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ABSTRACT: Uncertainty in quantitative precipitation forecasts (QPFs) from numerical weather prediction (NWP) mod-
els manifests in errors in the amounts of rainfall, storm structure, storm location, and timing, among other precipitation
characteristics. In flash flood forecasting applications, errors in the QPFs can translate into significant uncertainty in fore-
casts of surface water flows and their impacts. In particular, the QPF errors in location and structure result in errors on
flow paths, which can be highly detrimental in identifying locations susceptible to flash flood impacts. To account for this
type of uncertainty, the neighboring pixel ensemble technique (NPET) was devised and implemented as a postprocessing
algorithm of deterministic or ensemble outputs from a distributed hydrologic model. The aim of the technique is to address
displaced hydrologic responses resulting from location biases in QPFs using a probabilistic approach. NPET identifies a
sampling region surrounding each forecast pixel and builds an ensemble of surface water flow values considering the pixel’s
physiographic similarities. The probabilistic information produced with NPET can be calibrated through a set of tunable
parameters that are adjusted to account for NWP-specific QPF error characteristics. The utility of NPET is demonstrated
for the Ellicott City flash flood event on 27 May 2018, using products and tools routinely used in the U.S. National Weather
Service for warning operations. Results from this case demonstrate that NPET effectively conveys uncertainty information
about QPF precipitation location in a hydrologic context.

SIGNIFICANCE STATEMENT: This study introduces a new method suitable for operational use called the neigh-
boring pixel ensemble technique (NPET). NPET is an algorithm that generates ensemble-based streamflow forecasts
accounting for the location uncertainties in quantitative precipitation forecasts (QPFs) without the requirement of multi-
ple hydrologic model runs. NPET is capable of this feat through probabilistic assimilation of a priori QPF displacement
information and its uncertainty. The application of NPET with the Flooded Locations and Simulated Hydrographs
(FLASH) project shows the technique could be beneficial for flash flood warning operations in the U.S. National
Weather Service (NWS). It is envisioned that the application of NPET with Warn-on-Forecast System (WoFS)-forced
FLASH outputs will further enhance the quality of flash flood forecasts that support NWS warning operations.
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1. Introduction future time steps, which limits the lead time in forecasting the
concomitant hydrologic impacts. Accurately forecasting hydro-
logic responses at longer lead times would enable forecasters
to issue more timely flash flood warnings.

To extend lead time beyond the typical response times of
the land surface to observed precipitation, it is necessary to
utilize precipitation amounts at future time steps using extrap-

Rainfall, as the driving force of natural hazards such as
floods, flash floods, debris flow and shallow landslides, is argu-
ably the single most important variable in dynamical models
(Baum and Godt 2010; Rasheed et al. 2022; Slater and Villarini
2017) used in early warning systems. Other variables describing

the state of the hydrologic system and its physiographic proper- olation methods and/or quantitative precipitation forecasts

ties are also important in buffering or increasing the effects of (QPFs), the latter of which are nominally provided by numer-
precipitation on processes leading to the threat (Bedient et al. ical weather prediction (NWP) models (Cuo et al. 2011;
2008; Hall et al. 2014). The capabilities of remote sensing tech- i

nologies enable the estimation of spatial rainfall fields over
continental and even global scales. The radar-based quantita-

Ghimire et al. 2021). Forecast rainfall fields have uncertainties
due to a number of factors including inaccuracies in depict-
ing the initial states and lateral boundary conditions of the
tive precipitation estimates (QPEs) are used as forcing to atmosphere, microphysical and boundary layer processes
hydrologic forecasting systems that focus on short-fused hydro-  {hat are often parameterized in the NWP models, and the
logic hazards such as rainfall-driven flash floods and debris  jpjtiation of convection (Duda and Gallus 2013; Jankov et al.
flows (Gourley et al. 2017). The biggest limitation with QPE- 2007a,b). These problems are particularly pervasive during
driven forecast systems is the inability to supply rainfall at  the warm season when the most intense rainfall rates typi-

cally occur over small spatial scales and the operational

NWP models exhibit the lowest forecast skill (Fritsch and
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Wernli et al. (2008) developed a taxonomy for verification
metrics attributed to errors in precipitation structure, ampli-
tude, and location (SAL). In general, these errors are consid-
ered independently from one another, so efforts are spent to
spatially and temporally match QPF objects to analysis-based
radar rainfall estimates. Structure refers to the storm organi-
zational mode or storm type as being multicell, squall line,
supercell, air mass thunderstorm, etc. An amplitude error in-
dicates that, after the forecast and observed objects are
matched, the QPF amounts are biased. Location errors arise
from spatial displacements in the forecast rainfall from the ob-
served rainfall. In the SAL framework, contemporary convec-
tion allowing models (CAMs) yield QPFs that have minimal
structural and amplitude errors but can still have significant lo-
cational errors. For example, Duda and Gallus (2013) noted a
100-km spatial displacement on average for 6-h accumulated
precipitation at a threshold of 2.54 mm using a Weather Re-
search and Forecasting (WRF) Model run out 24 h. Likewise,
Yan and Gallus (2016) noted an average displacement of near
100 km using 3-h accumulated precipitation out to forecast
hour 12 using the North American Mesoscale Forecast System
(NAM), Global Forecast System (GFS), and a WRF Model
also at a threshold of 2.54 mm.

Several approaches have been adopted to address some of
the shortcomings of the deterministic model forecasts. One
approach is to generate an ensemble of possible outcomes by
perturbing boundary conditions, initial conditions, and/or ex-
plicit physics schemes or parameterized processes (Stensrud
et al. 2000). Ensemble hydrologic forecasts can then be ob-
tained treating each QPF member as an equally likely out-
come in addition to perturbing the hydrologic model states,
parameters, and/or model structures. For example, the ensem-
ble streamflow prediction (ESP) framework has been used
widely in operational streamflow forecasting in the NWS
(Day 1985; McEnery et al. 2005; Schaake and Larson 1998;
Seo et al. 2006; Smith et al. 1992). These approaches often
require multiple hydrologic model runs and are useful in cali-
brating the ensemble mean and spread for seasonal stream-
flow prediction.

Direct use of deterministic QPFs in a hydrologic forecasting
context can lead to outcomes that can appear precise in loca-
tion, timing, and magnitude, but can miss the correct flow paths
and thus mislead a forecaster. Carlberg et al. (2020) addressed
this shortcoming by systematically shifting precipitation objects
55.5 and 111 km in range separated by 45° in azimuth. A larger
ensemble size of 81 members was generated and then input to a
hydrologic model. Results showed that the method was able
to increase the probability of detecting floods. Further im-
provements were attained by assigning weights to the shifted
precipitation members based on climatological shifts in the
QPF fields. While providing a basis for considering short-term
QPF spatial displacements in streamflow prediction, opera-
tional application to flash flood scale remains computationally
challenging due to the need for multiple hydrologic model runs
in real time.

Hardy et al. (2016) recognized the challenges in applying
ensemble QPFs in an operational hydrologic modeling con-
text at flash flood scale without the requirement for multiple
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hydrologic runs over a large domain. They used a storm scale
NWP model to generate ensemble QPFs and then derived the
localized probability matched mean (PMM; Ebert 2001) as
done by Clark (2017), which addresses shortcomings with the
simple arithmetic ensemble mean such as a smoothing of indi-
vidual features (i.e., increases frequency of lower values while
reducing frequency of larger values). The PMM was then
used as forcing to a distributed hydrologic model over a sin-
gle, representative basin. The outcome of this experiment was
the distribution of streamflow values plotted as a function of
basin area. This information was then mapped to a larger, rep-
resentative domain to identify the basin scales that were sus-
ceptible to flash flooding given the forcing from the localized
PMM. While the method required several manual steps and
thus limited its operational application, it nevertheless pro-
vided preliminary direction on novel uses of ensemble QPFs
as forcing to hydrologic models that account for spatial uncer-
tainties in the forecast precipitation fields.

This study introduces a new method suitable for operational
use called the neighboring pixel ensemble technique (NPET).
NPET is a postprocessing algorithm that generates ensemble-
based streamflow forecasts accounting for the location uncer-
tainties in QPF forcing fields without the requirement of multiple
hydrologic model runs in parallel. NPET is capable of this
feat through probabilistic assimilation of a priori QPF dis-
placement information and its uncertainty. Section 2 pre-
sents a generalized formulation of the technique, followed
by its demonstration in a case study in section 3, including
the experiments, materials and methods. Results from the
experiments and a discussion describing the capabilities and
considerations of NPET are presented in section 4. Finally,
section 5 summarizes this work and discusses future studies,
and a vision for the application of NPET in operational
settings.

2. Formulation of the technique: Building ensembles
from deterministic forecasts

NPET postprocesses QPF-forced hydrologic forecasts com-
puted on a rectangular grid of pixels to generate hydrologic
ensembles. Ensembles are built for any grid point on the hy-
drologic forecast grid, sampling values from neighboring,
physiographically similar pixels to account for QPF object’s
locational uncertainty. The basic concept of ensemble genera-
tion with NPET is illustrated using the synthetic example for
a single location shown in Fig. 1. This particular location (i.e.,
pixel) for which the ensemble is created will hereafter be re-
ferred to as the NPET node to simplify the description of the
algorithm. A conceptual rainfall object as measured by an ob-
servational platform (e.g., radar, satellite, or rain gauge net-
work) is presented in Fig. 1a, highlighting the corresponding
hydrologic response on the flow path ending at the NPET
node. In Fig. 1b, a rainfall forecast identical in amplitude and
structure is created with a northeast displacement bias thus
leading to a hydrologic response on the wrong flow paths. In a
deterministic framework, the displaced QPF object could po-
tentially highlight areas that will not be truly impacted by the
storm (i.e., producing false alarms), while the area of interest
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FIG. 1. Synthetic example of displaced rainfall fields for illustration of NPET application: (a) true location of rainfall and
hydrologic response and (b) displaced rainfall and hydrologic response.

in this example (i.e., NPET node) would experience impacts
but would not be identified (i.e., producing misses). NPET
can be used in this scenario to recover the displaced hydro-
logic response by sampling values that were forecasted at lo-
cations surrounding the NPET node to build an ensemble and
provide information about the threat likelihood.

In Fig. 1b, the red dashed-line circle delineates the NPET
sampling area, which will be referred to hereafter as the
NPET neighborhood. An important capability of NPET is the
ability to characterize the unknown true location of displaced
hydrologic responses based on a priori QPF displacement es-
timates and their uncertainty obtained through characteriza-
tion of a QPF product’s long- or short-term spatial biases. For
example, if no information about the direction and magnitude
of displacement is available, NPET can be used for sampling
large areas around the NPET node, which can result in en-
sembles skewed toward low or zero values. The latter is com-
mon in cases of localized convection such as with single-cell
thunderstorms or supercells. However, if information about
the displacement is available, NPET can also characterize var-
ious degrees of uncertainty by targeting specific regions
around the NPET node and producing ensembles with less
skewness toward low values.

A weighting function is used to define the NPET neighbor-
hood employing a bivariate distribution to represent the level
of uncertainty about the true location of the future precipita-
tion and corresponding hydrologic response with respect to
the NPET node. The weighting field is based on the estima-
tion of the joint probability of the distances from the NPET
node along the south-north (y or vertical axis) cardinal axis
and the distances along the west—east (x or horizontal axis)
cardinal axis, for which univariate density distributions are
first defined independently. The beta distribution family was
selected to model univariate distributions because of its flexi-
bility to model a variety of curve shapes (Jeffreys and Jeffreys
1999; Podlubny 1998) through various combinations of its shape
parameters. For NPET, if the distribution is symmetric, it means
that the assignment of weights will not be a function of the direc-
tion with respect to the NPET node along the corresponding

cardinal axis. In those cases, the sampling is said to be isotropic,
which is applicable when no information about the direction of
the displacement is available to target specific regions within
the NPET neighborhood. The opposite occurs when the distri-
bution is skewed, in which case the sampling is said to be an-
isotropic. The NPET neighborhood is specified with three
tunable parameters:

e Its radius r, typically in kilometers (km), which defines the
size of the sampling area;

¢ A Euclidean vector E = (E,, E,), E,, E, € (—r, r) denoting
the expected distance and direction of displacement, which
controls the skewness of the distribution;

e A unitless scalar parameter o € [0, «) that adjusts the
spread of the weight’s distribution around the expected dis-
placement distance. The range of values of this parameter
is not related to any physical quantity, so it must be defined
empirically.

Once the univariate distributions have been defined, each
coordinate pair of univariate probabilities contained in a cir-
cle of radius r are multiplied to arrive to the joint probability
distribution following:

ENEN
N ENER"

=

PY = [P(xin)’,')] =

M

where P is the 2D joint distribution of n rows and n col-
umns, p;y and ply are independently computed probabilities
with univariate distribution functions, and dx is the pixel reso-
lution (km). The weighting field delineating the NPET neigh-
borhood Wypgt is obtained normalizing the elements of the
P matrix:
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FIG. 2. Implementation of NPET to example case in Fig. 1: (a) NPET neighborhood modeled as weighting field and (b) NPET ensemble
time series from sampling locations labeled A-F shown in (a).

where EWNPET = 1.0. Figure 2a shows the NPET weight field
computed for the example case in Fig. 1 in grayscale, where
the sampling is concentrated over the northeast region of the
NPET neighborhood using a radius r = 150 km, a Euclidean
vector E = (120, 90 km), and w = 10.

NPET builds ensembles borrowing the hydrologic response
from nearby pixels (referred to hereafter as neighbor pixels)
with physiographic attributes and/or antecedent conditions
from their contributing drainages that can significantly differ
from those of the NPET node’s catchment. This can lead to
an ensemble variance higher than that intended to represent
QPF displacement uncertainty. NPET addresses this through
the following: let T be a transfer function of the hydrologic re-
sponse at a given neighbor pixel to the NPET node such that

®)

NPET
q;

= 7'(‘11)7
where g, is the deterministic hydrologic response to QPFs at
the /th neighbor pixel, and gNPET is the hydrologic response
transferred to the NPET node for inclusion into the ensemble
as the /th member. Notice that Eq. (3) is presented in a ge-
neric form such that 7 can be any real-valued function that
converts g; into gN'ET without changing the physical meaning
of the hydrologic variable (i.e., ¢; and g)?ET are commensura-
ble quantities). Combining Egs. (2) and (3), a mathematical
expression for the construction of NPET ensembles for any

given location can be written as

WNPET(l) X T[ql(t)]
Wyper(2) X 7lg,1)]

qNPET(I) — ! (4)
Wiper(@ — 1) x T[qul(f)]
Wyper(2) X 1lg,(1)]
NPET

where q (7) is the NPET ensemble at any given time step f,
and z is the number of ensemble members that must be less
than n? (the total number of pixels within the NPET neigh-
borhood). Even though many physiographic attributes affect
hydrologic response, the contributing area of a basin is argu-
ably the single most important attribute determining runoff
volume and peak flow (Bedient et al. 2008). Consequently, the
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transfer function used in this study was designed to restrict the
selection of neighbor pixels based on how comparable their
contributing areas are to that of the NPET node with the fol-
lowing simple piecewise function:

“ g,. if DY (1 — D) = D!, = DY%(1 + D)

o) =

7\ @, it DI, < DN%*(1 — D) or D!, > DN¥(1 + D)
(%)

where DN°% is the drainage area (km?) at the NPET node,
D', is the drainage area (km?) at the Ith neighbor pixel, D is a
tunable parameter that specifies the limits of variation in con-
tributing area (expressed as a fraction), and @ is the null value
symbol. In other words, if the contributing area of the /th
neighbor pixel falls within the limits of variation of the con-
tributing area of the NPET node, then the hydrologic re-
sponse of the /th neighbor pixel is used in the NPET
ensemble; otherwise, it is excluded. The six squares with
single-letter labels from A to F in Fig. 2a represent neighbor
pixels with drainage areas that qualify to contribute values
to the ensemble. Notice that the location labeled with the
letter D is in fact the NPET node. Also, only six locations
have been highlighted in this case for the sake of illustra-
tion, while an actual application of NPET more typically re-
sults in an ensemble with hundreds of members. Figure 2b
presents a time series plot showing the hydrologic response
estimated from the observed rainfall and the 6-member
NPET ensemble. In this example, the probabilistic informa-
tion provided by NPET would indicate a nonzero chance of
significant hydrologic response at the NPET node, as op-
posed to the zero-response suggested by the deterministic
forecast (member D).

Note that, except for Eq. (5), the formulation of NPET dis-
cussed in this section presents a generalized form for the im-
plementation of the technique. Customization is possible via
Egs. (1)-(2) if a different model of bivariate probabilities is
available, and/or via Eq. (3) through any real-valued function
that generates new values of unit streamflow. Also note that
no specific hydrologic model nor QPFs are used in this formu-
lation; this is because NPET is agnostic about modeling phys-
ics or QPF bias characteristics.
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the OSE.
Parameter Value 1 Value 2 Value 3
® 0.0 17.0 60.0
D 12.5% 25.0% 50.0%
r 150.0 km
E (62.9 km west, 77.7 km north)

3. Study design
a. Experiments
1) SENSITIVITY ANALYSIS

The purpose of this experiment was to test and demon-
strate the capabilities of NPET in a controlled setting. The
aim was to isolate the effects of spatial displacement from
those caused by errors in precipitation amplitude and struc-
ture. To accomplish this, an observing system experiment
(OSE; Masutani et al. 2010) was designed in which refer-
ence QPEs were used to generate displaced rainfall inputs
for the simulation of hydrologic response, thus emulating dis-
placed QPFs. A steady-state assumption about precipitation
displacement biases was used, in which a unique displacement
bias vector is defined for the entire storm. This displacement
strategy produces displaced precipitation fields with the same
direction and length, thus resulting in a storm track perfectly
parallel to the true trajectory with respect to the axis of the
weather system’s motion.

For the first part, an evaluation of hydrologic forecast
errors was conducted to understand the impact of rainfall dis-
placement biases considering different physiographic charac-
teristics. A total of 360 scenarios were generated, consisting
of 120 displacement directions in the [0°, 360°) interval and
separated by 3° in azimuth, and three displacement lengths:
25, 50, and 100 km. The precipitation values used for this ex-
periment were extracted from the spatial subset labeled as
“hydrometeorological domain” [see section 3b(1)]. These
360 rainfall scenarios were then used as inputs to generate hy-
drologic simulations, which were compared against the base-
line reference run to compute various error statistics.
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In the second part, NPET was implemented for one of the
displacement scenarios to assess the impact of various sampling
parameter’s configurations on the ensemble-based forecast skill
to highlight the correct area under threat and encapsulate the
reference response. The scenario chosen for this experiment
was the one with a displacement of 100 km, 321° azimuth
(northwest quadrant). To simplify the analysis, the experiment
herein was limited to parameter w, which controls how concen-
trated the sampling is over a particular region of the NPET
neighborhood, and parameter D, which controls the selection
of members and the ensemble’s sample size. Parameters
r and E, which control the size of the NPET neighborhood
and expected region of displacement, were specified based on
available information about the QPFs projected displace-
ment since this was the main perturbation of the OSE. Table 1
summarizes the parameterizations of NPET used in the
experiment.

Figure 3 illustrates the NPET neighborhoods produced
with parameters in Table 1. Value 1 of parameter w results in
isotropic sampling, while the other two values result in aniso-
tropic sampling with two different levels of sampling con-
centration which were assessed herein through the central
angle of the NPET neighborhood defining the minor sector
that encapsulates at least 95% of the total weights. This
95% threshold value is arbitrary and only intended to de-
scribe the level of spatial concentration of the sampling rela-
tive to the tuning of parameter w. Value 2 was tuned to
concentrate the sampling within a quadrant sector (i.e.,
90° central angle), while value 3 was tuned for an octant sector
(i.e., 45° central angle), which results in higher spatial con-
centration of the sampling. The three values of parameter D
produce three levels of flexibility in terms of the drainage
size criterion. The higher the value of D, the more flexibility
and the larger the ensemble is. The actual number of mem-
bers attributed to the NPET node varies in proportion to the
spatial distribution of drainage areas.

The ensembles produced with the isotropic implementation
of NPET were compared to ensembles generated with a sim-
ple, yet computationally more expensive, method based on
Carlberg et al. (2020). This method will be referred to here-
after as C2020 for succinctness. First, the selected perturbed

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

(ssamun) b aaneey

c)
.

-150
-150-120-80 -60 -30 0 30 60 90 120 150
Distance from NPET node (km)
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FIG. 3. NPET neighborhoods for the three values of parameter w in Table 1: (a) value 1—isotropic sampling, (b) value 2—anisotropic
with 95% of weights within a quadrant, and (c) value 3—anisotropic with 95% of weights within an octant.
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scenario (100 km, 321°) was shifted in the traditional wind
direction octants (i.e., N, NE, E, SE, S, SW, W, and NW)
with a fixed 100-km displacement length. Then, the hydro-
logic model was run with each one of the shifted inputs.
Note that even though this method was applied to a 9-member
ensemble of QPFs in Carlberg et al. (2020) and here it is only
applied to a single realization, the mechanics of the method are
the same.

2) REAL QPFS DEMO

For this experiment, NPET was tested on hydrologic fore-
casts driven by an actual QPF product, which is subject not
only to displacement biases but also to errors in rainfall inten-
sities and storm structure. As a preliminary step, the forecast
precipitation was analyzed with respect to the reference pre-
cipitation to determine the overall displacement direction and
magnitude. Second, this displacement information was used
to configure NPET with an isotropic sampling, which mainly
entails defining the size of the NPET neighborhood through
the r parameter. Last, a subjective and non-exhaustive cali-
bration was performed on parameters D, E, and  to produce
a tuned anisotropic configuration of NPET for the particular
case study. A simple iterative trial and error process based on
manual parameter adjustments was followed until the NPET
outputs highlighted the true area that observed flash flooding.
The aim of this latter exercise was not to generalize NPET pa-
rameterizations, but rather to demonstrate the flexibility of
the technique and provide insights into possible strategies for
optimization.

b. Materials and methods
1) CASE STUDY

The experiments in this study were done with observations
and simulation data for the flash flood event occurring be-
tween 1900 UTC 27 May and 0300 UTC 28 May 2018 over
Ellicott City in Maryland. Viterbo et al. (2020) presents a de-
tailed description of the genesis of the storms and subsequent
hydrologic response leading to impacts, indicating that flash
flood warnings turned into the declaration of a flash flood
emergency within a timespan of 30 min. Multiple reports of
flash flooding were collected in the NWS Storm Events data-
base (see Fig. 4), while some of the U.S. Geological Survey
(USGS) stream gauges measured levels exceeding the minor
and moderate flood stages.

For the experiments conducted herein, three domains were
delineated and are presented in Fig. 4a. The largest domain
(red rectangle) was set for the hydrologic model computa-
tional grid, while the domain delineated in blue was used to
focus the analysis over a region around the main area where
impacts were reported. Four of the most impacted locations
identified in Viterbo et al. (2020), including three USGS
gauges exceeding flood stages (USGS 01593500—exceeded
minor level; USGS 01594000—exceeded moderate level; and
USGS 01589352—exceeded minor level) and an ungauged lo-
cation on the Tiber River where postmortem analysis by
USGS estimated peak values exceeding historic flooding lev-
els, were selected to examine time series of unit streamflow.
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* Hydrograph (time-series) analysis O NWS Local Storm Reports

FIG. 4. Spatial domains for the Ellicott City case in May 2018:
(a) large-scale view with hydrological model computational do-
main (red dashed-line rectangle), analysis domain (blue dashed-
line rectangle), and hydrometeorological domain (purple textured
rectangle) and (b) main area impacted around Ellicott City district
boundaries.

These four locations fall in the small basin category on the
flash flood scale (Clark et al. 2014) with values of unit
streamflow exceeding 1.0 m® s ™! km ™2, which has been asso-
ciated with the occurrence of impacts on lives and property
(Martinaitis et al. 2017).

2) PRECIPITATION DATA

QPEs used to produce reference simulations were based on
the radar-only product from the Multi-Radar Multi-Sensor
(MRMS; Zhang et al. 2016) system, available every 2 min at a
1-km pixel resolution over the conterminous United States
(CONUS). For the sensitivity analysis, a 20-min series of
QPEs were used instead of the complete 2-min series to keep
computational costs low. Because 20-min QPEs were used in
the OSE, the same temporal frequency was used for both the
reference runs and displaced scenarios. For the Real QPFs
Demo experiment, however, the full 2-min series was em-
ployed to create the reference data.
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FIG. 5. Time series of simulated unit streamflow with EF5 using 2- and 20-min MRMS QPE:s inputs for the Ellicott City
event. Measurements are included at the USGS gauged locations.

QPFs from the High Resolution Rapid Refresh (HRRR)
model, a rapidly updating CAM in the U.S. National Weather
Service (NWS) since 2014 (Benjamin et al. 2016; Dowell et al.
2022; James et al. 2022), were used for the Real QPFs Demo.
The version of the HRRR employed herein was version 3
with hourly temporal resolution, an 18-h forecast horizon, and
a 3-km pixel resolution. The forecast run valid at 1300 UTC
27 May 2018 was used to demonstrate how NPET can be used
on hydrologic forecasts forced by this QPF product.

3) HYDROLOGIC MODELING

The Ensemble Framework For Flash Flood Forecasting
(EFS), a distributed hydrologic modeling software in the NWS
as part of the Flooded Locations And Simulated Hydrographs
(FLASH) project (Flamig et al. 2020; Gourley et al. 2017) was
used to conduct the hydrologic simulations. FLASH was tran-
sitioned to the NWS in 2016 and yields contemporary products
used for the issuance of flash flood warnings and watches. At
present, the QPE-forced EF5 yields streamflow forecasts out
to 12 h in the future on a 1-km grid every 10 min. EF5 must
complete its forecasts in less than 10 min at over 10 million
grid points across CONUS and outer U.S. territories. Given
the limited computational resources available at the National
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Centers for Environmental Prediction (NCEP) where FLASH
runs operationally, it is not possible to have multiple instances
of EFS forecasts given forcing from ensemble storm scale
QPFs.

EF5 models the macroscale processes of the hydrological cy-
cle on a rectangular computational grid with multiple physics
options for water balance calculations and flow routing along
hillslopes and streams. The physics options used herein are
based on the Coupled Routing and Excess Storage (CREST;
Wang et al. 2011) coupled with the kinematic wave (KW) ap-
proximation to the Saint-Venant Equations of one-dimensional
unsteady open channel flow, which has produced the most skill-
ful estimates of unit streamflow among all physics options in
FLASH (Gourley et al. 2017). The setup for EFS used herein
was based on its CONUS-wide implementation in FLASH and
does not require hydrologic model parameter tuning against
any reference streamflow (e.g., from USGS stream gauges).
CREST-KW parameters in FLASH were estimated from read-
ily available geospatial information of digital terrain, soil, and
land cover/use datasets (Flamig et al. 2020; Vergara et al. 2016),
which produces a reasonably skillful model for a priori parame-
ter settings as evidenced in the comparison of simulated unit
streamflow against USGS measurements for the Ellicott City
event at the three gauged selected locations in Fig. 5. EF5 was
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configured to produce simulations with both a 20-min and a
2-min time step consistent with the MRMS QPE settings previ-
ously discussed. Additionally, EF5 was configured to produce
hourly estimates of unit streamflow from the HRRR QPFs.

4) HYDROLOGIC FORECAST PERFORMANCE ASSESSMENT

The performance and error metrics were chosen to describe
attributes of hydrologic forecasts relevant for flash flood
warning operations with FLASH: 1) the magnitude of stream-
flow values; 2) the exceedance of streamflow levels associated
with flash floods; and 3) the spatial characteristics of stream-
flow objects that delineate areas of flash flood threat. For at-
tribute 1, maps of unit streamflow differences were calculated
as follows:

sim ref

Quir = (@37 = @i ) s> (6)

where Qg is a matrix of unit streamflow differences (m*s ™' km™2)
with n rows and m columns defined on the domain of interest

on the 1-km grid, q?ijm and g'" are, respectively, the simulated

and reference unit streamﬂéw at the ith row and jth column.
Likewise, the ability of ensembles to encapsulate the refer-
ence response was assessed through visual inspection of
maps of unit streamflow ensembles and time series at the
four selected locations. Percentiles were extracted from the
ensembles to describe the distribution of unit streamflow values
modeled with NPET. For attribute 2, the number of pixels ex-
ceeding threshold values of 1.0, 2.0, and 5.0 m> s~ km™~? were
reported. These threshold values were based on levels of sever-
ity determined from prior research (e.g., Martinaitis et al.
2017).

Last, for attribute 3, an object-oriented scheme based on
the contiguous rain areas (CRA; Ebert and McBride 2000)
method was employed to facilitate the description of spatial
hydrologic information. The scheme was applied to highlight
areas of flash flood threat from maps of maximum unit
streamflow. A flash flood entity was defined following guid-
ance from NWS forecasters about spatial consistency of high-
resolution products (Gourley and Vergara 2021). The scheme
herein was found to encapsulate the main area of threat and
impacts from the Ellicott City flash flood event using a thresh-
old of 0.35 m® s™! km ™2 with a minimum contiguous area of
40 km? applied to the reference simulation with MRMS
QPEs. These settings were fixed and used for the scenarios
with displaced rainfall and resulting hydrologic response.

4. Results
a. Sensitivity analysis

1) IMPACT OF PRECIPITATION DISPLACEMENT ON
HYDROLOGIC FORECASTS

Figure 6 presents a sample of eight maps of unit streamflow
differences [Eq. (6)] corresponding to the traditional wind di-
rection octants from the 120 scenarios of displaced rainfall in-
puts corresponding to a 100-km displacement [section 3a(1)].
Pixels in blue colors indicate underestimation of unit stream-
flow values, while pixels in red colors show overestimation.
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Because this experiment only used precipitation from the iso-
lated area of the hydrometeorological domain (see Fig. 4a)
for both the baseline and displaced runs, underestimation
only occurs over the correct area of hydrologic response for
all scenarios. Therefore, the analysis herein focuses on the
features observed over the areas of overestimation, which cor-
respond to the displaced hydrologic response. The spatial pat-
terns of overestimation differ among the different scenarios,
which is further confirmed by the different shapes of the flash
flood entities. Recall that all scenarios share the exact same
storm structure and rainfall intensities, and that the displace-
ment is produced by a steady-state assumption. Therefore,
these differences can only be explained by differences in phys-
iographic characteristics. Clear evidence of this can be seen
on the panels for the south, southeast, and east displacements
of Fig. 6 where the storm is mainly placed over the Chesa-
peake Bay estuary. This resulted in either significantly smaller
objects or not enough hydrologic response to produce a flash
flood entity.

This analysis was extended to include all 120 directions and
for the three displacement distances, for which a summary is
presented in Fig. 7. The top-left and center plots present infor-
mation about the magnitude of unit streamflow values in the
displaced hydrologic response, while the top-right plot de-
scribes the size of flash flood entities. The three bottom plots
show the variability of unit streamflow values determining the
severity of flash flood impacts. All metrics illustrate the aniso-
tropic nature of the impact of displaced rainfall fields on hy-
drologic response. In some cases, the differences in hydrologic
response among neighboring areas can be large, as shown by
the maximum difference metric with values that ranged be-
tween 10.0 and 20.0 m® s™' km™? (top-left plot), although
the mean differences in unit streamflow were only between
0.5 and 1.0 m® s km™? (top-center plot). Moreover, a direct
correlation between any of the metrics and displacement length
cannot be generalized. All metrics are consistently higher to-
ward the southwest-south direction for the 25- and 50-km dis-
placement runs because large portions of the Washington, D.C.,
metropolitan area are within these distances, where high values
of unit streamflow result from direct runoff over impervious
surfaces. Similar observations can be made for the same distan-
ces to the East (slightly northeast) in the general Baltimore
area. Areas to the north-northwest are generally more rural,
while areas to the southeast are dominated by estuaries. At dis-
tances close to 100 km, the terrain is either rural or over the estu-
aries, which explains why, in general, the 100-km run presents
the lowest values in all metrics. This analysis demonstrates that
the disparities in physiographic attributes that buffer or exacer-
bate hydrologic response to rainfall can be significant over
relatively small distances and highlights the importance of
taking this heterogeneity into account when using QPF-
based hydrologic forecasts subject to displacement biases.

2) NPET TESTBED

Figure 8 presents the results of applying the C2020 method
to the selected displacement scenario. Only the 90th, 95th,
and 99th percentiles are included because these ensembles
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FIG. 6. Sample of unit streamflow difference maps for the eight conventional wind directions and 100-km length from the OSE scenar-
ios. The reference maximum unit streamflow map using MRMS QPE is presented in the center panel. Black polygons are the objects rep-
resenting a flash flood entity based on grids of maximum unit streamflow.

are highly skewed toward low values. The maps noticeably
show the footprint of each individual ensemble member, pre-
serving the spatial features of the correct hydrologic response.
However, and even though one of the members was very close
to the actual area of the event, the discrete nature of this
method results in an incomplete picture of location uncertainty
as evidenced by the gaps in between the shifted directions. The
impact of these gaps can be further evidenced in the time se-
ries from the USGS 01589352 and the Tiber Mouth River loca-
tions (bottom A and C panels) on the northern part of the true
impacted area, where no C2020 members had coverage. Con-
sequently, the ensembles failed to encapsulate the reference
run due to underdispersion. The other two locations (bottom
B and D panels) had a better performance because the closest
C2020 member was centered around the southern part of the
true impacted area where the USGS stations are situated (see
Fig. 4b). Note that because the displacement length was known
a priori, the shifting of precipitation fields was done with a
fixed length. Clearly, shifting in more directions and distances
would result in a more complete representation of location un-
certainty. However, this can only be accomplished at the cost
of high computational demands.

Figures 9 and 10 present the results of the application of
NPET for the same displacement scenario. Maps of NPET en-
semble percentiles are presented in Fig. 9 to assess areal flash
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flooding forecasting skill. As discussed in section 2, these
NPET ensembles are highly skewed toward low values. This
is particularly evident for the isotropic implementation (top
panels), for which only the 99th percentile shows meaningful
values and spatial patterns of unit streamflow largely because
of the inherent high degree of smoothing that comes with this
sampling strategy. Nonetheless, this basic configuration of
NPET accomplishes the goal of producing forecasts that can
communicate spatial uncertainty due to QPF location errors.
In contrast with the C2020 simulation, the description of un-
certainty is spatially continuous, and so most of the impacted
area is encapsulated by the NPET fields. However, the inten-
sity and small-scale features of the hydrologic response are
dampened. This is an expected outcome that is also due to the
inherent smoothing of the probabilistic sampling in NPET. As
the sampling is targeted over a smaller region, the intensity of
unit streamflow increases as evidenced at the different per-
centiles, which is due to ensembles that are less skewed to-
ward low values. Moreover, the sampling that used the octant
sector (i.e., the highest degree of sampling precision) shows a
very strong signal over the correct flash flood threat area.

The effect of varying parameter D on ensemble generation
with NPET is illustrated in Fig. 10. The time series of ensem-
bles at the four selected locations are obtained by an isotropic
implementation of NPET. The matrix of ensemble plots is
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FIG. 7. Polar plots of various error metrics over the areas of overestimation for the 360 OSE scenarios of displacement with the
steady-state assumption.

organized by placing each location on a column, and each par-
ticular value of D on a row sorted in descending order. A
noteworthy general observation is that these configurations of
NPET result in ensembles with very large sample sizes (on
the order of thousands of members). The effect of regulating
the hydrologic similarity restriction with D on the resulting
size of the ensembles is clear. As the value of D increases, the
restriction relaxes and the number of members dramatically
increases. This in turn leads to ensembles with more diverse
values of unit streamflow, which is demonstrated by the
changes in the distributions. However, the size of the ensem-
bles produced by NPET with Eq. (5) depend on the catch-
ment-scale: as the drainage area increases, the ensemble size
decreases, which limits the capability to modify the ensemble
attributes through D. For the largest basin (USGS 01594000),
only when the restriction is relaxed the most (i.e., D = 50%)
was the ensemble able to encapsulate the reference simula-
tion. Although these large ensembles include members with
significant hydrologic response consistent with the reference
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simulation, their distributions are heavily skewed toward low
values as evidenced by only the 99.9th percentile encapsu-
lating the reference simulation. As discussed before, this is
an expected outcome particularly for an isotropic sampling
that implies a high degree of uncertainty about the displace-
ment of rainfall. Nevertheless, when comparing all ensem-
bles to the deterministic forecast, it is evident that the
application of NPET offers better information about the po-
tential magnitude of the hydrologic response. Furthermore,
NPET produces ensembles that can encapsulate the refer-
ence simulation at all locations in contrast to the C2020
method (Fig. 8).

b. Real QPF demo

Figure 11 presents the preliminary analysis of HRRR fore-
cast showing two distinct displacement characteristics be-
tween the northern and southern halves of the analysis
domain. For the northern area, the storm systems that im-
pacted Ellicott City moved from the northwest to the
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FI1G. 8. C2020 8-member ensemble simulations: (top) maps of selected ensemble percentiles and (bottom) time series for the four selected
locations. The A-D labels in inset zoomed in map correspond to the titles of four time series plots.

southeast, but the HRRR moved the storms too slowly, which
resulted in rainfall forecasts generally displaced and dispersed
toward the northwest. The southern area, however, did not
show a well-defined displacement tendency.

The above QPF displacement analysis for the HRRR was
used to implement NPET with isotropic sampling and a
neighborhood size of 150-km radius (top panels of Fig. 12).
Then, the subjective and nonexhaustive calibration produced
an implementation with two subdomains separated by the white
dashed line shown in the bottom panels of Fig. 12. An aniso-
tropic sampling was defined for the northern subdomain with
parameters r = 150 km, D = 50%, E = (—40.0, 70.0 km),
and w = 100. The southern subdomain was set up for an
isotropic sampling with parameters r = 50 km, D = 50%,
E = (0,0 km), and @ = 0. Similar to the OSE scenario, the iso-
tropic sampling applied over the entire domain yields a large,
smoothed field of unit streamflow values, with only the 99th
percentile presenting nonzero values around the impacted
area. Once again, it is worthwhile underlining that even with
this basic configuration of NPET, the ensembles can con-
vey the uncertainty in the hydrologic forecast that is due to
location biases in the QPFs. Likewise, the calibrated con-
figuration of NPET can more precisely characterize the lo-
cation uncertainty with values along the northwest path of
displaced rainfall evidenced on the 90th-99th percentiles fields,
while correctly highlighting the impacted area. These results,
first, are indicative of a better characterization of the distribu-
tion of unit streamflow values by the ensembles, and second,
demonstrate the value of the capability of NPET to take ad-
vantage of available information about the displacement in
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QPFs. Likewise, the use of subdomains illustrates the ap-
plication of NPET with configurations that can vary in
space, which is applicable to location biases that are region-
specific.

The hydrographs in Fig. 13 show variable skill in charac-
terizing the distribution of unit streamflows and encapsu-
lating the reference simulation. First, the deterministic
forecast greatly underestimates the hydrologic response for
three out of the four selected locations, so it is immediately
clear that all the ensemble-based forecasts offered better in-
formation in those cases. The deterministic forecast at the
USGS 01589352 stream gauge location is the exception,
underestimating the peak unit streamflow by approximately
25%, which can be considered a reasonably skillful forecast.
Second, and like the results from the OSE experiments, the
ensembles generated with the isotropic configuration are
heavily skewed toward low values. Nonetheless, these ensem-
ble-based forecasts still present a more complete picture of
possibly higher values of unit streamflow than the determinis-
tic ones. Last, the anisotropic configuration produced en-
sembles that are significantly less skewed toward low values,
which shows that the level of sampling precision can im-
prove the attributes of the distributions. However, the
spread of the ensembles is consistently low for all locations
and so these NPET forecasts are not able to encapsulate the
reference simulations. Considering these results and those
presented in Fig. 12, placing too much confidence over a
particular sampling region can result in better areal descrip-
tion of the probability of flash flood threat but at the ex-
pense of biased descriptions at specific locations.
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5. Summary and conclusions

This work introduces the neighboring pixel ensemble tech-
nique (NPET), a novel method that can generate ensembles
of hydrologic forecasts from a single, deterministic hydrologic
model run to account for locational uncertainties in QPFs.
The main motivation behind the development of the tech-
nique is the challenge in increasing lead times for flash flood
warnings using QPFs as inputs to the FLASH system used in
U.S. NWS operations. Doing this is challenging because, first,
QPFs are subject to various sources of uncertainty that lead
to different types of errors, including location errors, which
propagate to the resultant hydrologic forecasts. Second, en-
semble-based methods commonly used to characterize uncer-
tainties in QPFs require multiple hydrologic model runs, one
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for each member of the ensemble of QPFs, to produce the as-
sociated ensemble of hydrologic outputs. The computational
costs of this approach are directly proportional to the size of
the ensembles of QPFs, which must be large to properly ap-
proximate the correct distribution of precipitation forecast’s
attributes. The computational resources available at NOAA’s
NCEP, where FLASH runs for flash flood warning operations
covering the CONUS and outer U.S. territories, limit the im-
plementation of methods requiring large number of hydro-
logic model iterations, and warrants efficient techniques like
NPET for probabilistic methods to be feasible in operations.
Because NPET is agnostic of the QPFs or the hydrologic
model, this study presented the technique in a generalized
form so it can be applied to a variety of problems involving
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FIG. 10. Isotropic NPET ensemble percentile time series for (top) D = 12.5%, (middle) D = 25%, and (bottom) D = 50%, for the
four selected locations. The value of N within each graph box is the number of ensemble members.

rainfall forecasts as forcing in a hydrologic forecasting system.
The technique was demonstrated for the flash flood event in
Ellicott City on 27 May 2018 using operational tools em-
ployed for warning operations in the U.S. NWS: MRMS
QPEs used for real-time rainfall estimation, HRRR QPFs for
rainfall forecasting, and a FLASH hydrologic model used for
flash flood forecasting. The demonstration included an OSE
to explore basic aspects of hydrologic forecast errors stem-
ming from QPF’s locational uncertainty and the way to ad-
dress them with NPET. Last, an NPET application exercise
was conducted emulating an operational run with QPFs from
the HRRR.

Results from the OSE highlighted the importance of the
terrain heterogeneity when assessing the hydrologic impact
of displaced rainfall. Differences between the reference hy-
drologic simulation (nature run or truth) and those based on
displaced rainfall fields (perturbations) were significant in
magnitude and spatial structure. These differences can dra-
matically change the interpretation of the hydrologic re-
sponse as it relates to the issuance of a flash flood warning.
Therefore, methods attempting to transpose displaced hy-
drologic responses need to pay attention to this consider-
ation. NPET is designed to be able to take this into account
with an equation that can take any real-valued function for-
mulated to transfer displaced hydrologic responses to fore-
cast locations. A limitation of this function is its inability to
recover displaced hydrologic response from areas where the
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model does not produce outputs (e.g., over lakes and the
ocean). In this demonstration work, a simple equation based
on the contributing area was employed. The role of this
function in NPET was only evident when examining ensem-
bles at specific locations. Its main effect was on the size of
the ensemble by controlling the eligibility of sampled pixels.
Possibly, a more sophisticated transfer function can mean-
ingfully change the distribution attributes, which invites ex-
ploration in future endeavors.

One of the main important takeaways from this demonstra-
tion study is about the capability of NPET to produce very
large ensembles of hydrologic outputs from a single determin-
istic output, which was on the order of thousands of members
for the configurations used herein. Furthermore, the compari-
son with the C2020 method clearly showed NPET’s superior
ability to describe location uncertainty through the spatial conti-
nuity of the probabilistic fields and encapsulation of the reference
simulation, even though the intensity and small-scale features of
unit streamflows were smoothed out. The uncalibrated nature of
the ensembles and the inherent smoothing effect of the spatial
sampling in NPET can explain their tendency to be heavily
skewed to low values, which poses challenges for the interpreta-
tion of the conveyed probabilistic information. However, results
from the experiments that adjusted the sampling based on dis-
placement information showed that there are opportunities to
improve the ensemble’s attributes. An advisable consideration
when applying higher degrees of precision in the spatial sampling



492 JOURNAL OFHYDROMETEOROLOGY VOLUME 24
18:00 UTCl 19:00 UTC 20:00 UTC . 21:00 UTC 22:00 UTC 23:00 UTC

fei
2

{3 MRMS-forced Unit Streamflow Object
72 2 Displaced Hydrologic Response
¥ Selected locations for time-series analysis

{0\ Rainfall Objects
", Eulerian Motion Field

250

200 c
g g
8 @
150 |
£

- 10
1002 .§.
3 6
2 .
50 +§
2 . 2=

= HRRR-forced kit

FIG. 11. Displacement analysis of HRRR forecast valid at 1300 UTC. Hourly accumulations of rainfall for (top) MRMS and (middle) the
HRRR for the period 1800-2300 UTC 27 May 2018. (bottom) Summary plots of the same period are also included.

with NPET is the trade-off between improving the character-
ization of location uncertainty for spatial analysis and the im-
provements achieved at the pixel scale for specific location
analysis. Also, and as discussed above, it is possible to attain

improvements using more sophisticated transfer functions.
The results presented herein demonstrate that NPET ensem-
bles effectively accomplish the goal of conveying uncertainty
about precipitation location in QPFs.
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FIG. 12. NPET ensemble percentiles for the HRRR-driven hydrologic forecast: (top) isotropic sampling and (bottom) hybrid
anisotropic (above the horizontal white dashed line) and isotropic sampling (below the horizontal white dashed line).
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FI1G. 13. NPET ensemble percentile time series for the two configurations applied to HRRR-driven hydrologic forecasts: (top) isotropic
sampling and (bottom) anisotropic sampling. Sample sizes are provided for the isotropic configuration, while interquartile ranges (IQR)

of sample sizes are provided for the anisotropic configuration.

Overall, the application of NPET to FLASH products sug-
gests that the technique could yield beneficial applications in
flash flood warning operations in the U.S. NWS. Subsequent
research will be needed, however, to propose ways in which
the QPF location uncertainty information content in NPET
forecasts can be communicated and translated into flash flood
warnings, similar to other efforts aimed at learning how fore-
casters interpret and use probabilistic outputs (e.g., Martinaitis
et al. 2023; Yussouf et al. 2020). The demonstrated value of
NPET in the presence of a priori precipitation displacement
knowledge will also warrant further studies focused on strate-
gies to characterize these errors. Developments at NOAA’s
Weather Prediction Center (WPC) with the Tracking of Heavy
Precipitation Objects (THePrO; Erickson and Nelson 2020) has
resulted in a database of QPF object-based biases which can in-
form NPET for its use in operations to specify parameters E
and r. This object tracking framework could also be extended to
generate short-term information of the most recent HRRR fore-
casts to continuously update these NPET parameters. Although
the main reason to develop NPET was to operate without the
need of multiple hydrologic model runs, it is feasible to extend
the implementation of the technique to systems that utilize limited
sized ensembles of QPFs, which is typical of operational ensemble-
based NWPs (e.g., NOAA’s GEFS v12 with 31 members).
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