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44 Research  Highlights  

•   We developed methods  for rapidly assessing  hypotheses about disease  etiology  

•   Methods included formal expert elicitation and Bayesian hierarchical modeling  

•   We  illustrate this approach for  a  recently emerged disease  in coral reefs  

•   These  methods  are  useful for  fast decision-making for conservation issues  

•   These methods can help adapt  management decisions  over time as knowledge accumulates  
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50 Abstract  

Emerging  diseases can have devastating consequences for  wildlife  and require  a rapid 

response. A  critical first step towards developing appropriate management is identifying the 

etiology of the disease, which can be difficult to determine, particularly early in emergence. 

Gathering and  synthesizing existing information about potential disease causes, by leveraging  

expert  knowledge  or relevant existing studies,  provides a principled approach to quickly inform 

decision-making and management efforts. Additionally, updating the current state of knowledge  

as more information becomes available over time  can  reduce scientific uncertainty and lead to 

substantial improvement in  the decision-making  process and the  application of management 

actions  that  incorporate and adapt to newly acquired scientific understanding. Here  we present a 

rapid prototyping method for quantifying belief weights for competing hypotheses about the  

etiology of disease using a combination of formal expert elicitation and Bayesian hierarchical 

modeling. We  illustrate the application of this approach for investigating the etiology of stony 

coral tissue  loss disease (SCTLD)  and discuss the  opportunities and challenges of this approach 
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64 for addressing emergent diseases. Lastly, we  detail how our work may apply to other pressing 

management or  conservation problems that require  quick  responses.  We  found the rapid 

prototyping methods to be an efficient and rapid means to narrow down the number of potential 

hypotheses, synthesize current understanding,  and help prioritize future studies and experiments. 

This approach  is rapid by  providing  a snapshot assessment of the current state of knowledge. It  

can also  be  updated periodically (e.g., annually) to assess changes in belief weights over time  as 

scientific  understanding increases.  Synthesis and applications: The rapid prototyping approaches 

demonstrated here can be used to combine knowledge from multiple experts and/or studies to 

help with fast decision-making needed for urgent conservation issues including emerging 

diseases and other management problems that require  rapid  responses. These approaches can 

also be used to adjust belief weights over time as studies and expert knowledge accumulate and 

can be  a helpful tool for  adapting management decisions.  
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76 1.  Introduction  

The combination of anthropogenic activities  and globalization may facilitate the spread 

of new diseases  (Biota, 2002; Bradley and Altizer, 2007; Semenza et al., 2016; Vanwambeke et 

al., 2019; Vega Thurber et al., 2020), the emergence  of which can have devastating impacts on 

wildlife and the ecosystem services that they provide  (Aguirre  and Tabor, 2008; MacPhee and 

Greenwood, 2013). In many  cases, the  etiology  of these diseases may be hard to determine,  and 

this  uncertainty can have  important management implications as the appropriate management 

responses may be highly dependent on the  type of causative agent(s). One  way to address this 

scientific uncertainty is to use a multi-hypotheses approach to science  (e.g., Burnham and 

Anderson, 1998; Chamberlin, 1890; Nichols, 2021; Nichols et al., 2019, 2015). Under this 

paradigm, information from multiple studies can be  combined and belief weights or model 
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87 weights can be  assigned to competing hypotheses. Ideally, these beliefs would be  determined 

based on  experiments and targeted observation studies. Some authors have  further  proposed 

applying Bayes’   theorem to update these beliefs as more information becomes available (e.g., 

Nichols et al., 2021, 2019; Williams et al., 2002)  to allow for the incorporation of the latest 

scientific knowledge.  In addition  to providing an appealing framework for  learning, this 

paradigm can greatly benefit management decisions,  as  combining information from  multiple 

studies and updating the current state of knowledge over time  may  reduce scientific uncertainty 

and lead to substantial improvement of the decision-making  process and application of  

management actions (e.g., Johnson, 2011; Johnson et al., 2015; Martin et al., 2011, 2009).  

One consideration when responding to  emergent diseases  is the need to act quickly,  as 

preventing further  spread of the disease is more  likely to succeed early in the emergence process  

(Grant et al., 2017; Langwig et al., 2015).  Otherwise,  the disease may become  so well  

established that  it proves infeasible to eradicate (Canessa et al., 2020). There  may therefore  be  a 

high  cost to delaying actions  until rigorous  research and monitoring protocols have been put in 

place and reliable epidemiological models have been developed  (Canessa et al., 2018; Grant et 

al., 2017). In this context, formal expert elicitation offers an opportunity to  rapidly address 

important  scientific questions and inform  management activities  (Choy et al., 2009; Martin et al., 

2017, 2012; Moore et al., 2022; O’Hagan et al., 2006). It also provides a means to structure  

existing knowledge into a framework that  can guide future research and monitoring  efforts  

(Kuhnert et al., 2010; Martin et al., 2011).   

The process of identifying disease etiology, however,  is often haphazard and without a  

framework for organizing the current state of knowledge or future knowledge that will be  

accumulating over time  across experts  and studies. With diseases, time is rarely  taken to develop 
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110 hypotheses and combine  knowledge among experts before  management  actions are pursued to 

try to stop disease spread.  Frameworks have been developed to compile expert knowledge  for  

structured risk assessments of emerging bat disease  (Cook et al., 2021; Runge et al., 2020)  but 

rarely for assessing hypotheses for disease etiology. In coral reef research, formal expert 

elicitation has been used to  classify the condition of coral reefs  (Bradley et al., 2020; Santavy et 

al., 2022b, 2022a)  but there is a need for a framework to compile expert knowledge to rapidly 

assess disease  etiology  to inform management efforts. Here  we present a rapid prototyping 

method (Garrard et al. 2017) for  developing competing hypotheses, quantifying belief weights 

for these  hypotheses using a combination of  formal expert elicitation and statistical modeling 

techniques and  illustrate the application of this approach for investigating the etiology of a  

recently  emerged  disease of coral reefs:  stony coral tissue  loss disease (SCTLD).  We discuss the  

opportunities and  challenges  of this approach for  addressing emergent diseases and  discuss 

applications  to other management and  conservation problems that require  rapid  responses.   
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123 2.  Methods  

2.1 Case study: SCTLD  

Coral  reefs are currently experiencing a multi-year disease-related mortality event, 

SCTLD, which  began in 2014  and has now spread  to infect reefs throughout Florida’s Coral Reef   

and the Caribbean,  resulting  in massive die-offs of  multiple coral species  (Brandt et al., 2021;  

Dahlgren et al., 2021; Heres et al., 2021; Muller et al., 2020; Precht et al., 2016; Walton et al., 

2018; Williams et al., 2021). The disease, which  impacts at  least 24  species of coral including 

Endangered Species Act-listed and primary reef-building species, presents as tissue loss lesions  

which often result in whole colony mortality  (Precht et al., 2016; Walton et al., 2018; Williams et 

al., 2021). While  numerous  individual studies have been conducted  to understand the etiology of 
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133 SCTLD  (e.g., Aeby et al., 2019; Landsberg et al., 2020; Meiling et al., 2021; Meyer et al., 2019; 

Neely et al., 2020; Rosales et al., 2020; Traylor-Knowles et al., 2021; Ushijima et al., 2020; 

Walker  et al., 2021; Work et al., 2021), the causative agent of the disease remains unknown, 

complicating disease response efforts and highlighting the  need to quickly integrate  existing data 

and new findings to rapidly  inform decision-making for this recently emerged  disease.  

SCTLD provides an appealing example  for illustrating our approach because the 

causative agent of SCTLD remains unclear, yet research has been accumulating over the last 8 

years from both experts and published studies on the etiology of SCTLD that can be used for  

demonstrating these methods.  We captured our process in a flow diagram (Figure 1) and detail 

the specific steps below.  Our  data  (Robertson  et  al.,  2023)  and  code  (Walsh  et  al.,  2023)  can  be  

accessed  by  links  within  the  data  availability  section.  

2.2 Expert panel  

The first step was to  identify  a panel of experts  with knowledge of SCTLD  and its 

impacts  on coral reefs. We contacted scientists with  diverse  expertise who had previously 

worked on  SCTLD. From those contacted, a group of  15 participants  were willing to participate  

in the study  including  microbiologists, pathologists, disease ecologists,  population ecologists, 

and coral experts  at universities and various government agencies.  Participants represented 

marine disease  experts in Florida, Hawaii, South Carolina, and the US Virgin Islands.  

2.3 Rapid Prototyping  

We  then  used a rapid prototyping approach  to elicit, structure,  and evaluate existing 

knowledge regarding the etiology of SCTLD. Rapid prototyping, which has been used in 

engineering, business,  and decision science, is a structured approach to produce a   “prototype” 

product quickly, often  through a multi-day workshop (Garrard et al. 2017). In our context the 
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156 prototypes were two methodologies to quantify belief weights of competing hypotheses about the  

cause of SCTLD (see  Figure  1 for  a graphical representation of the rapid prototyping approach 

that we used).  Our  approach began with eliciting hypotheses about the cause of SCTLD from the  

expert panel. This was done over the  course of  four  meetings,  conducted via  videoconference  

between 8/13/2021 and 11/09/2021,  which collectively took ~11.5  hours of  meeting  time.  

However, because we separated the participants into two  groups for the third meeting, the total 

meeting time required of each  expert was only 9.5 hours.  

 2.3.1 Introduction of Goals/Process–During the  first  meeting we introduced  the goals of 

the project  to our expert panel and  described  the  expert  elicitation  process  and formal expert 

elicitation techniques  employed. We also  emphasized  the importance of considering cognitive  

biases (such as anchoring, authority bias, small sample bias, overconfidence; Sutherland and 

Burgman, 2015)  and had the experts go through examples to better understand the potential for  

over- or under- confidence when providing elicited values  (Kuhnert et al., 2010; Martin et al., 

2012).  After this initial meeting, to assess the potential for expert over- or under-confidence  

when providing elicited values, we had each expert provide their “best guess”   as well as the 

associated uncertainty with this guess to  three training questions for which the correct answer  

was known to the workshop coaches but not the experts. During the  second meeting we  

presented the  results of the training questions so the  experts  could see their  responses  compared 

to the “truth” and assess their own level of over- or under-confidence.  Each  expert was assigned 

a unique identification number (ID)  that was displayed  with their  responses  in place of experts’   

names to keep results anonymous  and reduce the risk of “authority bias”, “peer pressure”,  and 

other potential cognitive biases.  Experts discussed the results and issues of over- or under-

confidence as a group.  
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179 2.3.2 Hypothesis Generation–A key aspect of our  approach was structuring the problem 

into a  series of competing scientific hypotheses that served  as the foundation for  assessing the  

current state of knowledge. After the first meeting, we  asked each  expert  to identify 2 –   6 

hypotheses and associated predictions  for the causative agent(s)  of SCTLD.  We consolidated the 

experts’ hypotheses and removed  redundant ones.  During the  second meeting, we presented the  

panel’s proposed hypotheses and  discussed these  as a group by framing the disease  etiology 

around the  epidemiological triangle (“Agent-Host-Environment”; Scholthof, 2007; vander Wal et 

al., 2014)  to help stimulate ideas about the multiple hypotheses and identify  alternative  

mechanisms. We then revised the hypotheses based on the input of the  panel. We encouraged the 

experts to limit the number of hypotheses to approximately ten  to keep the number of hypotheses 

manageable  and mutually exclusive. This resulted in  ten  hypotheses  (Hyp)  (Table  1).  All 

meetings were  recorded and if some participants could not  attend a meeting, they were given 

access to the recording and any presented  material.  

 2.3.3 Expert elicitation method M1–We  considered two elicitation approaches  that 

hereafter we refer to as method 1 (M1) and method 2 (M2)  (Figure  1). M1 was intended to get an 

overall assessment of the state of knowledge  across experts  regarding the cause of SCTLD.  

During the third meeting we explained the process for M1  and  asked the  experts to allocate 100 

points across the 10 hypotheses based on the weight of evidence that they believe existed in 

support of  each hypothesis. Experts were allowed to  use  their  own knowledge and any sources of 

information available  to them, but not to confer with each other  regarding their scores. We 

presented and discussed the elicitation results for  M1 to the panel  during the fourth meeting. The  

purpose of the  discussions  was  not to reach consensus but to reduce linguistic uncertainty  and 

misunderstandings. Following the discussions and based on the input of the  experts,  we  revised 
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202 the definition of the hypotheses. We then asked the experts to revise their estimates, if needed, 

and used these  revised estimates for  the M1  analyses.  

2.3.4 Modeling  of elicited values for M1–   We derived  a Bayesian hierarchical model  to 

estimate  expert belief weights  (±  95%  credible intervals)  for each of the  hypotheses  regarding 

causes of SCTLD. Specifically, we modeled the expert-elicited points as follows:  

𝑦𝑖,𝑗 ~ 𝑑𝑑𝑖𝑟𝑐ℎ(�⃖�  ),  

𝛼𝑗~𝑑𝑔𝑎𝑚𝑚𝑎(1, 1),  

where  𝑦𝑖,𝑗  is the normalized weight (i.e., between 0 and 1) for the ith  expert  for the jth  hypothesis, 

and αj  is a concentration parameter for the Dirichlet  distribution (Gelman et al., 1995)  associated 

with the  jth  hypothesis.  The belief weights (𝑊𝑗) were then derived  as follows:  

𝛼  
𝑊 =  

∑𝑚 
𝑗

𝑗  ,
𝑗=1 𝛼𝑗  

where  m  is the number of hypotheses investigated.  We plotted the resulting belief weights. A 

detailed description of the model and code are provided  in the Supp. File.  Note that using the 

Dirichlet distribution to model belief weights has been considered by others (Rozowski 2022).  

2.3.5 Expert elicitation method M2–   The second approach,  M2,  was developed to provide  

a framework for deriving  belief weights for the hypotheses  based on assessments  of individual 

studies. We  initially  asked panel members to  select four  studies relevant to the etiology of 

SCTLD  and to consider the  following criteria  when selecting the studies: (a) relevance to the  

hypotheses, (b) scientific rigor, (c) accessibility, (i.e., that the studies were  available as a  

publication or a report), and (d) that the studies would be easily understandable/interpretable by a  

diverse group of experts. From these, we selected the  five  studies that received the most votes 
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223 from the experts  including:  Aeby et al., 2019; Kellogg and Evans, 2021; Landsberg et al., 2020; 

Ushijima et al., 2020; Work et al., 2021. For  all  studies, we provided background information 

and/or the associated publication,  and authors associated with these studies  either discussed the  

results directly or provided written comments about the studies  to the expert panelists. Under the 

M2  approach, experts were asked to  evaluate  whether hypothesis h  was supported or not by a 

given study s. The experts were  asked to allocate  100 points between two options for each 

hypothesis and for each study: “yes” there is supportive evidence for hypothesis   h,  or “no” there   

is no support for hypothesis  h  according to study s. For example,  “yes: 80;   no: 20” (hereafter 

noted as “80/20”)   for hypothesis h  indicates that expert e  considered that study s provided strong 

supportive evidence for hypothesis h  (i.e., there was an 80% chance that the study supports 

hypothesis h  and a 20% chance that it  did not). If the study was irrelevant with regards to  

hypothesis h  (i.e., the study could not by its design provide evidence  for  or against the 

hypothesis),  the experts entered “Not Applicable”   (“NA”). Note that there is a difference between 

“NA” and “50/50”.   “NA”   means  that the study was irrelevant to the hypothesis, whereas  “50/50” 

means that the study could have  potentially provided  support for or  against  the hypothesis,  but 

the results were such that the study provided similarly weighted  evidence  for and  against the 

hypothesis. Initially the experts were  assigned to two separate studies and  results were discussed 

with the entire group  to familiarize the panel with the process. Experts were given the  

opportunity to revise their estimates  for the  initial two studies and then  to assess  the remaining 

three  studies.  

2.3.6 Modeling  of elicited values for M2–   We derived  a Bayesian hierarchical hurdle  

model  to estimate  temporal changes in the  belief weights  for each of the  hypotheses  as 

knowledge  accumulated  when  additional  disease  studies became available. We fit a hurdle model  
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246 to properly account for  cases where the experts indicated a given study s  provided unequivocal  

evidence  against  hypothesis  h:  

𝑧𝑒𝑟𝑜𝑠𝑖,ℎ,𝑠 ~ 𝑑𝑏𝑒𝑟𝑛(𝑝𝑧𝑒𝑟𝑜ℎ,𝑠),  

𝑝𝑖,ℎ,𝑠 = Φ(𝐿𝑖,ℎ,𝑠 ) ∀ 𝑝𝑖,ℎ,𝑠 > 0,  

𝐿𝑖,ℎ,𝑠 ~𝑑𝑛𝑜𝑟𝑚(𝜇ℎ,𝑠, 𝜎ℎ,𝑠)  

where  𝑧𝑒𝑟𝑜𝑠 th 
𝑖,ℎ,𝑠 is an indicator of whether the i  expert assigned a value of  zero  (i.e., 𝑝𝑖,ℎ,𝑠 = 0)  

for the h  hypothesis and s study, 𝑝𝑧𝑒𝑟𝑜ℎ,𝑠 is the probability of a zero assigned value, Li,h,s  is the  

latent evidence in support of the hypothesis, 𝑝𝑖,ℎ,𝑠 is the  normalized  number of  points assigned 

for each study and hypothesis by the ith  expert, 𝜇ℎ,𝑠 is the mean latent evidence  and 𝜎ℎ,𝑠 is the  

associated standard deviation. To complete the  Bayesian specification, we specified the 

following hyperpriors:  

𝑝𝑧𝑒𝑟𝑜ℎ,𝑠~𝑑𝑏𝑒𝑡𝑎 (1, 1),  

𝜇ℎ,𝑠~𝑑𝑛𝑜𝑟𝑚(0, 1),  

𝜎ℎ,𝑠~𝑑𝑢𝑛𝑖𝑓(0, 1).  

To quantify the  accumulation of knowledge with respect to evidence  for/against our 

hypotheses, we ordered the  five  studies in chronological order based on the date of publication 

and then calculated the estimated posterior distribution for the accumulated  learning/evidence,  

Wh,s  for  a hypothesis, given the s th  study  was  considered:  

1  
𝐸(𝑇 =  ∑𝑠

ℎ,𝑠)  (  ) 𝑠  
 =0 𝜇ℎ,𝑠,

𝑠+1
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1  
𝑊ℎ,𝑠 = Φ (𝐸(𝑇ℎ,𝑠)) × (1 − Φ (( ) ∑𝑠

𝑠=1 Φ−1(𝑝𝑧𝑒𝑟𝑜ℎ,𝑠))). 
𝑠 

A detailed description of the model and code  are provided in the  Supp. File. Because we had 

some NAs in our data, where experts did not feel that a study addressed a  particular  hypothesis, 

we also developed a  mixture formulation that weighs  past knowledge against current knowledge  

based on the proportion of experts who  felt  a study addressed  a specific hypothesis  (i.e.,  the 

proportion of non-NAs):  

𝑠 = 0 → 0  
𝐸(𝑇ℎ,𝑠) = {   

  
1

  ∑𝑠−1  𝑎
𝑠 > 0 → ( ) (( 𝜇 ) × (1 + ℎ , ,𝑠

𝑁 𝑎  
𝑙=0 ℎ,𝑙  

−
) + 𝜇  𝑠 ℎ,𝑠

ℎ ( ℎ
,𝑠 × , ))

𝑠+1 𝑁ℎ,𝑠  𝑁ℎ,𝑠  

where  ah.s  is the number  of experts out of Nh.s  experts who felt the study s did not address 

hypothesis h.  This assumes that prior to any studies being conducted Th.s  is 0 because no 

knowledge exists about the etiology a priori.  We used this mixture formulation in our analyses 

and plotted the resulting belief weight values to show the evolution of the learning process over 

time based on the accumulation of knowledge as  the experts considered additional studies in the  

chronological order they were published.  We started  the plots  at s  =  0 to represent the initial  lack 

of knowledge  where no studies had  yet been considered and where  the belief weights for  all  

hypotheses were  defined to be 50%  for  “yes,  there  was supportive evidence for  the  hypothesis”.  

Deviations of the estimated belief weights away from 50% show that learning had  occurred as 

expert knowledge had  shifted the belief weights in favor  of  (i.e., > 50%) or  against (i.e., <50%) a  

hypothesis.  

2.4 Study weights   
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284 After entering the values under method M2,  the participants were  asked to assign 100 

points  to the five studies, based on overall  study design and strength of inference  regarding the 

etiology of SCTLD. As an example of this process, assume that  for two studies X  and Y  (among a 

larger set of studies)  an expert assigned the following weights  to each study: w(X)  = 30; w(Y)  

=15,  where  w(X)  and w(Y)  are the weights of study  X  and Y,  respectively. This weight allocation  

implies the study  design and strength of inference  provided by Study X  was twice that of  Study 

Y.   

We averaged the study weights across all experts  and used these study weights to better 

understand the relative study design strengths and inference provided by each of the studies. 

Although we did not do so here, these study weights could also be used as weighing factors in 

downstream analyses to account for these  inherent differences among studies.  

3.  Results  

3.1 Expert elicitation M1  

The aggregated belief weights across the experts for the  ten  hypotheses  indicated large  

uncertainty  surrounding the belief weights, although some hypotheses appeared to be  ruled out  

by the experts based on the current state of knowledge, given their low weights relative to the 

other hypotheses (e.g., Hypotheses 4  and 10  and also potentially 7, 8, and 9)  (Figure  2, Supp. 

Figure 1). Hypothesis  3  had the most support with 15.0% of the weight, followed closely by 

Hypothesis  6 that had 14.9% of the weight. Hypothesis  10  had the least  support with 1.9% of the  

weight, followed by Hypothesis 4  that had 5% of the weight.  Hypotheses that considered a single  

agent (Hypotheses  1, 2, 7, 10) represented 35%  of the weight, whereas hypotheses that 
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305 considered multiple agents (Hypotheses  3, 4, 5, 6, 8, 9) had 65% of the  weight, suggesting  that 

the panelists currently believe multiple agents are  likely involved in the etiology of SCTLD.  

3.2 Expert elicitation M2  

Fourteen out of the 15 experts provided all M2 values and one  participant provided M2 

values only for Work et al. (2021) and Kellogg and Evans  (2021).  Belief weights for the different 

hypotheses changed  over time as the experts considered  additional studies  (Figure  3, Supp. 

Figure 2). For example, there was  a 19% increase  in belief weight for  Hypothesis 1  after the  

addition of  Work et al. (2021)  compared with the  belief weights based only on the first four  

studies.  Over time, support for Hypotheses 3, 4, 7, 8, 9, and 10  decreased. The  other hypotheses 

had less obvious trends over time, however belief weights for Hypotheses 2 and 5 remained 

above  50% weight while the other hypotheses  mostly remained below this line.  

3.3 Study weights  

Fourteen out of the fifteen  experts provided study weights for the five  studies. The  average  

study weights across all experts for  each study were  0.19, 0.22, 0.19, 0.19, and 0.21, for studies 

1-5 respectively, indicating that study weights were  similar across studies  (equal weights  would 

have been 0.2 for each of the five  studies), and  experts considered all  five  studies to be nearly 

equal in study design and strength of inference  regarding the etiology of SCTLD.  
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322 4.  Discussion  

When a novel disease  emerges, there is a need to act quickly so that  rapid decisions can be  

made  for limiting its spread  (Grant et al., 2017; Langwig et al., 2015). It is particularly important 

to identify the etiology of the disease so that management can  target key underlying drivers.  

Here, we developed a  rapid prototyping approach to  formalize the process for combining expert 
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327 knowledge regarding disease etiology  that (a) identifies  competing hypotheses about the agent(s) 

causing  disease; (b) quantifies  the belief weights for each hypothesis using two expert elicitation 

techniques; and (c) presents  techniques to update the belief weights.  

4.1 Insights from expert elicitation M1  

The experts identified ten  primary competing hypotheses. The results from M1 indicated  

that substantial  uncertainty existed  within and among experts about SCTLD  etiology. Some 

hypotheses carried minimal  weight based on the experts’ current knowledge   (e.g, Hypotheses  10 

and 4;  Figure  2). Thus, M1 is an efficient and rapid means  to narrow down the number of  

potential hypotheses and  help prioritize future studies and experiments  to reduce uncertainty 

around remaining  hypotheses.  Advantages  of this approach include  that it provides a  rapid  

snapshot assessment of the current state of knowledge and it can  also  be repeated periodically 

(e.g., annually) to assess changes in belief weights  over time. Hypotheses can be added or 

removed using this process, and uncertainty can be quantified to capture  an  increase  in precision 

as the number of  experts grows.  A useful aspect of this approach is it aggregates  knowledge  

experts have gained from multiple sources such as  through reading scientific papers, attending 

meetings and presentations, informal information exchange with other researchers, and recent 

research findings that have been  discovered but not yet published. A disadvantage is the results 

may be sensitive to the expertise of the participants, their  initial  background level of knowledge,  

their unconscious decision biases  (e.g.,  pet hypotheses), and results also may be influenced by 

the number  of  experts and the time they invest into the elicitation. There may also be some 

linguistic uncertainty among experts  (e.g., understanding the hypotheses). This uncertainty 

should decline over time  with additional meetings and discussions,  and the number of  elicitation 
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349 rounds could be extended depending on the needs of a study.  In our situation,  we limited the  

number of elicitation rounds because  we wanted to demonstrate a rapid response.  

4.2 Insights from  expert elicitation  M2  

For  M2,  the  experts were asked to assess studies individually and look for supportive 

evidence  for each hypothesis.  Beliefs weights for the different hypotheses changed over time  as 

the experts consider additional studies  (e.g.,  support for Hypothesis  10 decreased over time; 

Figure  3).  One  advantage  of M2 over M1  is that it may be easier to assess the contribution of a  

single study to the learning process. Indeed, it is possible to compute the change in belief weights 

associated with a given study.  For example, the  19%  increase in belief  weights toward 

Hypothesis 1  based on the study of Work et al. (2021)  indicated  that this study was highly 

influential regarding Hypothesis 1.  A disadvantage  of M2 is that assessing individual studies 

takes additional time on the part of the experts  and  M2  is therefore  a  slower  overall  approach 

than M1 due to the need of experts to ideally review many studies. As with M1, this approach 

can be  useful through aggregating knowledge  (experts’ reading of the literature), although M2 is 

more limited than M1 by not incorporating unpublished sources of information (e.g.,  from 

presentations, meetings, informal exchange) that experts may have.  Similar to M1,  M2  can also 

be  biased by the expertise of the participants, their initial background levels  of knowledge, their  

unconscious decision biases, and the time they invest into reading each publication.  Future  

studies could mitigate some of these biases  in various ways such as  by selecting experts with a  

broad range of expertise, by discussing ways to avoid  decision biases  as a group,  or by requiring 

that each expert spends a certain amount of time reading each publication.  

Ideally,  method M2 would lead to results that are consistent among experts, but we noted 

variations in the assessment of the experts  in the weights assigned to the studies. Studies or 
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372 experiments that would lead to a clear “signal detection”   should theoretically lead to more  

consistency among experts.  For example, strong evidence of the  effectiveness of specific groups 

of antibiotics tested using  a rigorous randomized experiment  should  yield similar expert-elicited 

weights.  However, as with  our case study  and ecological systems in general, clear signal  

detection is  often difficult or even  impossible to achieve  because of the complexity of the  

system.  Another way to increase consistency among experts is  to use the Delphi process instead 

of the modified Delphi process that we implemented  (Gustafson et al., 1986; MacMillan and 

Marshall, 2006). The  Delphi approach is more of a  consensus-driven process, whereas our 

approach did not aim at reaching consensus. The benefit of the Delphi  process  is that it may 

reduce the risks of misunderstanding the findings of a study because the experts discuss both the 

study and scoring in more detail  as a group  (Kuhnert et al., 2010). There  are important 

downsides  to consider,  however, such as the Delphi  method  may not capture uncertainty as 

effectively and  may also induce more biases such as “authority bias”   in which  the  most  

outspoken participants may exert  an undue influence  on the decisions of the group. The Delphi  

process may also be more time-consuming to implement because of additional discussion time to 

achieve  a consensus, which is undesirable  in situations requiring  rapid decision-making  (Kuhnert 

et al., 2010).   

During implementation of  M2,  we considered the case where  a hypothesis h  was 

supported or not by a study (with “NA” if the study was irrelevant to the hypothesis). This binary 

approach makes  it easier to integrate studies that are very different from each other. For example, 

here  experts  were  able to simultaneously evaluate  Kellogg  and Evans  (2021), an  experiment-

based  study, with Work et al. (2021), a  histological analysis. If they had been selected by the  

experts, we  could also have included observational/modeling  studies within our framework such 
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395 as Muller et al. (2020),  which suggested a pattern of spread in space  and time consistent with an 

infectious disease.  

There  are limitations and perspectives for further improvement regarding method M2.  In 

our case,  the aggregated  study weights  were similar across studies, despite  there  being  substantial 

variation among experts. If the aggregated study weights had been substantially different, we  

could recompute the belief weights to account  for  these  differences.  Although here  we asked the  

experts to provide study  weights that incorporated  considerations such as sample sizes and the 

rigor of study  designs, we could also envision approaches that would more  explicitly quantify 

these considerations. With M2, the selection of studies may influence the ultimate  relative  belief 

weights. For example,  if  studies that address certain hypotheses are  overrepresented, this  could 

influence the results; however, this is not an issue with the estimated mean belief weights 

because  we explicitly account for studies that do  not address a certain hypothesis. Thus, the  

belief weights will not change if a  study is not applicable to a  particular hypothesis.   

The concern regarding the  representativeness  of studies is a larger concern for any meta-

analytical approach. Care  must  be taken  in selecting studies, particularly when only considering 

published studies, because of  the potential for  “publication bias”   (e.g., certain journals and 

reviewers may favor  the publication of statistically significant results; Thornton and Lee, 2000). 

For our analysis, we did not restrict ourselves to including only published studies,  which may 

have helped reduce  the  risk of “publication bias”. Another benefit of not waiting for publication 

is that it can help accelerate the process  by allowing for the consideration of recently acquired 

data or results, which may be particularly important for emerging diseases that require  a rapid 

response. Note,  however,  that there  can be  a tradeoff between timeliness  and reliability of the  

results (e.g., the peer review process can help identify study flaws).  
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418 Here, we asked the experts to consider the following criteria when selecting the studies: 

(a) relevance to the hypotheses, (b) scientific rigor, (c) accessibility,  (i.e., that the studies were  

available as a publication or a report), and (d) that the studies would be easily 

understandable/interpretable by a diverse group of experts. Although the last criterion  (d) was  

well-suited for  the purpose of method development, we acknowledge that it may have restricted 

the subset of studies  selected for consideration. Because of this  issue, combined  with the fact that 

we only considered five  studies,  we intend  for the  M2  results  to only  be used as a  simple 

demonstration of these methods  rather than for interpretation of SCTLD etiology. Ideally, many 

more studies will  need to be incorporated before these results can be  used for conservation 

decision making. These studies could  also be gathered over longer time periods (e.g., years to 

decades) and belief weights updated  as new papers are published on the topic.  

4.3 Management applications  

An advantage  of the rapid prototyping approach that we have described is that it can be  

implemented very quickly to address management questions. It took less than 12  hours  (and less 

than 10  hours  if we  consider the fact that we separated the participants into two  groups for the 

third meeting)  of meeting time to implement  both  methods (M1 and M2).  Updating the estimates 

under M1 or adding new studies under M2 would  take even less time if the same group of  

experts was to be  used, since they are  now familiar with the methodologies. We scheduled the 

meetings over multiple months, but the rapid prototyping could have been conducted over a  few  

days  (e.g., in a workshop setting). The belief weights obtained can be used to  rapidly  inform 

management actions that may be needed such as  medicinal treatment (e.g.,  antibiotics, 

probiotics)  or  restoration of  corals through outplanting of corals grown  in captivity. Belief 

weights could also  be incorporated more formally in the  decision-making  process under a  
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441 structured decision making and/or adaptive management process  (Martin et al., 2009; Williams 

et al., 2002; Williams and Johnson, 1995).  There  are  several  limitations  of the rapid prototyping 

approach  that we used. For instance, the results  can be  influenced  by the expertise of the 

participants, their training  and cognitive  biases, and the time they invest in the elicitation  

(Sutherland and Burgman 2015). Although,  we employed  a structured approach to the elicitation 

and multiple rounds of elicitation to  address some  of these issues, some errors  likely  remain  

(Sutherland and Burgman 2015; Hanea  et al., 2017).  We  also  note that ideally weights would be  

derived through a  data driven process such as the one described by Nichols et al. (2021), but 

problems arise when there are  few studies, a subset of non-randomly selected studies are used, or 

critical experiments that directly address the cause of the disease are lacking. In such situations, 

the expert elicitation approaches that we present can help provide a useful assessment of the 

cause of the disease.  

4.4 Quantifying advances  in scientific knowledge  

The approaches to updating  belief weights  that we have mentioned  herein  (e.g., through 

Bayesian updating) could  be used to track the gain in knowledge from individual studies and to 

prioritize future sequences of experiments. The approaches to track learning over time can be 

simple, such as repeated implementation of M1 or M2 over  time  as new studies are  added. A 

further  level of complexity would be  the use  of adaptive optimization algorithms in which the 

belief weights are folded within an optimization algorithm (e.g., Martin et al., 2011; Nichols, 

2021).  

4.5 Conclusion  
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462 The approaches described in this paper could be useful for the management of  not only  

SCTLD, but also other coral diseases,  including both existing and new  diseases as they emerge  

in the  future. These approaches  are  also relevant to diseases affecting other  systems (e.g., chronic  

wasting disease in deer; Williams, 2005). More broadly, they are  relevant to other kinds of 

management problems that  likewise  require  rapid  responses, such as invasive species 

management  or  the conservation of endangered species, both issues  which may lead to 

irreversible states (e.g., extinction in the case of endangered species; and uncontrolled growth in 

the case of invasives; Ducatez  and Shine, 2017).  In each of these cases, the rapid prototyping 

approaches demonstrated here  can be used to combine knowledge from multiple experts and/or 

studies to help with fast decision-making needed for urgent conservation issues. These  

approaches can also be used to adjust belief weights over time as studies and expert knowledge  

accumulate and can  be a  helpful tool for  adapting management decisions.  
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Hyp. 1  SCTLD is caused by viral agent(s)  

Hyp. 2   SCTLD is caused by a pathogenic bacterial agent that directly affects the [coral 

  and/or zooxanthellae (defined as ‘algal symbiont’)] 

Hyp. 3  SCTLD is initially caused by a viral agent in the coral with secondary bacterial 

 infection(s) of the [coral and/or zooxanthellae];  

Hyp. 4  SCTLD is initially caused by a bacterial agent with secondary viral infection of the 

[coral and/or zooxanthellae]  

Hyp. 5   SCTLD is caused by multiple, coinfections of bacterial agents that directly affect the 

[coral and/or zooxanthellae]  

Hyp. 6  SCTLD is initially caused by a viral agent in the zooxanthellae AND a secondary 

bacterial infection of the [coral and/or zooxanthellae]  

Hyp. 7  SCTLD is caused by a metabolite from zooxanthellae directly affecting the [coral 

and/or zooxanthellae]  

Hyp. 8  SCTLD is caused by a viral agent in combination with endogenous toxins that 

directly affects the [coral and/or zooxanthellae]  

Hyp. 9   SCTLD is caused by a combination of interactions between infectious and non-

infectious agents  

Hyp. 10  

 

SCTLD is caused by fungal agent(s)  

 

  

  

  

  

  

  

  

  

510 Table 1.  Ten hypotheses  explaining  the etiology of stony coral tissue loss disease (SCTLD)  

based on expert elicitation of fifteen experts.   511 
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522 Figure  1. Flow diagram of the rapid prototyping approach used for understanding etiology of  

stony coral tissue loss disease (SCTLD).  523 
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526 

527 

528 Figure  2.  Relative support  (mean ±  95%  credible  intervals) for each of ten hypotheses 

explaining the etiology of stony coral tissue  loss disease (SCTLD) based on expert elicitation of  

15 experts using Method 1.  Relative support here is  the belief weight  for each hypothesis  minus 

0.10 (which indicates the  belief weight for  each of the 10  hypotheses if they are equally 

weighted). The  relative support  takes  on positive values (above the red line) where there is 

evidence  for  a hypothesis and negative values (below the red line) where there is  evidence  

against a hypothesis based on the  experts’ assessments.   The B indicates a bacterial agent, F  

indicates a fungal pathogen, O indicates a combination of infectious and non-infectious agents, T 

indicates toxins, V indicates a viral agent, and Z corresponds with metabolites from 

zooxanthellae  (defined as ‘algal symbiont’)   that directly affect  the coral (C)  and/or 

zooxanthellae.  
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Figure 3. Relative support for each of ten hypotheses explaining the etiology of stony coral 

tissue loss disease (SCTLD) based on expert elicitation of fifteen experts using Method 2 where 

belief weights change over time as more studies are considered. Relative support here is the 

belief weight for each hypothesis (for the probability that ‘Yes’ the hypothesis is supported by 

the study) divided by the sum of the belief weights for all hypotheses for that study. The five 

studies considered are shown on the x-axis in chronological order where belief weights are 

calculated using the current study and all prior studies. The B indicates a bacterial agent, F 

indicates a fungal pathogen, O indicates a combination of infectious and non-infectious agents, T 

indicates toxins, V indicates a viral agent, and Z corresponds with metabolites from 

zooxanthellae (defined as ‘algal symbiont’) that directly affect the coral (C) and/or 

zooxanthellae. The dashed line represents complete uncertainty surrounding the etiology of 

SCTLD (i.e., each hypothesis is equally plausible). Deviations of the estimated belief weights 

from this line show that expert knowledge shifted the belief weights towards some hypotheses 

(above the red line) and away from others (below the red line). 
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