts in the timing of biological processes such as

pupping and molting which may change over time (Brasseur et al., 2015). Second, if the entire population cannot be sur-

veyed on an annual basis, we recommend including index sites. Index sites may not be a viable option for some

populations if interannual movement in and out of the site varies substantially or the index sites are not representative

of the larger population of interest (Taylor et al., 2007). For harbor seals, however, high fidelity to birth sites suggest

that index sites may be a viable option to monitor trends (Taylor et al., 2007). Using the hierarchical structure used here,

unobserved sites could be treated as latent states and augmented in years when full surveys are not conducted such as

we did for the 2012 partial survey. To summarize, hierarchical methods are powerful statistical tools, but it is important

to link them with appropriate sample designs to optimize the ability to make ecological inferences from model output.

Designing surveys to complement the strengths of these methods should help mitigate problems associated with sparse

data in future surveys for populations where resources to collect data are limited.
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