Supplementary Information for "Six years of fluvial response to a large dam removal on the Carmel River, California, USA"

This supplement contains two figures (S1, S2) and one table S1) to accompany the manuscript.


Figure S1. Time-series plot of the metrics $Q^{*}$, the ratio of maximum flow in each interval between topographic surveys to the mean annual Carmel River flow at USGS gaging station $11143200\left(2.55 \mathrm{~m}^{3} / \mathrm{s}\right)$, and $\Omega_{99}$, the ratio of cumulative stream power for the $99^{\text {th }}$ percentile of discharge in each inter-survey interval to the stream power associated with mean annual flow $(127 \mathrm{~W} / \mathrm{m}) . Q^{*}$ and $\Omega_{99}$ are both dimensionless. These metrics provide the values representing flow that were used to normalize bed-elevation change when deriving the plots in Figures 7B and C .


Figure S2. Reach-averaged bed-elevation changes in the Elwha River, Washington, normalized against flow metrics using the same procedures as in Figure 7. (A) Bed-elevation change between topographic surveys ( $\Delta C$ values) normalized by $Q^{*}$, the ratio of maximum flow in each inter-survey interval to the mean annual Elwha River flow. (B) $\Delta C$ normalized by $\Omega 99$, the ratio of cumulative stream power for the $99^{\text {th }}$ percentile of discharge in each inter-survey interval to the stream power associated with the mean annual flow. The Elwha River experienced major geomorphic changes between 2012 and 2013 as a 20 Mt sediment pulse moved downstream
after two dams were removed (2011 to 2014), leading to sediment-supply-driven (flowindependent) changes. Figure reproduced from East et al., 2018 (public domain).

| Table S1. |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Reach | River <br> kilometer <br> (rkm) | Average <br> gradient <br> $(\mathrm{m} / \mathrm{m})$ | Average <br> bankfull <br> width (m) | Average <br> valley <br> width (m) | Confinement <br> $(\mathrm{m} / \mathrm{m})$ | Initial $D_{50}(\mathrm{~mm})$ |
|  | 32.7 | 0.0033 | 20.8 | 68 | 3.3 | 39.0 |
| Control (CR) | 31.7 | 0.0024 | 20.9 | 111 | 5.3 | 13.9 |
| Reservoir (RS) | 30.4 | 0.0138 | 22.4 | 39 | 1.8 | 149.7 |
| Dam (DM) | 28.4 | 0.0085 | 14.7 | 76 | 5.2 | 94.9 |
| Sleepy Hollow (SH) | 22.7 | 0.0035 | 17.9 | 261 | 14.6 | 59.0 |
| Upper DeDampierre (DDU) | 22.1 | 0.0021 | 20.4 | 197 | 9.7 | 45.3 |
| Lower DeDampierre (DDL) | 23.1 | 0.0021 | 8.7 | 82 | 9.4 | 38.8 |
| Berwick (BW) | 11.1 | 0.0020 | 15.9 | 135 | 8.5 | 23.4 |
| Schulte Road (SR) | 6.2 | 0.0019 | 16.0 | 320 | 20.0 | 15.3 |
| San Carlos (SC) | 2.4 | 0.0018 | 14.0 | 845 | 60.2 | 16.9 |
| Crossroads (CRO) |  |  |  |  |  |  |

Table S1. Physical setting of study reaches monitored on the Carmel River, California (after Harrison et al., 2018). Units for reach confinement are the valley width ( $m$ ) divided by channel bankfull width (m), from Harrison et al. (2018). Gradient and bankfull width did not change as a result of dam removal. Grain size ( $D_{50}$ ) is given as the initial, pre-dam-removal value (see Fig. 9).

