
Model and R code description for
SCTLD Etiology Elicitation

Model - M1
We propose exploring a simple hierarchical framework to summarize the infor-
mation from elicitation method M1. Using this approach we assume that each
of the experts are random draws/observation from a population of experts each
of whom has a belief about the support for each etiological hypothesis. We are
interested in the population-level parameters for each weight as a measure of the
current state of knowledge. Thus, our model, conditional on some true current
state of knowledge regarding the etiology of SCTLD is simply:

yi,j ∼ddirch (−→α)

αj ∼dgamma (1, 1) ,

where yi,j is the normalized weight (i.e., between 0 and 1) for the i th expert for
the j th of J hypotheses, and αj is a concentration parameter for the Dirichlet
distribution associated with the j th hypothesis. The benefit of this formulation
appears to be multi-fold. First, it allows the precision to properly increase as
the number of experts surveyed increases. It also can easily handle any number
of points used to assign weights by the experts because yi,j must be normalized
to lie between 0 and 1. Note for estimation in NIMBLE values should not be
exactly zero or 1 which will result in an infinite value in the Dirichlet density
within the package. To account for this we add or substract a small value 1e-
12 to any expert elicited probabilities that were exactly 0 or 1, respectively.
Our method also provides us a way to assess the amount of learning that has
happened since the discovery of SCTLD because we know that at maximum
uncertainty we would set αj = 1 (i.e., each hypothesis has equal weight). Thus,
the expected value for each hypothesis weight (i.e., population-level) is

W̄j =
αj∑
j αj

,

and the amount of learning or relative evidence, Ej , for each hypothesis could
be estimated as:

Ej = W̄j −
1

J
.

The relative evidence will take on positive values where there is evidence for
a hypothesis and negative values if evidence against a hypothesis based on the
experts’ assessments.

Example plots from our SCTLD elicitation are shown below. The first plot
shows the estimated W̄j with the red line indicating maximum uncertainty.

1

The second plot shows the relative evidence for each hypothesis.

Code
Below we describe the code we used to run this model on an example data set
to demonstrate its potential application for our problem.

2

Data Preparation
We begin by loading the necessary libraries that will be used in the subsequent
analyses.

library(nimble)
library(dplyr)
library(tidyr)

Next we generate data similar to what was provided by the experts. It is used
as an evaluation of the approach.

#load data
all_data=readRDS("data_M1_nimble.RDS")

hyp.names <- c("Hyp. 1 (Agent- V)", "Hyp. 2 (Agent- B)",
"Hyp. 3 (Agent- V + B)", "Hyp. 4 (Agent- B + V)",
"Hyp. 5 (Agent- B + B)", "Hyp. 6 (Agent- V /B)",
"Hyp. 7 (Agent- Z)", "Hyp. 8 (Agent- V + T)",
"Hyp. 9 (Agent- O)", "Hyp. 10 (Agent- F)")

#data summary
summary <- all_data%>%

filter(Round=="R2")%>%
select(name,hypothesis,data)%>%
pivot_wider(names_from=hypothesis,values_from=data)

summary <- data.frame(summary)
experts=as.matrix(summary[,2:11])#this removed the name column
dimnames(experts)=NULL
sum(experts[1,])#sum to 100

#account for exactly zero or one values = Inf density estimates
experts[experts == 0] <- 0.000000001
experts[experts == 1] <- 0.999999999

#create probability from point assignments
for(i in 1:nrow(experts)){

experts[i,] <- experts[i,]/sum(experts[i,])
}

sum(experts[1,])#now sums to 1

#Number of hypotheses
num.hyp<- length(experts[1,])

#Number of experts

3

num.experts <- length(experts[,1])

Estimation
We begin estimation by setting up the necessary inputs for use in Nimble. These
include the data, the constants and the initial, which each have to be setup as
a list structure.

simData<-list(y = experts
)

##Create model constants
simConst<-list(n = num.experts, m = num.hyp
)

##Create initial values
simInits <- list(

#assume all hypotheses are equally likely
alpha = rep(1, simConst$m)

)

Next we specify the parameters for running the MCMC algorithm.

nchains <- 3
reps <- 10000
nburnin <- 0.1*reps

The code for Nimble leverages the BUGS pseudo-language. For our model for
elicitation method M1, it is as follows:

library(nimble)
simcode <- nimbleCode({

Priors
for(i in 1:m){

alpha[i] ~ dgamma(1, 1)
}

Likelihood
for(i in 1:n){

y[i,1:m] ~ ddirch(alpha[1:m])
}

#Derived parameters

4

for(i in 1:m){
W[i] <- alpha[i]/sum(alpha[1:m])#E[wt] for each hypothesis
learning[i] <- W[i] - 1/m #how much change from equal weight

}

})

We then compile the code.

simtest<-nimbleModel(code= simcode, name="test",
constants = simConst,
data = simData, inits = simInits)

Finally, the MCMC estimation procedure is ran for the specified model.

mcmcout1<-nimbleMCMC(model=simtest, nchains=nchains,
nburnin = nburnin,
niter=reps, summary=TRUE, WAIC=F,
monitors = c("alpha", "W", "learning"
))

Results
We save the results of the MCMC estimation procedure.

#saveRDS(mcmcout1,"m1test_ellen.RDS")

Next we create a function to create diagnostic plots and examine them for
evidence of non-convergence of the MCMC chains.

library(coda)
library(ggplot2)
mcmc.coda <- mcmc.list(lapply(mcmcout1$samples, mcmc))

#Function to create diagnostic plots and Gelman-Rubin statistics
diag.plots <- function(x,nchains){

xx <- colnames(mcmc.coda$chain1)[
grep(x,colnames(mcmc.coda$chain1))]

for(j in xx){
if(mean(mcmc.coda[,j][[1]])==0){

next #skip if parm set to zero
}
plot(mcmc.coda[,j], main=j)
print(j)

5

print(gelman.diag(mcmc.coda[,j]))
}

}

for(i in c("alpha")){
diag.plots(i)

}

Finally we create bar plots of the posterior mean and the 95% credible bounds
for the weights and for the “Bayesian learning”.

df <- as.data.frame(mcmcout1$summary$all.chains)
df <- df[grep("W",row.names(df)),]
for(i in 1:num.hyp){

df$hyp[i] <- hyp.names[i]
}

p1 <- ggplot(data=df, aes(y=Mean,x=reorder(hyp,1:10),fill=hyp)) +
geom_bar(stat="identity", show.legend = F) +
xlab("Hypothesis") +
geom_hline(yintercept = 1/num.hyp,col="red", size=1) +
geom_errorbar(aes(ymin=df[,4], ymax=df[,5]), width=.2,

position=position_dodge(.9))+
theme(axis.text.x = element_text(angle = 45,

margin = unit(c(10, 0, 0, 0), "mm")))

p1
df <- as.data.frame(mcmcout1$summary$all.chains)
df <- df[grep("learn",row.names(df)),]
for(i in 1:num.hyp){

df$hyp[i] <- hyp.names[i]
}

#Following corresponds to Figure 2 in Manuscript
p2 <- ggplot(data=df, aes(y=Mean,x=reorder(hyp,1:10),fill=hyp)) +

geom_bar(stat="identity", show.legend = F) +
xlab("Hypothesis") +
geom_hline(yintercept = 0,col="red", size=1) +
geom_errorbar(aes(ymin=df[,4], ymax=df[,5]), width=.2,

position=position_dodge(.9))+
theme(axis.text.x = element_text(angle = 45,

margin = unit(c(10, 0, 0, 0), "mm")))

6

p2

Model - M2
The elicitation method requires a different perspective because each study is
evaluated independently, and there is a desire to track the accumulation of evi-
dence through time. We propose to use a hurdle model to capture the evidence
for or against a particular study through time as scientific studies are conducted.
We first calculate the hurdle probability of a study demonstrating no support
for a hypothesis (i.e., elicited value of 0):

zerosi,j,k ∼ dbern (pzeroj,k) ,

where zerosi,j,k is an indicator of a zero value provided by the i th expert for the
j th hypothesis and the k thstudy (note: studies are ordered chronologically), and
pzeroj,k is the probability there is no scientific support for the j th hypothesis
provided by the k thstudy. For all instances where the experts did believe there
was support for a hypothesis provided by a study, we normalized and converted
the elicited scores to probability space (i.e., between 0 and 1). We then use
the probit link function and assume these probabilities arise from the probit
transformation of a latent measure of learning/evidence:

pi,j,k = Φ(Li,j,k)∀pi,j,k > 0,

where Li,j,k is the learning/evidence determined by the i th expert for the j th

hypothesis and the k thstudy (note: studies are ordered chronologically), Φ rep-
resents the CDF function for the standard normal distribution, and pi,j,k is the
elicited normalized score. We then use these values to estimate the posterior
distribution of Lj,k:

Li,j,k ∼ dnorm (µj,k, σj,k) ,

where µj,k is the mean for the j th hypothesis and the k thstudy and σj,k is the
associated standard deviation. The hurdle model is necessary with this approach
because zero values for pi,j,k result in a -Inf density estimate in our probit model.
Using the hurdle model permits a cumulative summary of knowledge across
experts through time. The estimated posterior for the total learning/evidence
for a hypothesis across experts, given the k thstudy is completed, is the sum of
all the past and current evidence, which can simply be calculated from several
derived parameters and sampling from the posteriors of pzeroj,k, µj,k and σ2

i,j,k

:

7

pzerotj,k = Φ

[(
1

k

) k∑
k=1

Φ−1 (pzeroj,k)

]
,

E [Tj,k] =

(
1

k + 1

) k∑
k=0

µj,k.

Note for estimating the expectation of T, we start with k = 0 because this rep-
resents the state of complete uncertainty or lack of knowledge, representing a
common starting point for all hypotheses. On the probit scale this is presented
as Tj,0 = 0∀ i, j. This not the case for pzerotj,k, which is tied to each study and
therefore we start at k = 1. With this structure, as evidence for a hypothesis
accumulates, the values of T increase and those of pzerot decrease. Conversely,
as evidence against a hypothesis mounts this results in decreasing T and in-
creasing pzerot values. Also, because we are using µj,k in the estimation of Tj,k,
we are estimating the posterior distribution of the expectation of Tj,k. Finally,
we can estimate the weight or probability of interest as follows:

Wj,k = Φ(E [Tj,k])× (1− pzerotj,k) ,

where Wj,k is the current weight of evidence for the j th hypothesis given the k th

study is completed. Additional weights based on study quality could be easily
incorporated into the estimation of Tj,k. Given some experts may feel that a
study does not address a particular hypothesis the following recursive, mixture
formulation could be used to address this aspect of the elicitation process:

E [Tj,k] =

{
k = 0 → 0

k > 0 →
(

1
k+1

) [(∑k−1
l=0 µj,l

)
×

(
1 +

aj,k

Nj,k

)
+ µj,k ×

(
Nj,k−aj,k

Nj,k

)] ,

where Nj,k is the number of experts who assigned a weight > 0 and aj,k is
the number of experts that specified the k thstudy does not address the j th

hypothesis. This mixture formulation weights past knowledge against current
knowledge based on the proportion of experts that feel a study addresses a
specific hypothesis. Then Wj,k is calculated as before. A plot of results from
the SCTLD data is shown below where the dashed lined represents complete
uncertanity surrounding the etiology of SCTLD.

8

A plot of the normalized weights is also provided.

Code
The code to implement this approach is described below.

9

Data Preparation
We begin by loading the necessary libraries that will be used in the subsequent
analyses.

library(DirichletReg)
library(nimble)
library(coda)
library(ggplot2)
library(knitr)
library(dplyr)

Next we generate data similar to what was provided by the experts. It is used
as an evaluation of the approach.

#load data
all_data=readRDS("all_data_combined_M2_nimble.RDS")

#data formatting
#filter to Yes's
summary <- all_data%>%

filter(predictions=="Yes (E=1)")
summary$data=ifelse(summary$data=="N/A","NA",summary$data)
summary$data=ifelse(summary$data=="n/a","NA",summary$data)

#put studies in chronological order that they were published
studynames=c("Aeby et al. (2019)","Ushijima et al. (2020)",

"Landsberg et al. (2020)","Kellogg et al. (2021)",
"Work et al. (2021)")

hypothesisnames=c("Hyp. 1 (Agent- V)", "Hyp. 2 (Agent- B)",
"Hyp. 3 (Agent- V + B)",

"Hyp. 4 (Agent- B + V)", "Hyp. 5 (Agent- B + B)",
"Hyp. 6 (Agent- V /B)", "Hyp. 7 (Agent- Z)",
"Hyp. 8 (Agent- V + T)", "Hyp. 9 (Agent- O)",
"Hyp. 10 (Agent- F)")

expertnames=unique(summary$name)
finalarray=array(NA,dim=c(length(expertnames),

length(hypothesisnames),length(studynames)))
#create data array
for (i in 1:length(studynames)){

for (j in 1:length(hypothesisnames)){
for (k in 1:length(expertnames)){

value=summary[summary$name==
expertnames[k]&summary$studies==studynames[i] &
summary$hypotheses==hypothesisnames[j],"data"]

10

value=if(identical(value, character(0))){NA_character_} else
{value}

value=as.numeric(as.character(value))
finalarray[k,j,i]=value

}}}

experts=finalarray/100
max(experts,na.rm=TRUE)
min(experts,na.rm=TRUE)

#Number of hypotheses
num.hyp<- 10

#Number of experts
num.experts <- 15

#Number of studies
num.studies <- 5

#Account for zero values
indices <-which(experts==0, arr.ind = T)
zeros <- array(0,dim=dim(experts))
zeros[indices] <- 1 #indicator of zeros in the data array
nzeros <- apply(zeros,c(2,3),sum,na.rm=T)

#Account for non-zero values
L.experts <- qnorm(experts) #convert to probit scale

#Count the number of NAs
nna <- apply(L.experts, c(2,3), ##this counts NA and non NAs

function(x) sum(is.na(x)))

nonna <- apply(L.experts, c(2,3),
function(x) sum(!is.na(x)))

L.experts[indices] <- NA #set zeros to NA...so won't affect
##likelihood and done after counting NAs above

Estimation
We begin estimation by setting up the necessary inputs for use in Nimble. These
include the data, the constants and the initial, which each have to be setup as
a list structure.

11

##Create data
simData<-list(y = L.experts, zeros = zeros
)

##Create constants
simConst<-list(n = num.experts, m = num.hyp,

nstudies = num.studies,
nna = nna, nonna = nonna,
nonzeros= num.experts - nzeros

)

##Create initial values
simInits <- list(

#initial value - all hypotheses are equal
mu = matrix(0, simConst$m, simConst$nstudies),
sd = matrix(1, simConst$m, simConst$nstudies),
pi = matrix(0.05, simConst$m, simConst$nstudies)

)

Next we specify the parameters for running the MCMC algorithm.

nchains <- 3
reps <- 10000
nburnin <- 0.1*reps

The code for Nimble leverages the BUGS pseudo-language. For our model for
elicitation method M2, it is as follows:

simcode <- nimbleCode({

Priors

for(i in 1:m){
for(j in 1:nstudies){

p[i,j] ~ dbeta(1, 100) # prob value=0
mu[i,j] ~ dnorm(0, 1)
sd[i,j] ~ dunif(0, 1)

}
}

Likelihood

for(i in 1:n){
for(j in 1:m){

for(k in 1:nstudies){

12

zeros[i,j,k] ~ dbern(p[j,k])
y[i,j,k] ~ dnorm(mu[j,k],sd=sd[j,k])

}
}

}

#Derived parameters

T1[1,1:m] <- 0
We[1,1:m] <-0.5
pi[1:m,1:nstudies] <- qnorm(p[1:m, 1:nstudies])
for(i in 1:m){ #probability of 0

for(j in 1:nstudies){
pi[i,j] <- qnorm(p[i,j])

}
}

for(i in 1:m){ #probability of 0
pi.use[i,1] <- pi[i,1]

for(j in 2:nstudies){
pi.use[i,j] <- sum(pi[i,1:j])

}
}

for(i in 1:m){
for(j in 1:nstudies){

mean probability of zero | completed studies
pzero[i,j] <- pnorm(pi.use[i,j]/j)

#latent evidence | completed studies * prob >0
T1[j+1,i] <- T1[j,i] + T1[j,i]*nna[i,j]/nonzeros[i,j] +

mu[i,j]*nonna[i,j]/nonzeros[i,j]
#Study weight
We[j+1,i] <- pnorm(1/(j+1)*T1[j+1,i])*(1 - pzero[i,j])

}
}
for(i in 1:m){

for(j in 1:(nstudies+1)){
normW[j,i] <- We[j,i]/sum(We[j,1:m])

}
}

})

simtest<-nimbleModel(code= simcode, name="test",
constants = simConst,

13

data = simData,
inits = simInits)

We then compile the code.
Finally, the MCMC estimation procedure is ran for the specified model.

mcmcout1<-nimbleMCMC(model=simtest, nchains=nchains,
nburnin = nburnin,
niter=reps, summary=TRUE, WAIC=F,
monitors = c("mu", "sd", "p", "T1",

"We", "pzero", "pi","pi.use","normW"
))

Results
We save the results of the MCMC estimation procedure.

saveRDS(mcmcout1$samples,"m2.RDS")
saveRDS(mcmcout1$summary,"m2summary.RDS")

Next, we create a function to create diagnostic plots and examine them for
evidence of non-convergence of the MCMC chains.

mcmc.coda <- mcmc.list(lapply(mcmcout1$samples, mcmc))

#Function to create diagnostic plots and Gelman-Rubin statistics
diag.plots <- function(x,nchains){

xx <- colnames(mcmc.coda$chain1)[
grep(x,colnames(mcmc.coda$chain1))]

for(j in xx){
if(mean(mcmc.coda[,j][[1]])==0){

next #skip if parm set to zero
}
plot(mcmc.coda[,j], main=j)
print(j)
print(gelman.diag(mcmc.coda[,j]))

}
}

#Note: The diagnostic plots may take a while to run
for(i in c("p", "mu","sd")){

diag.plots(i)
}

14

We create a plot of the posterior means for the weights for each hypothesis
across the time series of studies.

df <- as.data.frame(mcmcout1$summary$all.chains)
df <- df[grep("We",row.names(df)),]
df$hyp <- rep(hypothesisnames,each = num.studies+1)
df$study <- factor(rep(c("No data",studynames),num.hyp),

levels=c("No data",studynames))
df$hyp <-factor(df$hyp, levels=hypothesisnames)

p1 <- ggplot(data=df, aes(y=Mean, x=study, group= hyp,color=hyp,
shape=hyp)) +

geom_line(size=1) + xlab("Study") + ylab("Weight") +
geom_hline(yintercept = 0.5,col="red", size=1.5,

linetype="dashed") +
geom_point(size=2)+
scale_shape_manual(values = rep(15:20, len = num.hyp),

name="Hypothesis")+
scale_color_brewer(palette = "PuOr", name="Hypothesis")+
theme(axis.text.x = element_text(angle = 10,

margin = unit(c(10, 0, 0, 0), "mm")))

p1

We create a plot of the normalized posterior means for the weights for each
hypothesis across the time series of studies.

df2 <- as.data.frame(mcmcout1$summary$all.chains)
df2 <- df2[grep("normW",row.names(df2)),]
df2$hyp <- rep(hypothesisnames,each = num.studies+1)
df2$study <- factor(rep(c("No data",studynames),num.hyp),

levels=c("No data",studynames))
df2$hyp <-factor(df2$hyp, levels=hypothesisnames)

#Plot corresponds to Figure 3 in the main manuscript
p2 <- ggplot(data=df2, aes(y=Mean, x=study,

group= hyp,color=hyp, shape=hyp)) +
geom_line(size=1) + xlab("Study") + ylab("Weight") +
geom_hline(yintercept = 0.1,col="red", size=1.5,

linetype="dashed") +
geom_point(size=2)+
scale_shape_manual(values = rep(15:20, len = num.hyp),

name="Hypothesis")+
scale_color_brewer(palette = "PuOr", name="Hypothesis")+
scale_x_discrete(labels= c("No data",studynames)) +

15

theme(axis.text.x = element_text(angle = 10,
margin = unit(c(10, 0, 0, 0), "mm")))

p2

16

