

1 **Title Page**

2 **Title:** Physical processes in Subglacial Lake Whillans, West Antarctica: inferences from
3 sediment cores

4

5 **Authors:** T.O. Hodson¹, R.D. Powell¹, S.A. Brachfeld², S. Tulaczyk³, R.P. Scherer¹, and the
6 WISSARD Science Team⁴

7

8 ¹Department of Geological & Environmental Geosciences, Northern Illinois University, DeKalb,
9 IL, USA

10 ²Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ,
11 USA

12 ³Department of Earth and Planetary Sciences, University of California, Santa Cruz, California,
13 USA

14 ⁴full list at <http://www.wissard.org/about/wissard-personnel>

15

16 **Corresponding author:**

17 T.O. Hodson

18 Department of Geology and Environmental Geosciences

19 Northern Illinois University

20 Davis Hall 312, Normal Rd.

21 DeKalb, IL 60115

22 Tel: 1 815 753 1943

23 e-mail: tohodson@gmail.com

25 **Abstract**

26 The hydrologic system beneath the Antarctic Ice Sheet is thought to influence both the
27 dynamics and distribution of fast flowing ice streams, which discharge most of the ice lost by the
28 ice sheet. Despite considerable interest in understanding this subglacial network and its affect on
29 ice flow, *in situ* observations from the ice sheet bed are exceedingly rare. Here we describe the
30 first sediment cores recovered from an active subglacial lake. The lake, known as Subglacial
31 Lake Whillans, is part of a broader, dynamic hydrologic network beneath the Whillans Ice
32 Stream in West Antarctica. Even though “floods” pass through the lake, the lake floor shows no
33 evidence of erosion or deposition by flowing water. By inference, these floods must have
34 insufficient energy to erode or transport significant volumes of sediment coarser than silt.
35 Consequently, water flow beneath the region is probably incapable of incising continuous
36 channels into the bed and instead follows preexisting subglacial topography. Sediment on the
37 lake floor consists of till deposited during intermittent grounding of the ice stream following
38 flood events. The fabrics within the till are weaker than those thought to develop in thick
39 deforming beds suggesting subglacial sediment fluxes across the ice plain are currently low and
40 unlikely to have a large stabilizing effect on the ice stream’s grounding zone.

41 **Text**

42

43 **1. Introduction**

44 Roughly 400 subglacial lakes are currently thought to exist beneath the Antarctic Ice
45 Sheet where its base is at the pressure melting point (Wright and Siegert, 2012). These lakes
46 have generated scientific interest for their potential to harbor unique microbial ecosystems
47 (Christner et al., 2014; Priscu et al., 1999), influence ice dynamics (Bell et al., 2007; Stearns et
48 al., 2008), and preserve paleoclimate or paleoenvironmental records in their sediments (Bentley

49 et al., 2011). Large deep lakes in the interior, such as Subglacial Lake Vostok, may have existed
50 continuously through the late Cenozoic and potentially contain sedimentary records of the early
51 evolution of the East Antarctic Ice Sheet (Siegert et al., 2001). Other shallower lakes beneath fast
52 flowing ice streams near the ice sheet margin might contain sedimentary records of the dynamic
53 subglacial hydrologic system, which is thought to regulate ice streaming (Anandakrishnan and
54 Alley, 1997). As ice streams discharge 90% of the ice lost from the Antarctic, their dynamics
55 determine the rate at which the ice sheet can affect global sea level (Bamber et al., 2009).

56 Ice streams occur in zones of low basal drag, where a combination of soft sediments and
57 low effective pressures, the difference between ice overburden pressure and water pressure, act
58 to lubricate the ice sheet bed. As ice stream driving stresses are low, due to their low surface
59 slopes, even small changes within the subglacial hydrologic system can potentially have large
60 effects on basal drag and ice flow (Anandakrishnan and Alley, 1997).

61 Ice streams are also sensitive to processes at their grounding zones, where they transition to
62 floating ice shelves. When ice streams occur over reverse sloping beds, any retreat places the
63 grounding zone in deeper water where the ice thickness is greater. As the ice flux across the
64 grounding zone increases nonlinearly with ice thickness, this creates a potential for runaway
65 retreat with increasing rates of ice loss (Schoof, 2007; Weertman, 1974). Such a retreat could be
66 triggered by increased melting across the bottom of the ice shelf, thinning the ice and reducing
67 its buttressing effect, or by focused melting at the grounding zone (Rignot and Jacobs, 2002).
68 However, a number of internal mechanisms may counter this instability, including sediment
69 deposition at the grounding zone, which reduces water depth, preventing the ice from going
70 afloat as it thins, and increases the frictional drag from the bed, helping to buttress the ice sheet
71 margin (Alley et al., 2007; Anandakrishnan et al., 2007). Ice stream dynamics therefore reflect a

72 broad range of processes that integrate glaciology, hydrology, geology, and oceanography
73 (Anandakrishnan et al., 1998; Bindschadler et al., 2003; Clarke, 2005), specifics of which are not
74 well understood, due to the difficulty of accessing and sampling the ice sheet bed. Nevertheless,
75 defining and predicting ice sheet stability requires that we constrain the dynamics of these
76 systems (Joughin et al., 2014; Rignot et al., 2014).

77 We describe the first sediments recovered from an active Antarctic subglacial lake. The
78 lake, known as Subglacial Lake Whillans (SLW), sits beneath the 800 m thick Whillans Ice Plain
79 (WIP), the lowermost section of the Whillans Ice Stream (WIS) before it goes afloat and flows
80 into the Ross Ice Shelf (Fig. 1a). SLW and other active lakes underlie at least ~10% of this
81 region and were first identified from the short-term fluctuations in the overlying ice surface
82 elevation driven by cyclic draining and filling of the lake waters (Fricker et al., 2007).

83 From the beginning of satellite altimetric observation in 2004 to our sampling of the lake,
84 SLW had undergone two such fill-and-drain, or “flood”, cycles, each lasting approximately two
85 years and separated by quiescent lowstands of more variable duration. When the lake drains,
86 roughly 0.15 km^3 of water discharges over a six-month period, lowering the ice elevation above
87 the lake by ~5 m (Christianson et al., 2012; Fricker et al., 2007). Prior to our sampling in January
88 2013, the last drainage occurred in 2009, during which ice surface elevations above the lake
89 dropped to ~0.8 m above their lowest observed level (Fig. 1b). Between that drainage and our
90 accessing the lake, the ice surface gradually rose another ~0.6 m, primarily due to dynamic
91 thickening from the slow down of the ice stream (Pritchard et al., 2012; Siegfried et al., 2014).

92 **2. Methods**

93 **2.1 Coring Operations**

94 Three coring devices were deployed into SLW: a gravity multi-corer with three 60 mm
95 diameter core barrels designed to recover the soft upper-most sediment and sediment-water
96 interface; a borehole piston corer with a 58 mm diameter core barrel; and a percussion corer with
97 a 10 cm diameter core barrel (Hodgson et al., 2016). Due to a malfunction, percussion-coring
98 was ceased after 10 minutes (approx. 10 blows of the weight). All sediment cores were collected
99 within a 40-hour window, during which time the borehole moved roughly 1m downstream
100 (Tulaczyk et al., 2014). In total, an 80cm long piston core, a 40 cm long percussion core, and six
101 multicores between 20-40 cm long were recovered. Once the sediment cores reached the surface,
102 they were set vertically for at least two days to allow them to outgas and settle before being laid
103 horizontally for packing and refrigerated (4°C) shipping and long-term storage.

104 **2.2 Whole Core Measurements**

105 Sediment cores were split, logged, and sampled at the Hartshorne Quaternary Lab at
106 University of Massachusetts, Amherst. High-resolution line-scan imagery, gamma ray
107 attenuation bulk density and magnetic susceptibility were logged for both whole and split cores
108 using a Geotek multi-sensor core logger. High-resolution ED-XRF spectra were logged on the
109 split cores at a 0.3 mm interval using an ITRAX XRF core scanner, which irradiated the sample
110 with a beam generated from a 3 kW Mo target run at 45 kV and 30 mA over a 15 second
111 exposure time. In addition to line-scan radiographs generated by the ITRAX, high-resolution
112 core radiographs of the split cores were taken using a Torrex 120-D radiograph at Antarctic
113 Marine Geology Research Facility, Florida State University.

114 **2.3 Moisture Content and Particle Size**

115 Sediment moisture content was measured at ~2 – 5 cm intervals by measuring the weight
116 lost after oven drying the sample for 24 hrs at 110°C. Initial wet sample weights ranged between
117 20 and 50 g. After oven drying, the samples were disaggregated and their particle sizes were
118 analyzed using sieve and pipette methods. As variable clast content in diamicton samples
119 influence measurements of moisture content, the weight of the gravel fraction was subtracted
120 from the bulk weight in determining moisture content. Additional particle size analysis using
121 laser diffractometry was performed at ~10 cm intervals. Approximately 5 g of sediment was
122 gently disaggregated and dry-sieved to remove gravel (>2 mm). An aliquot of the sieved sample
123 was then transferred into a glass bottle with 0.5 ml 5% sodium hexametaphosphate solution and
124 30 ml deionized water. Samples were then shaken for 8 hours prior to analysis on a Malvern
125 Mastersizer 3000.

126 **2.4 Magnetic Fabric and Magnetic Granulometry**

127 2 cm wide oriented paleomagnetic cubes were collected every 4 – 10 cm along each core
128 for analysis of anisotropy of magnetic susceptibility (AMS) and natural remnant magnetization
129 (NRM). Samples were taken from the center of the cores to avoid disturbance that typically
130 occurs along the outside edge of the core. Unoriented samples were collected at each depth for
131 magnetic granulometry. Stepwise alternating field (AF) demagnetization and measurement of the
132 NRM was performed using a D-tech D-2000 alternating field demagnetizer and AGICO JR-6
133 spinner magnetometer. Samples were subjected to peak fields of 0 to 80 mT in 5 – 10 mT
134 increments. AMS measurements were made using an AGICO KLY-4 Kappabridge at Montclair
135 State University. The magnetic susceptibility of each cube was measured in 15 orientations,
136 yielding a second-rank susceptibility tensor. The eigenvalues of this tensor are the three principal
137 magnetic susceptibilities, k_{max} , k_{int} , and k_{min} , which represent the lengths of the long, intermediate,

138 and short axes of a susceptibility ellipsoid. The orientation of each axis (eigenvector) is given by
139 its inclination (I) and declination (D). Two parameters representing the shape of the AMS
140 ellipsoid are the lineation parameter ($L = k_{max}/k_{min}$), and foliation ($F = k_{int}/k_{min}$). $L < F$ indicates
141 an oblate ellipsoid. $L > F$ indicates a prolate ellipsoid.

142 AMS fabrics in sediment can arise from the preferential alignment of ferromagnetic and
143 paramagnetic grains during deposition or post-depositional processes, or by coring-induced
144 disturbance. Disturbed portions of the sediment cores were identified by horizontal values of I_{min}
145 and near-vertical values of I_{max} indicating core stretching (Thouveny et al., 2000) or by
146 anomalously high foliation, which can indicate coring-induced compaction.

147 Magnetic domain state and magnetic mineralogy were determined from hysteresis
148 parameters, thermomagnetic curves, and scanning electron microscopy and energy-dispersive x-
149 ray spectrometry. Hysteresis parameters were measured on bulk sediment using a Princeton
150 Measurements Corp. Vibrating Sample Magnetometer (VSM). Thermomagnetic curves were
151 measured on bulk sediment on an AGICO KLY4 Kappabridge from 20 to 700 °C in a flowing
152 argon gas atmosphere. Polished grain mounts were analyzed on a Hitachi S3400N scanning
153 electron microscope equipped with a Bruker X-Flash x-ray microanalysis system.

154 **2.5 Sediment Micromorphology**

155 Sedimentary microfabrics result from the reorientation of sand, silt, and clay grains in
156 response to a deforming stress. Like AMS, microfabrics can help distinguish depositional
157 processes in macroscopically structureless tills. Microfabrics are also susceptible to even small
158 strains (Hiemstra and Rijssdijk, 2003) giving them the potential record disturbance from coring or
159 degassing that may impact NRM and AMS fabrics.

160

161 Three 75x35mm sections were extracted from the piston core from shallow (15 – 22.5
162 cm), intermediate (34 – 42 cm), and deep (67 – 74 cm) intervals and one from the percussion
163 core (23.5 – 31 cm) for micromorphological analysis. The sections were freeze-dried and
164 impregnated with epoxy prior to being cut into thin sections. Each thin section was oriented with
165 respect to vertical but their orientation relative to ice flow is unknown. Microfabrics in the
166 sediments were described following standard terminology used in the glacial literature (i.e., van
167 der Meer, 1993; van der Meer and Menzies, 2011).

168 **2.6 Sediment Lithology**

169 Thin sections made from grain mounts were prepared from size-sorted grains from each
170 phi size fraction between 500 to 2000 μm . Approximately 300 grains in each sample were
171 identified under a petrographic microscope and tallied while making systematic transects across
172 the thin section. The point counts from each size fraction were then aggregated over the 500 –
173 2000 μm range, with each fraction weighted according to the particle size distribution.

174

175 **3. Results**

176 Sediment cores recovered through the 800 m deep borehole into SLW contain dark grey muddy
177 diamicton, consisting of 8% granules and pebbles, 33% sand, 26% silt and 33% clay, similar to
178 basal sediment sampled ~200 km upstream on the Whillans Ice Stream at a site known as
179 Upstream B (UpB; Tulaczyk et al., 1998). The composition of the sand fraction is
180 indistinguishable from UpB and similar to other samples from the Siple Coast and Eastern Ross
181 Sea Region (Licht et al., 2005). Common lithologies include hydrothermally altered felsic
182 intrusives and meta-sedimentary schists and phyllites. Sedimentary and extrusive rock fragments
183 each constitute $\leq 1\%$ (Appendix A). With the exception of thin (1 – 2 mm diameter) degassing
184 tubules, the sediment appears structureless. X-radiographs of the cores show variable clast

185 content with depth but otherwise no discernable stratification or grading (Fig. 2a). High-
186 resolution scans of element chemistry and bulk magnetic susceptibility show negligible
187 stratigraphic variability in chemical and physical properties suggesting the sediment is very
188 homogenous over the sampling depth (~0.8m). Log density also shows no trend despite a
189 logarithmic decrease in moisture content with depth. This difference likely reflects the presence
190 of air filled voids, formed by outgassing as the cores equilibrated to conditions at the surface.
191 Moisture content, which is unaffected by degassing (S. Tulaczyk et al., 2001), is 35% at the
192 sediment-lake water interface. Assuming a compressibility similar to the till upstream (Tulaczyk
193 et al., 2000), this high moisture content implies *in situ* effective stresses during deposition were
194 low (≤ 1 kPa), similar to the environment inferred to be beneath much of the surrounding ice
195 plain. Sedimentary microfabrics and microstructures within the cores are weakly developed and
196 indicate ductile deformation consistent with shear under low basal effective pressure (e.g.,
197 Khatwa and Tulaczyk, 2001; Cowan et al., 2014). Fabric disturbance due to degassing is
198 negligible; however, sections of the cores contain stronger microfabrics associated with coring
199 disturbance that have overprinted the natural fabrics (Appendix B).

200 The magnetic mineral assemblage in the piston core and percussion core consists of
201 magnetite and ilmenite, possibly with nano-scale hematite intergrowths (Appendix C). However,
202 ilmenite is antiferromagnetic and does not contribute substantially to NRM or AMS signals.
203 Magnetite ranges in size from fine pseudo-single-domain (PSD) to multidomain size, determined
204 from the median destructive field of the NRM (35-40 mT) and from hysteresis loops that are
205 dominated by the multidomain fraction (Appendix C). The magnetic mineral assemblage is
206 uniform throughout PC1 and PEC, consistent with relatively constant Fe/Ti ratios determined
207 from XRF measurements (Fig. 3).

208 Magnetic fabrics in the cores can be visualized on lower hemisphere, equal-area
209 stereonets, where principal axes of the susceptibility ellipsoid are plotted according to their
210 inclination (analogous to plunge on a stereonet) and declination (analogous to trend). Points that
211 form a tight cluster indicate parallel axes, whereas points that form a great circle represent axes
212 within a common plane. In the piston core, k_{min} axes (red circles) orient vertically, whereas k_{max}
213 axes preferentially orient along a shallow-dipping plane (Fig. 3b). Although partially masked by
214 coring disturbance, the percussion core displays a similar fabric (Appendix B). AMS fabrics in
215 sediment affected only by axial loading, such as coring-induced compaction or natural
216 consolidation, have no preferential azimuthal alignment of k_{int} or k_{max} (Tarling and Hrouda, 1993)
217 indicating the SLW sediment has experienced some degree of horizontal shear.

218 Natural Remnant Magnetization (NRM) inclinations in the upper 10 cm of the piston core
219 vary around -80° , consistent with modern International Geomagnetic Reference Field (IGRF)
220 inclinations at the site. Below this depth, inclinations shallow to between -40° and -50° . These
221 deeper samples deviate significantly from the modern paleomagnetic inclination and the
222 geocentric axial dipole value for the site latitude, indicating post-depositional strain, either from
223 consolidation or shear. Samples from the percussion core were uniformly poor recorders of
224 NRM, consistent with coring disturbance inferred from micro- and AMS fabric.

225

226 **4. Discussion**

227 The access borehole was located over the deepest portion of SLW, which was ~ 2 m deep
228 in January 2013 (Tulaczyk et al., 2014). At the same time, the average ice elevation above the
229 lake was ~ 1 m higher than the lowest known level in 2004. After accounting for ~ 0.6 m of
230 dynamic thickening inferred from altimetry (Pritchard et al., 2012; Siegfried et al., 2014), the ice

231 stream likely grounded over most of the lake bed in 2004, although a small remnant volume of
232 water may have been present at the drill site.

233 Structureless diamicton, such as that comprising the lake cores, can form from a number
234 of processes including: rainout through lake waters of debris melted out from basal ice,
235 subaqueous debris flows, or subglacial deformation during periods of grounding (Benn and
236 Evans, 2014; Munro-Stasiuk, 2003). The sheared fabrics within the sediment argue against a
237 rainout origin, and although similar fabrics develop in debris flows, the low gradient and relief of
238 the lake basin makes this mode of deposition highly unlikely (Horgan et al., 2012).

239 Based on ring-shear experiments on tills, weak fabrics such as those in the SLW
240 sediments indicate low strains. Conversely, under moderate to high strains the maximum
241 susceptibility axes quickly cluster in the shear direction (Hooyer et al., 2008). Iverson (2008)
242 argues that highly clustered, high-strain, fabrics in tills are proof of a thick deforming bed,
243 whereas weaker fabrics are more likely to occur under a more variable strain regime, such as in a
244 thin deforming layer being plowed by protrusions on the ice bed.

245 Geomagnetic field recording by the surficial sediment does not necessarily conflict with
246 the shear deformation implied by the AMS data. NRM fabrics can reorient to the ambient
247 geomagnetic field under extremely low effective pressure, where the sediment-water mixture
248 approaches its liquid limit. Thus, the same conditions that facilitate ice streaming may also be
249 responsible for preserving NRM fabrics in some tills (Eyles et al., 1987; Gravenor et al., 1973;
250 Stupavsky et al., 1974). NRM ‘lock-in’ depths of two decimeters up to several decimeters are
251 typical for normally consolidated sediments (Snowball et al., 2013; Stoner et al., 2013). The
252 addition of an ice overburden would increase consolidation, reducing the ‘lock-in’ depth;
253 however, given the low effective pressure beneath the ice plain this effect should be small. Based

254 on NRM inclinations in the piston core, ‘lock-in’ likely occurred at ~10 cm below the sediment-
255 water interface. That inclinations shallow but remain relatively stable below this indicate strains
256 at these depths were low, consistent with the AMS results. Therefore, slip at the ice bed or
257 deformation in the uppermost 10 cm of sediment must accommodate the high strains associated
258 with ice stream flow.

259 Assuming the environment beneath the ice plain is similar to that in the lake basin during
260 grounding events, a shallow deforming bed of the style suggested by the magnetic fabrics would
261 transport $<40 \text{ m}^3 \text{ m}^{-1} \text{ yr}^{-1}$ of till, similar to fluxes estimated much further upstream (Tulaczyk et
262 al., 2001). To arrive at this flux estimate we also assume an ice bed velocity of 350 m/yr and
263 plug flow through a $<10 \text{ cm}$ thick deforming horizon. In addition, some of the ice motion may be
264 accommodated by basal slip, and strain rates typically decreases with depth across the shear zone
265 (e.g., Hooyer et al., 2008). Thus, the actual till flux may be an order of magnitude lower than our
266 upper estimate. Sediment transported subglacially across the ice plain ultimately accumulates at
267 the grounding zone in the form of a grounding-zone wedge, which can potentially help to
268 stabilize the grounding zone position (Alley et al., 2007). As Antarctic grounding-zone wedges
269 are typically 10-20 km long (Dowdeswell and Fugelli, 2012), this till flux could accumulate a
270 wedge at a rate of $<4 \text{ mm/yr}$. Although this accumulation could mitigate the effects of current
271 rates of sea level rise, it might not keep pace with some projections of the late 21st century
272 (IPCC, 2014), and it is orders of magnitude slower than typical melting rates driven by ocean
273 thermal forcing (Rignot and Jacobs, 2002).

274 Despite SLW’s history of filling and draining, sediment at and below the modern lakebed
275 shows no evidence of sorting or scour that would indicate a high-velocity water flow. From the
276 empirical Hjulstrom curve for a 1 m-deep flow, mean current velocities in the lake water column

277 likely remain below 20 cm s⁻¹ during draining cycles, which is consistent with water fluxes
278 implied by ICESat altimetry (0.15 km³ over 6 months; Fricker et al., 2007), if the flow pathways
279 are broad. Thus, even though water flows through the subglacial drainage network in “floods”
280 (Fricker and Scambos, 2009), the water has insufficient energy to erode or transport significant
281 volumes of sediment coarser than silt. The dominance of till combined with the lack of stratified
282 sediment or lags on the lake floor suggest sediment fluxes through the hydrologic network
283 upstream and downstream of the lake are low, even relative to the low till flux. By inference,
284 meltwater flow across the central WIP is incapable of incising continuous canals into bed and
285 instead occurs through a more distributed system, maintained, at least in part, by hydrologic
286 jacking where water pressure exceeds that required to float the overlying ice. Thus, the canal
287 imaged by Horgan et al. (2013) crossing the grounding zone downstream of SLW may be a
288 localized feature, possibly eroded by tidal currents or a relic from a time of greater subglacial
289 hydrologic activity.

290 **5. Conclusions**

291 Although we cannot constrain the last time ice grounded over Subglacial Lake Whillans,
292 the dynamic history of the lake combined with the lack of rainout debris from the actively
293 melting ice above (Fisher et al., 2015), suggest the lacustrine history of the site is short, probably
294 on the order of decades. This subglacial environment is analogous to a non-vegetated wetland
295 within a terrestrial coastal plain, where water bodies tend to be broad and shallow due to the low
296 topographic relief. In the subglacial equivalent, ice may frequently ground following hydrologic
297 adjustments, limiting the long-term persistence of shallow lakes and their sediments. With weak
298 topographic control, frequent avulsions make flow paths dynamic and difficult to predict (e.g.,
299 Carter et al., 2013). Consequently, ice stream subglacial lakes that occur in association with soft

300 sedimentary beds, as on ice plains, are ephemeral features and poorly preserved in the geologic
301 record, unlike lakes in deep bedrock depressions, such as subglacial lakes Vostok and Ellsworth,
302 which hold greater potential for preserving undisturbed paleoenvironmental archives (Bentley et
303 al., 2011; Filina et al., 2008; Siegert et al., 2001).

304 Lacustrine sediments beneath SLW were anticipated to provide a longer-term record of the
305 dynamic hydrologic system under this portion of the Antarctic Ice Sheet. Instead we found that
306 the lake was floored by till, which provided insight into the present environment beneath the ice
307 stream, and specifically its ice plain. These regions are likely to have existed over many
308 segments of the ice sheet grounding line during its history and influence both how ice sheets
309 grow and their sensitivity to external climate forcing. Our results suggest that most subglacial
310 sediment transport across the ice plain occurs through a shallow (cm's thick) layer of till with
311 minimal sediment contribution from the subglacial hydrologic network. This low subglacial
312 sediment flux to the Whillans' grounding zone is unlikely to stabilize the grounding zone
313 position against either ocean thermal forcing or changes in ice dynamics and suggests that
314 grounding zones could be more reactive to sea-level rise than previously thought.

315 **Acknowledgements**

316 This work was funded through the NSF (grants ANT-0839107, ANT-0839059, and PLR-
317 1346260). Additional funding for instrumentation development and testing was provided by
318 grants from NOAA (grants NA04OAR4600167 and NA05OAR4311117), Gordon and Betty
319 Moore Foundation, and the Alfred E. Alquist Seismic Safety Commission of California.

320 We are grateful to the University of Nebraska-Lincoln drill team and WISSARD traverse
321 personnel, Air National Guard and Kenn Borek Air for their technical and logistical support,

322 without which this work would not have been possible. We also thank Julie Brigham-Grette for
323 use of the UMass core processing facility, FSU-ARF for taking core x-radiographs, and Rebecca
324 Puttkammer for her help in processing samples.

325 The manuscript was written by TOH and RDP; SAB conducted measurements of NRM
326 and AMS; TOH described the micromorphology and lithology; and RDP, ST, and RPS
327 contributed to the study design and acquisition of samples.

328 **References**

329 Alley, R.B., Anandakrishnan, S., Dupont, T.K., Parizek, B.R., Pollard, D., 2007. Effect of
330 sedimentation on ice-sheet grounding-line stability. *Science* 315, 1838–41.
331 doi:10.1126/science.1138396

332 Anandakrishnan, S., Alley, R.B., 1997. Stagnation of Ice Stream C, West Antarctica by water
333 piracy. *Geophys. Res. Lett.* 24, 265–268. doi:10.1029/96GL04016

334 Anandakrishnan, S., Blankenship, D.D., Alley, R.B., Stoffa, P.L., 1998. Influence of subglacial
335 geology on the position of a West Antarctic ice stream from seismic observations. *Nature*
336 394.

337 Anandakrishnan, S., Catania, G. a, Alley, R.B., Horgan, H.J., 2007. Discovery of till deposition
338 at the grounding line of Whillans Ice Stream. *Science* 315, 1835–8.
339 doi:10.1126/science.1138393

340 Bamber, J.L., Riva, R.E.M., Vermeersen, B.L. a, LeBrocq, A.M., 2009. Reassessment of the
341 potential sea-level rise from a collapse of the West Antarctic Ice Sheet. *Science* 324, 901–3.
342 doi:10.1126/science.1169335

343 Bell, R.E., Studinger, M., Shuman, C. a, Fahnestock, M. a, Joughin, I., 2007. Large subglacial
344 lakes in East Antarctica at the onset of fast-flowing ice streams. *Nature* 445, 904–7.
345 doi:10.1038/nature05554

346 Benn, D., Evans, D.J., 2014. *Glaciers and Glaciation*. Routledge.

347 Bentley, M.J., Christoffersen, P., Hodgson, D.A., Smith, A.M., Tulaczyk, S., Brocq, A.M. Le,
348 2011. *Subglacial Lake Sediments and Sedimentary Processes : Potential Archives of Ice
349 Sheet Evolution , Past Environmental Change , and the Presence of Life*.

350 Bindschadler, R.A., King, M.A., Alley, R.B., Anandakrishnan, S., Padman, L., 2003. Tidally
351 controlled stick-slip discharge of a West Antarctic ice. *Science* 301, 1087–1089.
352 doi:10.1126/science.1087231

353 Carter, S.P., Fricker, H. a., Siegfried, M.R., 2013. Evidence of rapid subglacial water piracy
354 under Whillans Ice Stream, West Antarctica. *J. Glaciol.* 59, 1147–1162.

355 doi:10.3189/2013JoG13J085

356 Christianson, K., Jacobel, R.W., Horgan, H.J., Anandakrishnan, S., Alley, R.B., 2012. Subglacial
357 Lake Whillans — Ice-penetrating radar and GPS observations of a shallow active reservoir
358 beneath a West Antarctic ice stream. *Earth Planet. Sci. Lett.* 331-332, 237–245.
359 doi:10.1016/j.epsl.2012.03.013

360 Christner, B.C., Priscu, J.C., Achberger, A.M., Barbante, C., Carter, S.P., Christianson, K.,
361 Michaud, A.B., Mikucki, J.A., Mitchell, A.C., Skidmore, M.L., Vick-Majors, T.J., Adkins,
362 W.P., Anandakrishnan, S., Barcheck, G., Beem, L., Behar, A., Beitch, M., Bolsey, R.,
363 Branecky, C., Edwards, R., Fisher, A., Fricker, H. a., Foley, N., Guthrie, B., Hodson, T.,
364 Jacobel, R., Kelley, S., Mankoff, K.D., McBryan, E., Powell, R., Purcell, A., Sampson, D.,
365 Scherer, R., Sherve, J., Siegfried, M., Tulaczyk, S., 2014. A microbial ecosystem beneath
366 the West Antarctic ice sheet. *Nature* 512, 310–313. doi:10.1038/nature13667

367 Clarke, G.K.C., 2005. Subglacial Processes. *Annu. Rev. Earth Planet. Sci.* 33, 247–276.
368 doi:10.1146/annurev.earth.33.092203.122621

369 Cowan, E.A., Christoffersen, P., Powell, R.D., Talarico, F.M., 2014. Dynamics of the late Plio–
370 Pleistocene West Antarctic Ice Sheet documented in subglacial diamictites, AND-1B drill
371 core. *Glob. Planet. Change* 119, 56–70. doi:10.1016/j.gloplacha.2014.05.011

372 Eyles, N., Day, T.E., Gavican, a., 1987. Depositional controls on the magnetic characteristics of
373 lodgement tills and other glacial diamict facies. *Can. J. Earth Sci.* 24, 2436–2458.
374 doi:10.1139/e87-229

375 Filina, I.Y., Blankenship, D.D., Thoma, M., Lukin, V. V., Masolov, V.N., Sen, M.K., 2008. New
376 3D bathymetry and sediment distribution in Lake Vostok: Implication for pre-glacial origin
377 and numerical modeling of the internal processes within the lake. *Earth Planet. Sci. Lett.*
378 276, 106–114. doi:10.1016/j.epsl.2008.09.012

379 Fisher, A.T., Mankoff, K.D., Tulaczyk, S.M., Tyler, S.W., Foley, N., Team, W.S., 2015. High
380 geothermal heat flux measured below the West Antarctic Ice Sheet. *Nat. Adv.* 1–9.

381 Fricker, H.A., Scambos, T., 2009. Connected subglacial lake activity on lower Mercer and
382 Whillans Ice Streams, West Antarctica, 2003–2008. *J. Glaciol.* 55, 303–315.
383 doi:10.3189/002214309788608813

384 Fricker, H.A., Scambos, T., Bindschadler, R., Padman, L., 2007. An active subglacial water
385 system in West Antarctica mapped from space. *Science* 315, 1544–8.
386 doi:10.1126/science.1136897

387 Gravenor, C.P., Stupavsky, M., Symons, D.T.A., 1973. Paleomagnetism and its Relationship to
388 Till Deposition. *Can. J. Earth Sci.* doi:10.1139/e73-092

389 Hiemstra, J.F., Rijssdijk, K.F., 2003. Observing artificially induced strain: implications for
390 subglacial deformation. *J. Quat. Sci.* 18, 373–383. doi:10.1002/jqs.769

391 Hodgson, D.A., Bentley, M.J., Smith, A., Klepaci, J., Makinson, K., Smith, M., Saw, K.,
392 Scherer, R., Powell, R., Tulaczyk, S., Rose, M., Pearce, D., Mowlem, M., Keen, P., Siegert,
393 M.J., Hodgson, D.A., 2016. Technologies for retrieving sediment cores in Antarctic
394 subglacial settings Subject Areas : Author for correspondence : Philos. Trans. A. Math.

395 Phys. Eng. Sci. 374. doi:10.1098/rsta.2015.0056

396 Hooyer, T.S., Iverson, N.R., Lagroix, F., Thomason, J.F., 2008. Magnetic fabric of sheared till:
397 A strain indicator for evaluating the bed deformation model of glacier flow. *J. Geophys.*
398 Res. 113, F02002. doi:10.1029/2007JF000757

399 Horgan, H.J., Alley, R.B., Christianson, K., Jacobel, R.W., Anandakrishnan, S., Muto, A., Beem,
400 L.H., Siegfried, M.R., 2013. Estuaries beneath ice sheets. *Geology* 41, 1159–1162.
401 doi:10.1130/G34654.1

402 Horgan, H.J., Anandakrishnan, S., Jacobel, R.W., Christianson, K., Alley, R.B., Heeszel, D.S.,
403 Picotti, S., Walter, J.I., 2012. Subglacial Lake Whillans — Seismic observations of a
404 shallow active reservoir beneath a West Antarctic ice stream. *Earth Planet. Sci. Lett.* 331–
405 332, 201–209. doi:10.1016/j.epsl.2012.02.023

406 Joughin, I., Smith, B.E., Medley, B., 2014. Marine ice sheet collapse potentially under way for
407 the Thwaites Glacier Basin, West Antarctica. *Science* 344, 735–8.
408 doi:10.1126/science.1249055

409 Khatwa, A., Tulaczyk, S., 2001. Microstructural interpretations of modern and Pleistocene
410 subglacially deformed sediments: the relative role of parent material and subglacial
411 processes. *J. Quat. Sci.* 16, 507–517. doi:10.1002/jqs.609

412 Licht, K.J., Lederer, J.R., Jeffrey Swope, R., 2005. Provenance of LGM glacial till (sand
413 fraction) across the Ross embayment, Antarctica. *Quat. Sci. Rev.* 24, 1499–1520.
414 doi:10.1016/j.quascirev.2004.10.017

415 Munro-Stasiuk, M.J., 2003. Subglacial Lake McGregor, south-central Alberta, Canada.
416 *Sediment. Geol.* 160, 325–350. doi:10.1016/S0037-0738(03)00090-3

417 Priscu, J.C., Adams, E.E., Lyons, W.B., Voytek, M. a, Mogk, D.W., Brown, R.L., McKay, C.P.,
418 Takacs, C.D., Welch, K. a, Wolf, C.F., Kirshtein, J.D., Avci, R., 1999. Geomicrobiology of
419 subglacial ice above Lake Vostok, Antarctica. *Science* 286, 2141–2144.
420 doi:10.1126/science.286.5447.2141

421 Pritchard, H.D., Ligtenberg, S.R.M., Fricker, H. a., Vaughan, D.G., van den Broeke, M.R.,
422 Padman, L., 2012. Antarctic ice-sheet loss driven by basal melting of ice shelves. *Nature*
423 484, 502–505. doi:10.1038/nature10968

424 Rignot, E., Jacobs, S.S., 2002. Rapid bottom melting widespread near Antarctic Ice Sheet
425 grounding lines. *Science* 296, 2020–2023. doi:10.1126/science.1070942

426 Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., Scheuchl, B., 2014. Widespread, rapid
427 grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West
428 Antarctica, from 1992 to 2011. *Geophys. Res. Lett.* 41, 3502–3509.
429 doi:10.1002/2014GL060140

430 Schoof, C., 2007. Marine ice-sheet dynamics. Part 1. The case of rapid sliding. *J. Fluid Mech.*
431 573, 27. doi:10.1017/S0022112006003570

432 Siegert, M.J., Ellis-Evans, J.C., Tranter, M., Mayer, C., Petit, J.R., Salamatian, a, Priscu, J.C.,
433 2001. Physical, chemical and biological processes in Lake Vostok and other Antarctic
434 subglacial lakes. *Nature* 414, 603–609. doi:10.1038/414603a

435 Siegfried, M.R., Fricker, H.A., Roberts, M., Scambos, T.A., Tulaczyk, S., 2014. A decade of
436 West Antarctic subglacial lake interactions from combined ICESat and CryoSat-2 altimetry.
437 *Geophys. Res. Lett.* 41, 891–898. doi:10.1002/2013GL058616

438 Snowball, I., Mellström, A., Ahlstrand, E., Haltia, E., Nilsson, A., Ning, W., Muscheler, R.,
439 Brauer, A., 2013. An estimate of post-depositional remanent magnetization lock-in depth in
440 organic rich varved lake sediments. *Glob. Planet. Change* 110, 264–277.
441 doi:10.1016/j.gloplacha.2013.10.005

442 Stearns, L.A., Smith, B.E., Hamilton, G.S., 2008. Increased flow speed on a large East Antarctic
443 outlet glacier caused by subglacial floods. *Nat. Geosci.* 1, 827–831. doi:10.1038/ngeo356

444 Stoner, J.S., Channell, J.E.T., Mazaad, A., Strano, S.E., Xuan, C., 2013. The influence of high-
445 latitude flux lobes on the Holocene paleomagnetic record of IODP Site U1305 and the
446 northern North Atlantic. *Geochemistry, Geophys. Geosystems* 14, 4623–4646.
447 doi:10.1002/ggge.20272

448 Stupavsky, M., Gravenor, C.P., Symons, D.T.A., 1974. Paleomagnetism and magnetic fabric of
449 the Leaside and Sunnybrook Tills near Toronto, Ontario. *Bull. Geol. Soc. Am.* 85, 1233–
450 1236. doi:10.1130/0016-7606(1974)85<1233:PAMFOT>2.0.CO;2

451 Tarling, D., Hrouda, F., 1993. *The Magnetic Anisotropy of Rocks*. Chapman and Hall, London.

452 Thouveny, N., Moreno, E., Delanghe, D., Candon, L., Lancelot, Y., Shackleton, N.J., 2000. Rock
453 magnetic detection of distal ice-rafted debries: Clue for the identification of Heinrich layers
454 on the Portuguese margin. *Earth Planet. Sci. Lett.* 180, 61–75. doi:10.1016/S0012-
455 821X(00)00155-2

456 Tulaczyk, S., Kamb, B., Engelhardt, H.F., 2001. Estimates of effective stress beneath a modern
457 West Antarctic ice stream from till preconsolidation and void ratio. *Boreas* 30, 101–114.
458 doi:10.1080/030094801750203134

459 Tulaczyk, S., Kamb, B., Engelhardt, H.F., 2000. Basal mechanics of Ice Stream B, West
460 Antarctica: 1. Till mechanics. *J. Geophys. Res. Solid Earth* 105, 463–481.

461 Tulaczyk, S., Kamb, B., Scherer, R.P., Engelhardt, H.F., 1998. Sedimentary processes at the base
462 of a West Antarctic ice stream: constraints from textural and compositional properties of
463 subglacial debris. *J. Sediment. Res.* 68, 487–496.

464 Tulaczyk, S., Mikucki, J. a., Siegfried, M.R., Priscu, J.C., Barcheck, C.G., Beem, L.H., Behar,
465 A., Burnett, J., Christner, B.C., Fisher, A.T., Fricker, H. a., Mankoff, K.D., Powell, R.D.,
466 Rack, F., Sampson, D., Scherer, R.P., Schwartz, S.Y., 2014. WISSARD at Subglacial Lake
467 Whillans, West Antarctica: scientific operations and initial observations. *Ann. Glaciol.* 55,
468 51–58. doi:10.3189/2014AoG65A009

469 Tulaczyk, S.M., Scherer, R.P., Clark, C.D., 2001. A ploughing model for the origin of weak tills
470 beneath ice streams: a qualitative treatment. *Quat. Int.* 86, 59–70. doi:10.1016/S1040-
471 6182(01)00050-7

472 van der Meer, J.J., 1993. Microscopic evidence of subglacial deformation. *Quat. Sci. Rev.* 12,
473 553–587.

474 van der Meer, J.J.M., Menzies, J., 2011. The micromorphology of unconsolidated sediments.

475 Sediment. Geol. 238, 213–232. doi:10.1016/j.sedgeo.2011.04.013
476 Weertman, J., 1974. Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13, 3–11.
477 Wright, A., Siegert, M., 2012. A fourth inventory of Antarctic subglacial lakes. Antarct. Sci. 24,
478 1–6. doi:10.1017/S095410201200048X
479

480 **Figures**
481
482

483 **Figure 1.** **a)** Location of the WIS and SLW [from *Christner et al.*, 2014b]. The maximum extent
484 of SLW and other subglacial lakes in blue; predicted subglacial water flowpaths through SLW
485 and other subglacial lakes are represented by blue lines with arrows; the black line denotes the
486 ice-sheet grounding line at the start of the Ross Ice Shelf. Inset shows details of SLW with both
487 maximum (solid blue line) and minimum lake extent (shaded blue area), hydropotential contours
488 (white isolines; 25 kPa interval), and drill site (yellow star; 84.240° S 153.694° W). Background
489 imagery is MODIS MOA30. **b)** Relative change in average lake surface elevation between 2004
490 and 2014 (Siegfried et al., 2014).

491
492 **Figure 2.** **a)** Right to left: Geotek line-scan images of piston core (SLW1-PC1), core radiograph,
493 digitized clasts, moisture content, Geotek wet bulk density, and ITRAX Fe:Ti. **b)** Particle size
494 distribution of till matrix, measured by laser diffraction. The mean and 2-sigma distributions are
495 shown by the solid line and shaded region, respectively.

496
497 **Figure 3.** AMS fabric in the piston core (left column) and percussion core (right column). **a)**
498 Plots showing the variation in lineation ($L = k_{max}/k_{min}$) and foliation ($F = k_{int}/k_{min}$) versus depth in
499 the piston and percussion cores respectively. Vectors represent the magnitude and inclination of
500 the k_{min} principle susceptibility axis. **b)** Maximum (squares), intermediate (triangles), and
501 minimum (circles) principal susceptibilities with disturbed sections omitted to highlight the
502 natural fabric. k_{max} orientations trend towards a shallow plane depicted by the blue line. As the
503 cores are not azimuthally oriented, the three principal susceptibility axes have been rotated by a

504 constant so that the k_{min} axes plunge eastward or ‘down-glacier’, consistent with experimental
505 observations from sheared diamict (Hooyer et al., 2008).

506 **Appendix A. Sand Mineralogy**

507 Composition of the sand fraction at SLW is statistically indistinguishable from sediments
508 recovered upstream (at UpB) and very similar to previously described samples from the Siple
509 Coast and Eastern Ross Sea Region (Licht et al., 2005). In order of decreasing abundance, the
510 500 – 2000 μ m size fraction contained quartz (37%), feldspar (24%), felsic intrusive lithic
511 fragments (19%), metamorphic lithic fragments (14%), and intermediate intrusive lithic
512 fragments (3%). Sedimentary lithic fragments, extrusive lithic fragments, heavy minerals and
513 mafic intrusive lithic fragments each constitute $\leq 1\%$ (Fig. S1). Felsic intrusive grains commonly
514 display evidence of hydrothermal alteration, either by chlorite replacement of biotite or
515 seritization of feldspars grains. Metamorphic grains are dominantly schists and phyllites, and
516 sedimentary lithics include diamictites, mudstones, limestone, and dolomite.

517 **Appendix B. Microfacbrics**

518 Microfabrics support this interpretation showing structures consistent with ductile shear
519 and very little disturbance from degassing. Skel-insepic intergrading to skel-lattisepic plasmic
520 fabrics and rotational microstructures are dominant in all of the sampled intervals. Large (0.1 –
521 0.5 mm wide) planar fractures are abundant in the shallowest piston core and percussion core
522 thin sections. In the piston core sample, fractures display a polygonal pattern suggesting they
523 formed by desiccation. Samples used in AMS and NRM were taken immediately after the cores
524 were split and should not have been affected. In the percussion core sample, fractures are
525 dominantly subhorizontal and may have formed from dilation and pressure release caused by the

526 ‘hammering’ of the corer. Planar plasmic fabrics occur in proximity to the fractures where they
527 are aligned parallel to the dominant fracture orientation. We interpret these fabrics as evidence of
528 coring disturbance, which may overprint natural magnetic fabrics in the percussion core.
529 Subvertical planar fabrics occur in the deepest piston core sample (see masepic fabric in Figure
530 S2). The corresponding AMS fabrics have an anomalous vertical trend interpreted as evidence of
531 core stretching (see horizontal K_{min} vectors in Fig. 3a). Degassing tubules tend to be very fine
532 (<0.1 mm wide), rare (<2% of area), and most importantly show very limited disturbance of the
533 surrounding fabric suggesting that degassing has not significantly affected magnetic fabrics in
534 the cores.

535 **Appendix C. Magnetic Granulometry**

536 **6. Methods**

537 The hysteresis parameters saturation magnetization, saturation remanence, coercivity,
538 coercivity of remanence, and high-field magnetic susceptibility (M_S , M_R , B_C , B_{CR} , and χ_{hf} ,
539 respectively), were measured on a Princeton Measurements Corp. Vibrating Sample
540 Magnetometer (VSM) in a 1-T peak field. Measurements were made on bulk sediment to assess
541 the average domain state responsible for the natural remanent magnetization and anisotropy of
542 magnetic susceptibility behavior. Raw hysteresis data were processed by using χ_{HF} (calculated
543 between 0.7 T and 1 T) to remove the paramagnetic contribution to the induced magnetization,
544 and then normalized by mass. The hysteresis parameters saturation magnetization (M_S),
545 saturation remanence (M_R) and coercivity (H_C) were determined from the paramagnetic-
546 corrected data. The coercivity of remanence (H_{CR}) was determined through the DC-
547 demagnetization of a saturation isothermal remanent magnetization imparted in a 1 T field. The

548 S-ratio was measured by imparting a 1 T isothermal remanent magnetization, followed by the
549 application of a 300 mT backfield, and calculating S as $M_{R(-300\text{-mT})}/M_{R(1\text{-T})}$.

550 Thermomagnetic curves were measured on an AGICO KLY-4 Kappabridge at Montclair
551 State University. Magnetic susceptibility was measured on a sample size of 500-600 mg of dry
552 sediment during heating and cooling from 20 - 700 °C in a flowing argon gas atmosphere. Raw
553 data were corrected for the furnace contribution and normalized by mass.

554 Grain mounts were prepared to observe Fe-oxide mineral assemblages via electron
555 microscopy following Darby and Bischof, 1996. The 45-500 µm size fraction was wet sieved
556 and then processed using a Franz magnetic separator. The magnetic fraction was examined under
557 an Olympus SZ12 stereomicroscope. Grains with metallic luster were manually picked from the
558 magnetic fraction, mounted in epoxy, polished, and carbon-coated. Polished specimens were
559 examined using a Hitachi S-3400N Scanning Electron Microscope (SEM) equipped with a
560 Bruker X-flash X-ray microanalysis system. Standardless quantitative analysis was performed
561 using the Phi-Rho-Z standardless quantitative analysis routine in Bruker's Esprit 1.9.3 software.
562 Tests of the Phi-Rho-Z routine on microprobe quality mineral standards yielded results within
563 0.05 to 1% relative of the published compositions for major elements (wt% > 5%) and within
564 0.05-0.5% relative for minor elements (<5 wt%).

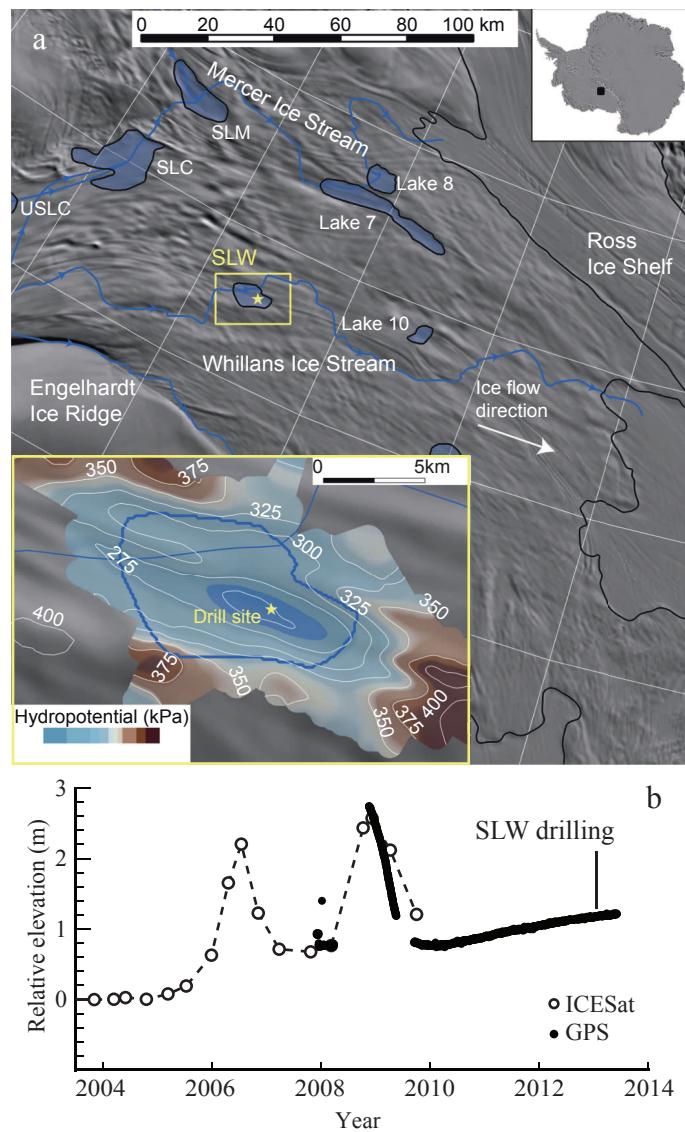
565

566 7. Results

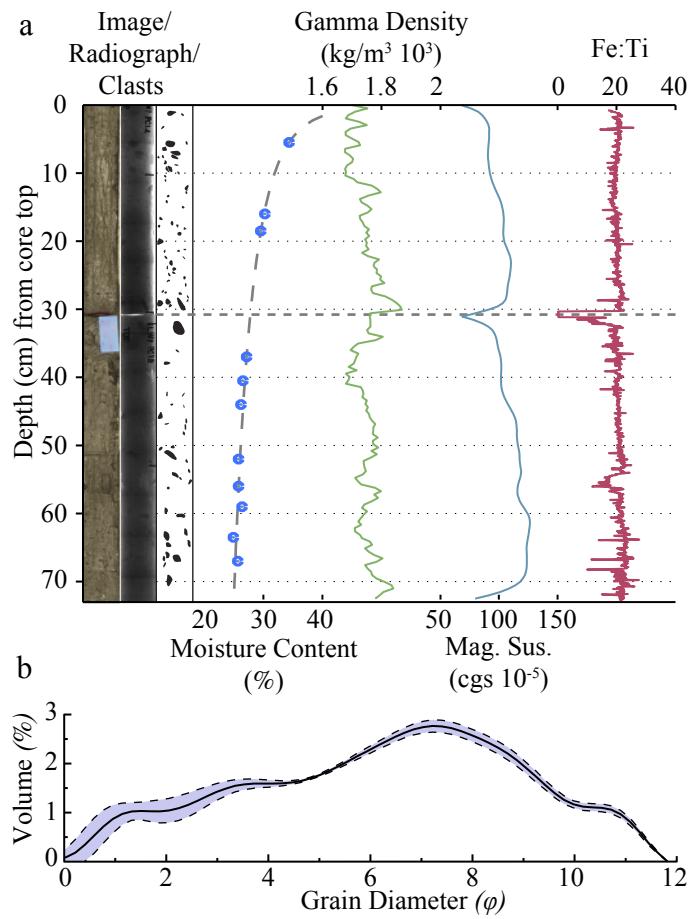
567 The magnetic mineral assemblage in SLW-1 PC1 and PEC-1 is comprised of magnetite
568 and minor amounts of ilmenite and hematite, with the latter likely occurring as nanno-scale
569 lamellae in (hemo)ilmenite. The magnetic mineral assemblage is uniform throughout PC1,
570 consistent with relatively constant Fe/Ti ratios determined from XRF measurements (Fig. 2).

571 Magnetic domain state was determined from the median destructive field of the NRM
572 (MDF_{NRM}), the alternating field value at which 50% of the NRM is removed, and from hysteresis
573 measurements. MDF_{NRM} values in PC1 are between 35-40 mT, consistent with fine PSD
574 magnetite. Hysteresis parameters in bulk samples from SLW-1 piston core 1 (PC1) and
575 percussion core 1 (PEC-1) are dominated by multidomain grains, with M_R/M_S values between
576 0.04 and 0.06 and B_{cr}/B_c values between 5 and 6 (Table S1; Figure S4). This is consistent with
577 lithic fragment abundances, for which felsic and intermediate intrusive fragments (i.e, coarse
578 grained lithologies) are abundant, and extrusive fragments (fine grained lithologies) comprise <
579 1% of the assemblage (Appendix A).

580


581 Magnetic mineralogy was determined from thermomagnetic curves, S-ratios, and energy-
582 dispersive x-ray spectroscopy (EDX). S-ratios are nearly 1 for all samples (Table S1), indicative
583 of low coercivity minerals such as magnetite. Susceptibility vs. temperature is invariant between
584 20 and 380 °C. Susceptibility increases between 380 and 450 °C, which is likely a
585 thermochemical alteration feature. This is followed by rapid loss of signal between 565 °C and
586 610 °C, indicative of low-Ti titanomagnetite and magnetite that are slightly oxidized (Figure S4).
587 A continued loss of signal is observed between 600 and 700 °C, which is suggestive of hematite.
588 This feature is reversible in the heating and cooling curves. As no hematite grains were observed
589 in the SEM and the S-ratios are uniformly near 1, we infer this high-temperature signal as
590 originating from nanno-scale hematite intergrowths within ilmenite. SEM and EDX data support
591 the thermomagnetic data. Observations of magnetic grains extracted from the 45-500 μm fraction
592 reveal homogeneous magnetite (72% wt % Fe and no other detectable cations) and homogenous
593 ilmenite in which the Fe wt% (38 %) is very slightly enriched above the stoichiometric value
594 (36.8%).

596 **8. References**


597 Darby, D. A., J.F. Bischof, (1996), A statistical approach to source determination of lithic and
598 Fe-oxide grains: An example from the Alpha Ridge, Arctic Ocean. *J. Sedimentary Res.*
599 *66*, 599–607.

600 Day, R., M.D. Fuller, V.A. Schmidt, (1977), Hysteresis properties of titanomagnetites: Grain size
601 and composition dependence. *Phys. Earth Planet. Int.*, *13*, 260-266, doi:10.1016/0031-
602 9201(77)90108-X.

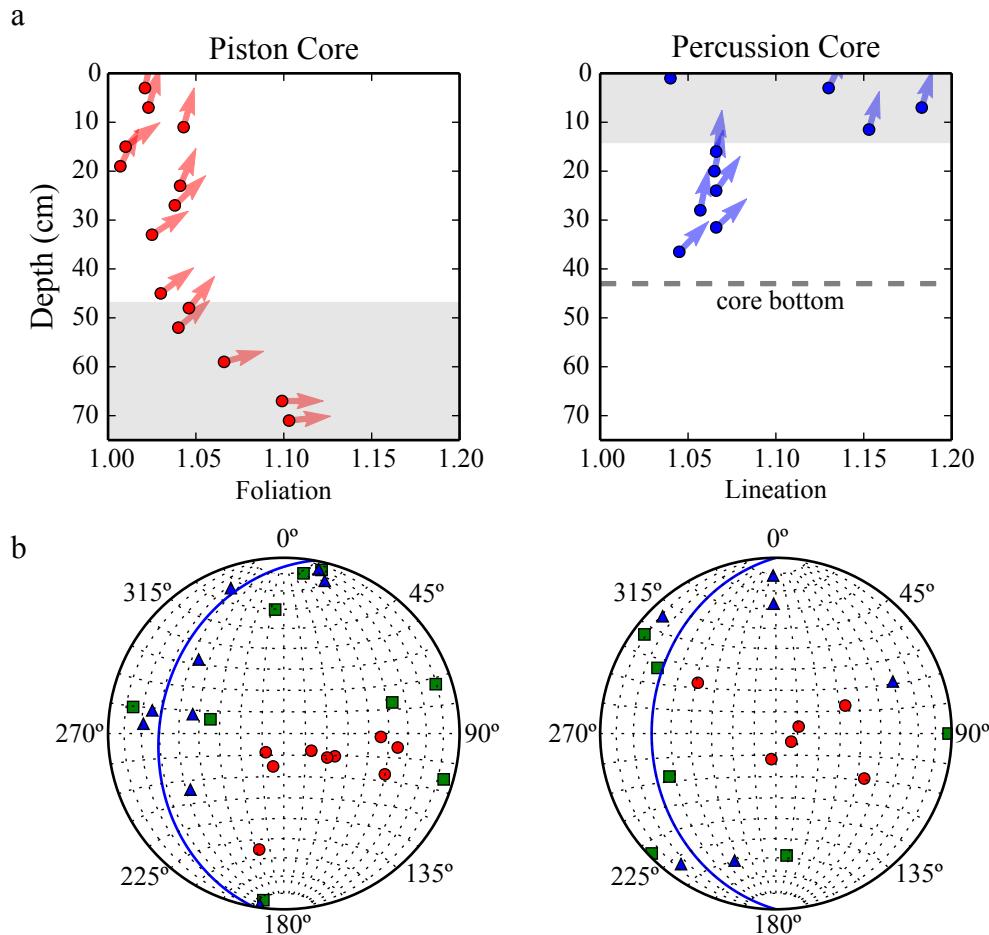

Figure 1

Figure 2

Figure 3

