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37 Abstract  
Shellfish hatcheries have become an increasingly important component of aquaculture production 
in the United States. Although the industry has been advancing technologically over time to 
stabilize production and supply, many hatcheries suffer regularly from bouts of stalled or failed 
production, termed crashes. Crashes are widely acknowledged to occur  and are considered a 
persistent problem in the industry but also an understudied phenomenon in the field of shellfish 
aquaculture that warrants greater investigation. Furthermore, there are few thorough reports on 
production variability from established hatcheries. To help fill the  data gap and initiate a broader  
discussion on the causes of hatchery crashes, we provide testimonials from research hatchery  
managers across the Atlantic Coast about their experiences  with crashes. As a case study, we 
report on long-term production trends  (2011-2020) at Horn Point Laboratory’s oyster hatchery, 
which included persistent production failure during the 2019 season. During the 2019 season, 
larval assays were conducted to determine drivers of production failure; however, no clear culprits  
were identified.  Machine learning was used to help characterize production variability and hindcast 
the specific  conditions when the hatchery's production was most efficient.  Microbial community  
structure of larval associated microorganisms was shown to differ between a crash and non-crash 
time-point. We highlight the ubiquity of hatchery crashes along the Atlantic Coast of the US, the 
range of severity at which crashes  can occur, and the difficulty of identifying the underlying causes  
of crashes, even at world-class research facilities. Collectively, we conclude that more research,  
data sharing, and cross-institution collaboration are needed to prevent crashes, and to develop 
mitigation strategies to maintain high levels of consistent shellfish aquaculture production.   
 
Keywords: hatchery, bivalve, production,  C. virginica,  seed supply, larvae, machine learning  
 
 

1.1 Introduction  

The United States is the 3rd largest global consumer of seafood and imported $402 million (155 

million pounds) of bivalves in 2019 to meet domestic demand for oysters, mussels, scallops, and  

clams (USDA, 2019). To reduce these trade deficits and relieve harvest pressure on wild stocks, 

federal (e.g. NOAA, USDA) and state agencies  have promoted shellfish production along all US  

coastlines. Although regional production rates  may  vary greatly  (NOAA, 2016)  because of a variety  

of factors (environmental conditions, regulations, supply chains, etc.), larval supply underpins  

cultured production of oysters nationally  (Ekstrom et al., 2015). Aside from a few distinct bays (e.g. 

Willapa Bay, WA), hatchery production of oyster larvae and seed has become increasingly  

important to fuel domestic aquaculture production  (Barton et al., 2015)  in the US and plays an 

important role for enhancing wild fisheries and restoration efforts in many coastal bays and 

estuaries  (Hornick and Plough, 2019). Decades of research on larval diets, water treatment, and 
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culture practices have led to large improvements in the production rates and efficiencies of 

shellfish hatcheries (Elston et al., 1981; Helm and Millican, 1977; Lewis et al., 1988; Robert and 

Gérard, 1999; Urban Jr and Langdon, 1984). These facilities are now responsible for reliably 

supplying high-quality larvae and seed to a growing aquaculture industry. 

Although hatchery staff may be highly skilled, most facilities still experience periods of poor larval 

growth or mass mortality events, termed crashes, which have been a perpetual problem in the 

industry (Walker, 2017). Crashes are recognized as a world-wide industry phenomenon not unique 

to oysters but have been observed among a variety of cultivated shellfish species (Jones, 2006). 

Crashes may occur over short timescales with entire batches (tens of millions) of larvae lost 

overnight. Upon inspection of tanks in the morning after a crash, managers may observe larvae to 

be thickly coated with bacteria or filled with ciliates, making it difficult to determine if these 

microorganisms were the cause of the crash or opportunistic invaders that exploited the 

compromised batch (Estes et al., 2004). Aside from bacteria, there are a wide variety of potential 

chemical contaminants or other biological agents that could quickly degrade culture conditions, 

such as toxic or inhibitory metals, organic or inorganic chemicals coming from natural or 

anthropogenic sources (e.g. terrestrial agriculture), and poor water quality (see mini-review by 

Jones 2006). Furthermore, all of these sources have several opportunities to disrupt hatchery 

production, as they can affect broodstock conditioning, algal culture, or the larvae themselves in 

culture tanks. Without effective diagnosis, developing mitigation or avoidance strategies can be a 

daunting task. Indeed, hatchery staff rarely have the time or resources to investigate the causes of 

crashes in their facilities. Instead, the most common approach to coping with crashes is to simply 

dump ‘bad water’, clean tanks and other equipment, and hope that tanks can be filled with ‘good 

water’ so that production can resume. Bad water that reduces larval growth and survival, such as 

from coastal upwelling of acidic water, can linger in coastal margins for a long time (i.e. weeks to 

months) and potentially re-enter the hatchery repeatedly over the production season (Barton et al., 

2012). 
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Crashes are costly as they result in loss of revenue while wasting labor and other production 

resources. These losses can reverberate throughout the industry. Larvae and seed supply is 

already among the top concerns among some growers (Langston, 2015; Lukenbach et al., 2008), 

and weak hatchery production only exacerbates these concerns and may deter new entrants into 

the industry. The ‘Seed Crisis’ observed in the western USA oyster industry is a notable example. 

During the late 2000s, commercial hatcheries struggled to produce oyster larvae for years, which 

ultimately resulted in an estimated industry loss of $110 million in the Pacific Northwest (Ekstrom et 

al., 2015). 

Although crashes in shellfish hatcheries are acknowledged to occur and considered common, they 

also represent one of the unspoken failures in current shellfish cultivation. Crashes remain under-

investigated and mostly unexplained. A major impediment to exploring crashes is the 

understandable lack of willingness among private hatcheries to divulge production failures. Indeed, 

through our informal surveying of the private industry, we found that many hatcheries were 

interested in learning how to avoid or mitigate crashes but were reluctant to share data or publicly 

discuss production failures occurring at their facilities. In contrast to private hatcheries, shellfish 

research hatcheries, which also suffer from crashes, produce larvae for a variety of purposes other 

than aquaculture (e.g., research, restoration, fisheries enhancement) and often carry the mandate 

of sharing information with the public. 

Here we highlight the spatial and temporal variability of crashes among a network of research 

hatcheries along the Atlantic Coast of the US (Fig. 1). The University of Maryland Center for 

Environmental Science (UMCES) Horn Point Laboratory oyster hatchery (HPLOH) is the largest 

hatchery supplier of oyster larvae and seed on the Atlantic Coast. Annually, it produces billions of 

pediveliger larvae, typically between the months of April and September, for a variety of purposes 

in the Chesapeake Bay, including oyster sanctuary restoration, replenishment of the public fishery, 

and supplying eyed larvae for the rapidly growing aquaculture industry in Maryland and Virginia 

(UMCES Horn Point Laboratory, 2020). 
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126 
127 Figure 1.  Total production of spat on shell at the University of Maryland Center for Environmental Science  

Horn Point  Laboratory  oyster  hatchery  over  time.  Period with available hatchery  records  is  denoted by  dashed  
box. Persistent production failure during 2019 is highlighted with horizontal  stripes.  Reduced production in 
2020 was  due to the COVID-19 pandemic  and depressed demand and related production challenges.  
 

At these large production scales (mean batch size = 80 million eyed larvae; $300/million diploid 

wild larvae), a single crash results in approximately $24,000 in lost revenue. This loss estimate 

excludes accounting for  ancillary expenses associated with production, such as wasted labor and 

other resources (e.g., seawater, electricity, algae and reagents). Although the HPLOH is fully  

equipped and staffed with highly experienced personnel, some of whom hold advanced degrees in  

science, periodic crashes of oyster larvae have occurred annually.  

Most recently, during the  2019 production season, HPLOH  was unable to produce larvae for ⅓ of 

the production season (late May to early August). Harmful algal blooms in the Chesapeake Bay  

have been suspected as frequent contributors to hatchery crashes. Other factors such as harmful  

bacteria, organic pollutants, poor water quality, and low salinity events also may impair production,  

given the hatchery’s location within the mesohaline portion of this bay. Although production failure 

was linked to historic rainfall and low salinity conditions for months preceding the 2019 season 

(examined and described below), no clear causes or factors  have yet been identified to explain the 

prolonged crashes in 2019.  
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Aside from HPLOH, production crashes also vary greatly among our network of research 

hatcheries along the Atlantic Coast (Fig. 2). For brevity, we have not included site-specific 

environmental details, which would show differences among facilitates due to their latitude, 

proximity to the ocean, surrounding land use, etc; however, it is important to acknowledge that 

despite these differences, some forms of crashes have occurred at all the listed facilities (Table 1). 

Interestingly, the closest hatchery to HPLOH (co-located in the mesohaline portion of Chesapeake 

Bay) also suffers from periodic crashes but at asynchronous periods at HPLOH. Starting furthest 

away from HPLOH, the Downeast Institute (DEI; Maine) has difficulty culturing microalgae in 

August and many times in January/February. Oyster larvae production problems occur periodically 

at other times of the year and can lead to entire losses of larval batches, which seem to be linked 

to disease outbreaks (i.e. Vibrio spp). DEI hypothesizes that these crashes are associated with 

strong winds that suspend pathogens embedded in sediments that are pumped into the hatchery. 

A new threat to production at DEI is a marine fungus that creates ‘pink blobs’ which, after 

appearing on tank walls, are followed by complete loss of larvae within 2-3 days. Crashes at DEI 

slow aquaculture research progress and delay delivery of oysters and clams purchased by local 

growers and communities that use DEI seed to manage their stocks. Rutgers University’s 

Aquaculture Innovation Center (AIC; New Jersey) typically observes crashes annually for 2-4 

weeks during late May to early June driven by a mysterious cause. Crashes of oyster larvae and 

juveniles at AIC represent a substantial burden on annual seed production upon which many 

commercial farmers rely. During the entire 2018 season (March through July), AIC had persistent 

low larval survival (< 10%), crippling production despite numerous attempts to triage and prevent 

crashes (including extra cleaning, water filtration, probiotics, etc.). The precise causes of the 

season-long crash at AIC were never determined. After thorough cleaning in the 2018 offseason, 

AIC reported few production issues in 2019. University of Georgia’s Shellfish Laboratory (UGA) 

was created in 2015 to help revive the state’s oyster aquaculture industry through research and 

extension. This research laboratory has also been a valuable resource regionally, supplying seed 
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172 to South Carolina after a local, private hatchery ceased production. For several weeks in August of 

2017, UGA  noticed late-stage (7-9 days post fertilization) larval mortality. Late-stage mortality  is  

less common than early-stage mortalities in hatcheries but is  particularly  costly because of the 

amount of resources invested prior to failure. NOAA’s Northeast Fisheries Science Center  

(NEFSC; Connecticut) has stable production, but reported relatively slow larval growth and poor  

setting after  July annually. This facility does not supply oysters to the local shellfish industry but 

instead uses these larvae for research purposes. University of North Carolina Wilmington’s  

Shellfish Research Hatchery has experienced production swings  historically and episodic crashes  

during 2010-2013. Since this time, however, they have had stable and reliable production, which 

they linked to optimizing temperatures for larval  growth and survival within their hatchery. These 

anecdotal  observations illustrate how hatchery crashes are common, originate from many potential  

sources, and remain largely unresolved.  
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185 Figure 2.  Atlantic research hatchery network member locations: 1) Downeast Institute (ME), 2)  NOAA  
Northeast Fisheries Science Center (CT), 3)  Rutgers University’s Aquaculture Innovation Center (NJ),  4)  
UMCES  Horn Point Laboratory, 5) MD  DNR Piney Point Hatchery, 6) UNC Wilmington’s Ha tchery ( NC),  7) 
University  of  Georgia’s  Shellfish Laboratory  (GA).  
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In this study, we sought to examine the phenomenon of crashes at HPLOH by  mining the detailed,  

long-term hatchery production dataset at HPLOH. Since 2011, HPLOH  has monitored and 

recorded a vast array of production data including broodstock conditioning, food ration, and 

production rates. These production data alone are interesting as there are few examples of long-

term hatchery-scale shellfish production data that have been published and available for scrutiny  

by scientists or the public. In addition to production data, a series of larval assays and other  

investigations were conducted by the hatchery staff and other researchers during short-term  

crashes (2018) and persistent crashes (2019). These studies provide insight into the complexities  

limiting identification of drivers of hatchery crashes so that mitigation strategies may be developed. 

We conclude this work  by identifying primary knowledge gaps surrounding hatchery crashes and  

their impact on the shellfish aquaculture industry. We also, however, offer  a path forward for future 

investigations and  highlight emerging technology for improving hatchery performance or increasing 

flexibility to maintain production in the face of adverse environmental conditions.  

 

Table 1.  Shellfish research hatcheries  in our  study  network  with their  specific  location,  crash symptom,  and suspected 
culprit. HPLOH refers to the Horn Point Laboratory Oyster Hatchery.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Facility Name  Location  Crash Symptoms  Culprit 

 Horn Point Laboratory 
 Oyster Hatchery  

 Cambridge, 
 Maryland 

   Periodic crashes of new batches or 
slowed growth  
Prolong failure in 2019.  

Unknown  

 Downeast Institute Beals, Maine  Periodic crashes of new batches;  
 complete loss of all larvae  

 Benthic 
pathogens/fungus  

Rutger’s Aquaculture 
 Innovation Center 

 Cape May, New 
 Jersey 

 Periodic crashes in late May 
Persistent failure in 2018  Unknown  

 Piney Point Oyster 
 Hatchery 

 Piney Point, 
 Maryland 

 Periodic, asynchronous failure with 
HPLOH  Unknown  

 University of Georgia Savanah, Georgia  Late-stage mortality in 2017  Unknown  
 NOAA Northeast 

 Fisheries Science Center 
Milford,  

Connecticut  
Slow larval growth and poor setting 

 in July Unknown  

  University of North 
 Carolina 

Wilmington, North 
Carolina  Production swings from 2010-2013  Suboptimal temperatures 
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2.1 Methods 

We used a variety of methods to examine hatchery crashes at HPLOH, including oyster larvae 

developmental assays, microbial community analysis and sequencing, meta-analysis of production 

records, and a suite of exploratory water-quality analyses. Statistical analysis of production trends 

also was performed to examine production bottlenecks and to identify environmental and culture 

conditions that drive production yield (defined below). 

2.2 Study site 

HPLOH is located adjacent to the Choptank River (38°35’06.92N, 76°05’08.45”W), which is the 

largest tributary of the Chesapeake Bay on the eastern shore and located in the mesohaline 

portion of the Chesapeake Bay. 

2.3 Choptank River water quality data 

Archived real-time water quality data, used to examine how bay conditions affect hatchery 

production retrospectively, were obtained from the Goose Reef Buoy (GRB) located in the main 

stem of Chesapeake Bay (Maryland Dept. of Natural Resources Station XEF3551) (Fig. 3). GRB 

has been collecting data at hourly intervals since 2008. Water-quality variables monitored by GRB 

dissolved oxygen, water temperature, salinity, pH, chlorophyll, and turbidity. Long-term (1986-

2020), monthly water-quality data were downloaded from a fixed monitoring station located 

upstream from the hatchery (Maryland Dept. of Natural Resources Station ET5.2, Choptank River). 

These data were used to examine how 2019 water conditions differed from historical trends. 
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232 Figure 3 .  Location of  Horn Point  Laboratory  oyster  hatchery  on the Choptank  River  (star)  in  the mesohaline  
portion of the Chesapeake Bay.  Water quality monitoring stations:  Maryland Dept. of  Natural  Resources Station  
on the Choptank  River  (circle)  and the Goose Reef  Buoy  in the main stem  of  the Chesapeake Bay  (cross).    
 

 

2.4 HPLOH  hatchery water-quality data and larval culture  

Within the hatchery, the staff measures water temperature, salinity, and pH daily with a handheld 

sonde (YSI pro1030). Since 2016, the hatchery crew has been monitoring (with intermittent data 

gaps) alkalinity from weekly titrations (n = 193; SI Analytics TitroLine 6000) during the production 

season. Aragonite saturation state (Ωar) was determined using  carbonate system variables (pH  

and alkalinity), for seawater temperature and salinity, and entered into carbonate calculating 

software (CO2SYS). For the past 3 years, the hatchery staff has used carbonate data and 

additions of Na2CO3  to alter tank chemistry to ensure tank  Ωar and pH are above 1 and 8, 

respectively. Larval cultures are reared at 28-30ºC and maintained by the air temperature of the 

hatchery itself. Salinity  of larval cultures ranged throughout the season; however, a minimum  

salinity of 10 ppt is maintained with additions of artificial salt mix (Crystal Sea MarineMix). 

Afterward, there is no further manipulation of larval culture water quality.  
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2.5 Production data 

Long-term hatchery production data (2011-2019) were obtained from HPLOH hatchery data 

archives. These records include a wide variety of information around the broodstock, spawning, 

and larval production process in the hatchery. For brevity, we list most but not all data that were 

collected to illustrate the detail of these records as well as list the numerous variables that initially 

were considered relevant to our investigation. 

● Broodstock data: origin of broodstock (river and bar location); temperature, salinity, and 

pH information (min, max, average) during conditioning. 

● Spawning data: stimulus used to initiate spawning, length of time for first female to release 

eggs, length of time for first male to release sperm, number of oysters used for spawn, sex 

ratio, % females spawned, average shell height of females in spawn, eggs produced, 

fecundity (average number of eggs per spawned female); subjective visual assessments: 

general condition (0 - watery and transparent to 4 - full body filling shell cavity with visible 

organs); gonadal index (0 - no visible gonadal development to 4 - follicles clearly defined to 

engorged); egg quality (0 - no eggs to 4 - very well developed); sperm mobility (0 - no 

sperm to 4 - sperm present and extremely active). 

● Production data: total eggs added to tank, age at first tank drain, survival to prodissoconch 

I (D-hinge), days to first eyed veliger stage, total eyed veligers produced. Additional notes 

within production data explicitly stated if a batch crashed, was discarded, or combined with 

another batch because of slow growth. 

Every spawn and resulting brood were tracked continuously through the entire production process 

unless it crashed or was combined and mixed with another batch of larvae. For our investigation, 

we excluded mixed-broods to avoid confounding factors among batches. This enabled us to link 

hatchery production of larvae back to the specific environment and husbandry under which they 

were cultured, spawned, and their parents were conditioned. 
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Long-term production data were analyzed for two performance metrics: production yield and 

production rate. Yield, with its potential range from 0 (crash) to 100% (all eggs produced 

competent larvae and no mortality observed), described the ability of the hatchery to usher larvae 

through the production process and was defined as the ratio of outputs to inputs: 

𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 (%) = (𝐸𝐸𝐸𝐸𝑌𝑌𝑌𝑌 𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑌𝑌 𝑝𝑝𝑙𝑙𝑝𝑝𝑌𝑌𝑝𝑝𝑝𝑝𝑌𝑌𝑌𝑌 / 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑙𝑙𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑡𝑡𝑝𝑝 𝑡𝑡𝑙𝑙𝑡𝑡𝑡𝑡) × 100% (1) 

Production rate was defined as the day at which larvae first reached the pediveliger stage, a 

production metric routinely recorded by the hatchery. All production data from 2019 were analyzed 

separately from long-term analysis of production trends at HPLOH attributable to anomalous, 

persistent crashes observed throughout most of this season. 

2.6 Larval developmental assays during 2019 crashes 

Complete production failure was observed for approximately 8 consecutive weeks in the middle of 

the 2019 season (late May to late July), representing the worst season in this facility's history. The 

hatchery staff conducted 8 larval developmental assays and other water quality analyses to identify 

drivers of production failure. During each trial, adult oysters were spawned according to standard 

hatchery protocols, and fertilized eggs were stocked in triplicate in 1,000-L conical tanks at 10 

larvae per mL. Tanks were drained and cleaned at 24 h post-fertilization and every 2-3 days 

thereafter. The need to quickly identify crashes and complete lack of production led to most trials 

being assessed qualitatively as either ‘crashed’ or ‘survived’ among treatments within each assay. 

Daily rations of food consisted of standard, live hatchery diets, which varied in composition over 

time and were scaled commensurately with culture age (Kuang et al., 2003), unless otherwise 

noted. Algal food cultures at HPLOH are created from pure stocks of monocultures which are 

grown in Choptank River water that has been filtered in series through sand filters then 1-µm string 
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cartridge filters, which is then either ozonated (large tanks in greenhouses) or autoclaved (flasks 

and carboys). 

The following section describes the purpose and treatments for each assay. Here, we group these 

assays by common factors (Table 2). At the outset of the 2019 production season, low Choptank 

River salinity (< 50% historic average) was observed, and early-season larval culture was 

unsuccessful. The HPLOH responded by adding salt to adult conditioning systems and larval 

production tanks to achieve minimum salinities (10 ppt). When the standard artificial seawater 

(Crystal Sea®) failed to improve production yield, an assay was developed to examine if larval 

development could be improved using a regionally-mined, fine-grained sodium chloride (Mix-n-Fine®) 

(assay 1). Later, it was hypothesized that poor condition of broodstock attributable to abnormally-

low salinities during the spring of 2019 might explain poor oogenesis and larval production. To 

address this, broodstock from saltier portions of the lower Chesapeake Bay (Manokin River; 15-18 

ppt) were spawned, and resulting larvae were monitored during a larval assay (assay 2). Low river 

salinity also was suspected to degrade equality/physiology of microalgae fed to larvae. At this time 

the salinity within the algal system was 6.5. Algal cultures were inspected microscopically for 

presence of HAB or other undesirable microorganisms by the hatchery algologist, but none were 

observed. Nevertheless, an assay was developed to examine larval development in response to 

algae with greater salt content (11 ppt), prefiltering water supplying algal cultures (charcoal or 

string cartridge filter or ozonation) + algae + salt, and Reed Shellfish Diet® + prefiltered water on 

larval development were evaluated (assay 3). Furthermore, there was concern that the automated 

feeding system at HPLOH, which directly pumped food from the greenhouse to algal tanks, may 

have been a source of contamination. To tease apart these potential competing sources of 

contamination, hand feeding trials that included a salinity component (6.5 and 11 ppt) were added 

to this assay (assay 4). 
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323Table 2. Suspected problems and hatchery responses during persistent production failures during the 2019 production season at Horn Point Laboratory. Water filtration 
324assay (5) includes Standard Filtered Water (SFW), Charcoal Filtered Water (CFW); assay 3 includes ozonated water (OZ) as a pre-treatment to algae production. 

Assay 
number 

Suspected Problem Hatchery Response Result 

1 

2 

3 

Salt quality? 

Broodstock impacted by low salinity? 

Salinity impacting food quality? 

Larval developmental assay: Mix-n-Fine® Salt vs Crystal Sea® 

Larval developmental assay: Obtain broodstock from saltier 
portion of the bay 
Larval developmental assay: algal paste vs algae + salt vs 
algae + filtered seawater + salt vs DI + salt + algae, OZ water 
treatment 

Crash 

Crash 

Crash 

4 Automated feeder contaminated 
Larval developmental assay: Hand feeding 2L bottles with 
various diets, salted or unsalted water, Choptank or foreign 
water (Wachapreague, MD). 

Crash 

5 

6 

Water filtration not sufficient? 

Lab contamination? 

Larval developmental assay: SFW vs CFW 

Larval developmental assays: reciprocal broodstock and 
larval transfers - VIMS vs HPL 

Crash 

HPL broodstock spawned at VIMS produce competent  larvae; 
Spawning and early larval culture at HPL Problematic, 3-day old 
larvae from VIMS survive at HPL. 

7 Choptank River water bad? 
Larval developmental assay: Choptank CFW  vs Deal Island 
CFW 

Choptanks CFW: low initial survival (6%) and crashed at day 8 

Deal Island CFW: high initial survival, moderate survival (44%) 
at day 8 

8 Chemical contamination in Choptank River? Water samples sent to MD Spectral laboratory No harmful chemicals detected 

9 

10 

Presence of adverse Vibrio spp.? 

Missing beneficial bacteria? 

Water and larval samples sent to USDA for Vibrio plate 
streaking 

Larval developmental assay: probiotic study using 
proprietary blend of Bacillus spp. 

No Vibrio detected (highly unusual) 

No significant difference on production compared to control 
(no dose); Coincidently, Choptank River salinity naturally 
increase and crashes ceased. 

11 
Bacterial community altered among crashed 
and non-crashed 2018 samples? 

Larval development assay: DNA sequencing Microbiota of the larvae from the crash were statistically 
dissimilar from those obtained during normal production 
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333
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335
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338

339

340
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342

343

344

345

346

347

348

349

350

351

Various potential sources of larval culture seawater also were examined. The standard filtered 

water (SFW) supplying larval tanks consisted of Choptank River water passed through sand filters 

followed by cartridge filters to remove particles >1µm. The first assay compared larval development 

under SFW to the same water with additional filtration through activated charcoal (CFW) (assay 5). 

It was thought that one or a combination of these filters would remove harmful algae/bacteria or 

toxins that may be present in the SFW. Considering the facility may be contaminated from a variety 

of sources (i.e. water, tanks, food, etc.), reciprocal transfers of broodstock and spawned larvae 

between HPLOH and the Virginia Institute of Marine Science (VIMS) were performed and tested 

under a separate assay (assay 6). Concerned that a contaminant was coming in through the water 

filtration system, water was brought into HPLOH from 50 km south of the hatchery in the mainstem 

of the bay (Deal Island, MD) (assay 7). 

For more detailed analysis of water quality, hatchery water was analyzed for chemical 

contaminants and Vibrio pathogens. HPLOH is located in a rural environment and is surrounded by 

active, large farms (corn, soybean, wheat). Previous reports have indicated that insecticides, 

herbicides, and fungicides enter into the Choptank River at different times during the farming 

season, with the highest concentration of herbicides in surface water found between May and 

August (Kuang et al., 2003). SFW and CFW samples were sent to Maryland Spectral Services 

(Baltimore, MD) in June of 2019 (assay 8) and analyzed for > 70 semivolatile organics (EPA 

methods 8270D via GC/MS) and > 20 chlorinated pesticides (EPA 80801B via GC/ECD). The 

analysis included scans for many persistent organic pollutants consistent with EPA protocols, 

including pesticides that are long-lived and were typically used by the agriculture industry. 

To examine for the presence of harmful bacteria, larvae and water samples were sent to USDA, 

ARS in Dover, DE, for microbial analysis (assay 9). The media used for testing and quantifying 

Vibrio levels was Thiosulfate Citrate Bile Salts Sucrose Agar (TCBS; Difco, BBL brand). This agar 

inhibits most non-vibrios by the inclusion of high salt levels. Many Vibrio spp. grow on it, including 

V. coralliilyticus and V. tubiashii. For assays, 0.1 mL of water or algal/water sample was spread 
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372

373
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over the entire surface of a freshly-prepared TCBS plate and incubated overnight at 26°C. For 

larval samples, a few hundred larvae were crushed in an empty petri dish followed by addition of 

0.1 mL of sterile seawater, and the entire volume was tested by spread plating on the TCBS agar 

similarly to water and algal samples. 

Toward the end of the failure period, the hatchery staff attempted to use a blend of proprietary 

Bacillus spp. probiotics (Quality Bacteria Laboratories; St. Louis, MO) to improve water quality 

(assay 10). Uncertain of how to adapt the use of probiotics to ameliorate culture conditions within 

tanks, the standard dose (8 g/m3), ½ dose (4 g/m3), 2x dose (16 g/m3), and a control (0 g/m3) were 

evaluated for their effects during larval developmental assays. Although larval samples from 

crashed and non-crashed cultures were not preserved from the 2019 production season, similar 

samples were archived from 2018 during larval diet studies at HPLOH using larvae produced from 

wild broodstock and two selectively bred lines (LOLA and NEH). Here we present the microbial 

community structure associated with larvae from crashed samples (acute mortality of larval 

experimental and control treatments) and non-crashed samples (high survival of all larvae) (assay 

11). Both studies were designed initially to study the effects of starvation on larval gene expression 

of several strains, so the differences in crashed and non-crashed samples were compared to the 

differences between strains (wild and selectively bred lines), and between fed and non-fed larvae, 

and across three replicate treatments per group. Crashed and non-crashed microbial communities 

were analyzed using amplicon sequencing of the 16S and 18S ribosomal RNA Gene 

(Supplemental Materials). 

2.7 Statistical analysis 

Several parametric statistical tests, including linear and non-linear regression, analysis of variance 

(ANOVA) and t-tests, were used to examine general aspects of interannual hatchery production 

and failures. Assumptions of normality and homoscedasticity were checked using Shapiro-Wilk’s 
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test and Levene’s test, respectively. Regression models were selected using the lowest AICc 

values.  

Detailed production analysis was performed using regression trees. A total of 20 variables were 

considered as predictors of hatchery production yield and hatchery production rate (Table 3). 

These factors cover the full range of production from broodstock collection, conditioning, spawning, 

and larval culture. Furthermore, water quality conditions found in the main stem of the Chesapeake 

Bay at the Goose Reef Buoy was also considered. Although a total of 497 un-mixed broods were 

cultured to competency during 2011-2020 production seasons (2019 season data excluded), a 

total number of 144 broods were available for most of the analysis as there were incomplete 

records for some of the variables. When some of the variables were removed from the model as 

not statistically significant, the sample size was reassessed to include additional observations, with 

complete records for the variables remaining in the model. 

To study the effects of these variables in a data-driven way, potentially incorporating nonlinearities 

and interactions or combined effects of the variables, and to identify important predictors of the 

crashes, we applied a machine learning method termed “random forest” (Breiman, 2001). The 

basic element of random forest is a classification and regression tree (Breiman et al., 1984) 

(CART), which recursively partitions the records of hatchery efficiency into homogeneous subsets, 

using values of the predictors. R package ranger was used to apply the random forest methods 

(Wright et al., 2020), and the Boruta algorithm was used to select relevant predictors (Kursa and 

Rudnicki, 2010, 2020, Degenhardt et al., 2019). Predictive performance of individual CARTs and 

random forests was evaluated using 10-fold cross-validation, which was repeated 20 times for 

enhanced stability of the results (i.e., accuracy measures of model predictions were calculated 200 

times on random hold-out data, then averaged). 
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  Predictors of Production   Significant Predictors 
 

 

 
 
 
 

 Production 
 Stage 

  All factors considered   Units or condition   Production Yield    Production Rate  Quadrant 1 

Broodstock 
 Collection 

Year Broodstock Collected  

Broodstock Source Location  

 River System of Collected Broodstock 

 year 

 oyster bar name 

 river name 

 Week of Year 

 Survival to D-hidge 

 GRB Oxygen 

GRB Chlorophyll  

 Average Conditioning pH 

Broodstock Source Location  

 Survival to D-hidge 

 Tank Buffering 

 Survival to D-hidge 

 Avg. Conditioning Salinity 

 GRB Oxygen 

 Average Conditioning pH  Avg. Conditioning Salinity  ppt 

 Conditioning 
 Avg. Conditioning Temperature C  GRB Turbidity  Avg. Shell Height of Females GRB Temperature   

 Average Conditioning pH  NBS units  Fecundity   Avg. Shell Height of Males Year Broodstock Collected   

 Stimulation Used  yes or no Year Broodstock Collected  

 Avg. Conditioning Salinity 

 Gonadal Index 

 GRB Temperature 

 Avg. Shell Height of Males 

 Avg. Shell Height of Females 

  Average Conditioning pH 

River System of Collected Broodstock 

GRB Salinity  

 Avg. Conditioning Temperature 

 

 GRB Temperature 

  

  

  

  

  

  

  

  

  

 GRB Oxygen 

 Week of Year 

 Fecundity  

GRB Salinity  

Tank Buffering  
Avg. Shell Height of  

 Females 

  

  

  

  

 
 
 
 

 

 

 
 
 
 

 Spawning 

 Sex Exposed to Stimulant 

 Avg. Shell Height of Males 

 Avg. Shell Height of Females 

 Fecundity  

 Gonadal Index 

 male or female 

 mm 

 mm 
millons of  

 eggs/female 

 1 to 4 

 Larval Culture 

 Week of Year 

 Survival to D-hidge 

 Tank Buffering 

 week 

 % 

 buffered/unbuffered 

 GRB Oxygen  mg/l 

 GRB Turbidity  NTU        
 Environmental 

 Data GRB Salinity   ppt        

 GRB Chlorophyll  µg/l        

 GRB Temperature C        

  

400 Table  3.  Factors  considered during CART  and Regression Trees  analysis.  Significant  predictors  are listed in  decreasing order  of  importance from  top 
to bottom.  Quadrant  1 refers  to the relationship of  production yield over  production rate (Fig.  7c)  when the hatchery  is  most  efficient.   401 
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Microbial community structure was compared between the crash and non-crash studies and 

treatments therein by applying redundancy analysis to determine if samples differed significantly 

between the crash and non-crash study and to compare these differences to those driven by larval 

strain and feeding status (fed vs starved).  

3.1 Results 

3.2 Water quality conditions in the Choptank River 

HPLOH is located in the mesohaline portion of the Chesapeake Bay; therefore, we thought it was 

important to first report on the conditions found in the Choptank River to orient readers that are 

used to working in more marine environments that have less water quality variability and greater 

carbonate buffering. 

Water quality variables (oxygen, pH, salinity, Secchi depth, and temperature) varied greatly over 

seasonal scales (Fig. 4). Here we report on the range of means spanning > 30 years of water 

quality monitoring on the Choptank River (MDNR Station ET5.2) adjacent to the hatchery. Average 

(standard deviation) oxygen, pH, salinity, Secchi depth, and temperature were 8.25 (3.02) mg/L, 

7.74 (0.11) units, 9.93 (1.25) ppt, 1.02 (0.22) m, 15.1 (9.16) ºC, respectively. 
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 419 

420 Figure 4. Monthly average (1986-2020) water quality conditions in Choptank River, MD (filled circles) and 
similar water quality data from 2019 (open squares). Hatchery season represented as area between dashed 
lines. No differences among y-axis units. Data source: Maryland Dept. of Natural Resources station ET5.2 
 

Average alkalinity measured at HPLOH between 2016-2020 was 825.70 (110.36) uequl/L. The 

average Ωar was 0.33 (SD:0.24). A strong non-linear relationship between river water Ωar and pH 

was observed (R2 = 0.92), while a weaker linear relationship was found between Ωar and salinity 

(R2 = 0.11; Fig. 5).  
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 428 

429 Figure 5. Distribution of aragonite saturation state at HPL between 2016-2020 and outlier box plot. Inset: 
aragonite saturation state at HPL over pH and salinity from discrete measurements in HPL hatchery during the 
production seasons from 2016-2020.  Data excludes 2019 production season. 
 

430 
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433 HPLOH production trends (2011-2020) 

Production has, until recently, trended positively at HPLOH since 2011 and the hatchery has 

reliably produced millions if not billions of spat on shell annually in recent history. For example, 

HPLOH consistently produced more than 500 million spat-on-shell since 2011 up until 2019. 

Maximal production occurred in 2017, with 1.784 billion spat-on-shell produced. Spat production 

trends have been driven by federally-supported oyster restoration in the Chesapeake Bay.  

To better understand inter-annual variation in production yield, we examined average efficiency on 

several time scales. HPLOH hatchery production yield of eyed-larvae between 2011 and 2020 

varied from 0% to 56%. Average production yield during this period was 10.7% (std dev = 9.2%). 

Average annual production yield (ANOVA F8,486 = 10.47, p-value < 0.0001) and production rate 

(ANOVA F8,412 = 9.02, p-value < 0.0001) varied significantly across all seasons; however, there 

were no clear trends in production yield or rate over time.  
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445 The effect of manipulating carbonate chemistry was examined by comparing the average 

production yield and production rate after the hatchery began buffering larval tanks (2016-2020; 

excluding 2019) to the four previous years (2013-2015) (Fig. 6a).  A small but significant reduction 

in yield was detected between buffered (9.6%) and unbuffered (11.8%) batches (t(447) = 2.68, p-

value = 0.004). Production rates of buffered batches were found to be significantly quicker (12.02 

days) than earlier unbuffered batches (12.97 days) (t(298) = 4.49, p-value<0.001) (Fig. 6b).     

446 

447 

448 

449 

450 

451 

452 Figure 6 .  Production yield and production rate at  HPL  hatchery  among unbuffered (2011-2015)  and buffered 
batches  (2016-2020).  Asterisk  indicates  significant  greater  means.  2019 production rate data  were  excluded 
from  the buffered pooled mean.  
 

Next, seasonal trends were explored statistically.  Aggregating data among all seasons, the 

following quadratic function relates  mean production yield to the week of the year:  

𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌  (%)  =  𝑙𝑙  +  𝑏𝑏  × 𝑊𝑊  + 𝑝𝑝 × 𝑊𝑊2       (2)     
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where a, b, and c are coefficients (estimated for weekly average data as -0.16, 0.024, and -0.0005, 

respectively) and W is the week of the year. This nonlinear function explained much of the variance 

in weekly average production yield over time (R2 = 0.70, Fig. 7a). Mean production rate was found 

to decline significantly and linearly across the production season (F1,27 = 53.76 p-value < 0.0001; 

R2 = 0.67; Fig. 7b). Additionally, mean production rate was nonlinearly and significantly predictive 

of production yield with the following quadratic function: 

𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 (%) = 𝑙𝑙 + 𝑏𝑏 × 𝑃𝑃𝑃𝑃 + 𝑝𝑝 × 𝑃𝑃𝑃𝑃2 (3), 

where a, b, and c are coefficients (estimated for weekly average data as -1.43, 0.15, and -0.003, 

respectively) and PR is the production rate in days (R2 = 0.29, Fig. 7c). Hatchery crashes were 

found to have occurred fairly evenly throughout the 2011-2020 production seasons. Crashes were, 

however, most common in the 35th and 36th week of the year, which corresponds typically to 

either the last week of August or first week of September (Fig. 7d). 
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471 

472 Figure 7 .  a)  Average hatchery  production yield over  the week  of  the year;  b)  mean production rate over  week  
of year; c) mean production yield over production rate divided among four quadrants  separated by median  
values  (dashed lines);  d)  number  of  crash events  per  week  of  the year.  All  data are derived from  long-term  
(2010-2020)  hatchery  production data but  exclude 2019 data.   
 

3.3 Drivers  of production yield and production rate  

For predicting hatchery yield, a Boruta algorithm retained 16 of the 20 potential  predictors  (Table 

3)  as statistically significant (the following categorical variables were removed: the source name, 

stimulation and its type, and whether the tank was buffered). When tested on out-of-sample data in 

the cross-validation study, random forest achieved R2  = 0.54, root mean squared error RMSE = 

6.6%, and mean absolute error MAE = 5.0%. For comparison, predictive performance of a CART 

was worse than of random forest, with the R2  = 0.36 being lower and errors being higher (RMSE = 

8.0%, MAE  = 5.7%). The final random forest for yield was trained on 177 observations and ranked 
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the top-3 predictors in order of decreasing importance as follows: 1) Week of year, 2) Percent 

survival of eggs to D-hinge, 3) GRB oxygen. 

For predicting production rate, the same 20 predictors were considered, from which only 7 were 

retained by Boruta as statistically significant. The cross-validation study provided R2 = 0.19, RMSE 

= 1.8 days, and MAE = 1.4 days for the random forest. The final model was trained on 225 

observations and ranked the predictors as follows: 1) Average conditioning pH, 2) Broodstock 

source location, 3) Survival of eggs to D-hinge, 4) Tank buffering, 5) Average shell height of 

females, 6) Average shell height of males, and 7) GRB temperature (Table 3). 

Lastly, we examined how these same 20 factors influenced the distribution of the data when larval 

yield is regressed over production rate. The relationship between yield and rate can help describe 

production efficiency at the hatchery scale. Ideally, from a manager's perspective, high yielding 

broods that are produced quickly most efficiently use fewer resources and are least expensive to 

produce (Fig. 7c quadrant 1). Conversely, low-yielding broods that grow slowly are the most 

expensive to produce (Fig. 7c quadrant 4). Boruta algorithm retained 12 variables as important 

factors. In the cross-validation study, random forest with these factors showed accuracy 60.2% and 

average F1 score 0.65. The final random forest model was trained on 148 observations and 

reported predictors in order of decreasing importance: 1) Survival of eggs to D-hinge, 2) Average 

conditioning salinity, 3) GRB turbidity, 4) Average conditioning pH, 5) GRB temperature, 6) Year of 

broodstock, 7) GRB oxygen, 8) Week of year, 9) Fecundity, 10) GRB salinity, 11) Tank Buffering, 

and 12) Average shell height of spawning females (Table 3). Predictive performance of a single 

CART was again lower than of random forest, with cross-validated accuracy 56.5% and average 

F1 score of 0.62. Despite lower accuracy, visual analysis of the classification tree (Fig. 8) aids in 

understanding the conditions under which broods end up in one of the four quadrants of hatchery 

efficiency shown in Figure 7c. For example, broods produced from broodstock collected in 2018 

and later (right branch with the terminal node 8, corresponds to 27% of the analyzed sample), had 

the greatest probability, 79%, of appearing in quadrant 4 (i.e. low hatchery efficiency), while the 
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511 likelihood of them falling in quadrants 1-3 were just 8%, 8%, and 5%, respectively. For broodstock  

collected before 2018 (large left branch), water quality variables and fecundity allowed further  

separation of observations. For example, both nodes 1 and 3 correspond to quadrant 1 and 

represent a similar share of the sample data (8% and 7%), but the observed probability of quadrant 

1 is higher  in node 3 (90% vs. 55% in node 1). Node 3 corresponds to high salinity conditions both 

for broodstock and larvae, while node 1 is formed only considering the larvae conditions.  

512 

513 

514 

515 

516 

517 

518 Figure 8 .  A  classification tree separating  the observed  data (top,  starting with all  n  =  144 or  100%  of  data)  by  
the values of the predictor variables. Branch widths are proportional to the number of observations. The  
terminal  nodes  of  the tree  are numbered and  show  the predicted quadrant,  the  predicted probability  of  each  
quadrant  (color  ranges  from  bright  and pale green for  quadrants  1 and 2 to pale and bright  red for  quadrants  
3 and 4),  and  the node size expressed as  percentage out  of  n.  
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Note that the relative importance of factors in CART may differ from the order the factors were 

used in the tree (Fig. 8) and from the importance ranking provided by random forest. Variable 

importance in CART was quantified by the reduction of the node impurity the variable was able to 

provide (in classification tasks, node impurity is usually measured using Gini index), and although 

year of the broodstock was considered a good factor to start the data splitting, other factors 

provided more substantial reductions of the node impurity, leading to more homogeneous terminal 

nodes. In the CART in Fig. 8, the top-3 important variables were average salinity for the 

broodstock and larvae, and week of year, and year of the broodstock was ranked sixth. In random 

forests, importance of variables was quantified differently, as the increase of a tree’s prediction 

error when values of one of the variables was randomly permuted. Such evaluation was done on 

out-of-bag data that were not used for constructing the tree, then the error metrics were averaged 

across all trees. Also, because each tree in a random forest was trained on a slightly different 

(bootstrapped) sample of the data, the random forest results provide a wider range of situations 

arising from the same sample, with some observations being randomly removed or included 

several times in a bootstrap sample. Hence, random forest results and specifically rankings of the 

variable importance were more robust than those of CART. 

3.4 Water quality during the 2019 production season 

There were several water quality variables that varied significantly during the 2019 production 

season. Student’s t-tests on each variable determined significantly lower annual mean values for 

salinity (t1,23 p-value = 0.0375) and Secchi depth (t1,23 p-value = 0.0216) during the 2019 season 

compared to those from long-term average (1986-2020). 

3.5 Larval assays to identify 2019 crash sources 
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All treatments from larval developmental assays examining the effects of salt supplementation 

(assay 1), salinity effects on food quality (assay 3), automatic algae feeding system (AAFS) 

contamination (assay 4), water filtration efficacy (assay 5) were found to have crashed upon 

inspection of tanks on the first drain (Table 2). 

Other larval assays provided mixed results. Importing broodstock from Manokin did not permit 

production to resume readily (assay 2). During reciprocal transfer larval assays (assay 6), it was 

determined that HPLOH broodstock were successfully spawned at VIMS and their resulting larvae 

could be reared satisfactorily on this institute’s water and algae. HPLOH-spawned larvae 

transferred to VIMS were not successfully transported and crashed quickly after arriving at the 

facility. Portions of this same cohort that were left behind at HPLOH, crashed at HPLOH on day 5 

post-fertilization. Conversely, 3-day-old larvae that were spawned at VIMS, shipped to HPLOH, 

reared in CFW, held at salinity of 11 ppt, and fed from the AAFS were raised to settlement. Larvae 

reared in the foreign water hatched and developed to a greater extent than those reared in 

standard FSW (assay 7); however, this assay was terminated early as larvae reared in Choptank 

CFW water crashed by the third tank drain (approximately 6 days post-fertilization). 

Outsourced water quality, bacterial analysis, and attempts to improve water quality through 

probiotics were met with interesting yet puzzling results. Spectral analysis of Choptank River water 

and FSW did not detect any harmful chemicals (assay 8), indicating no apparent chemical 

contamination. Vibrio analysis did not detect any known harmful Vibrio species (assay 9); in fact, 

no vibrios were detected at all. During the course of the probiotics investigation (assay 10), salinity 

in the Choptank River had increased to > 10 ppt and larvae within all treatments reached the eyed 

stage at 14 days post-fertilization, rendering the need for probiotics obsolete. The 2x dose of 

probiotics, however, produced significantly more larvae (2.23 larvae million) than the ½ dose 

treatment (1.57 million larvae) and was similar to normal dose (1.82 million larvae) and control 

treatments (1.94 million larvae) by the end of the 14-day study (ANOVA F3,9 = 7.77 p-value = 

0.0172). As Choptank River salinity exceeded the 12 ppt threshold at this time, production 
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573 inexplicably resumed and production yields increased markedly (Fig. 9a) without revealing 

precisely what had been driving crashes throughout the summer (Fig. 9b). Once production 

resumed, the hatchery staff extended the season as long as possible and applied greater effort to 

recover from production loss. As a result, HPLOH produced a total of 962 million eyed larvae in 

waning time left of the season.  
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580 Figure 9 .  a)  Average hatchery  production efficiency  and b)  number  of  crash events  per  week  over  week  of  

the year  from  2019 season.  

 

Significant differences  in the microbial communities were observed between crashed and non-

crashed cultures (assay  11). Redundancy analysis suggested that the species level community  
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585 structure variability was  statistically  significantly related to whether the samples were from the 

"good" or "crash" project, with 34% of the variance in community structure explained by project (p  < 

0.001). Another 16% of the variability was related to whether the larvae were fed, rather than 

starved (p  < 0.001). The pre-treatment time-point appeared to be similar  to the "starved" treatment 

in the crash project, so for analysis  purposes, the pretreatment and starved groups were 

combined. The microbial community  structure did not significantly relate to the larval strain (p  = 

0.08), with strain explaining only 4% of the variance. A remaining 45% of the variance in microbial  

community  structure between samples  did not appear  related  to any of our variables (Fig. 10).  
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594 Figure 1 0.  Visualization of  the redundancy  analysis  that  compared the relationship between project  (Crash vs  
non-crash),  treatment  (fed vs  starved and pretreatment),  and strain  (wild vs  LOLA  (non-crash  project) or NEH 
(crash project)).  Large points  correspond  to tank  samples,  with shape corresponding to project,  border  color  
corresponding to strain,  fill  color  relating  to treatment.  Samples  with points  closer  together  are more similar.  
The axes  indicate the position of  each point  along each RDA  axis  returned by  the analysis.  Vectors  indicate 
gradients  on the ordination  plot  that  represent  samples  that  are more typical  of  the different  treatments.  For  
instance, Crash samples generally are lower along RDA1, but non-crash are higher along RDA1. + signs  
indicate how  different  ASVs  relate to  the project,  strain and treatment  predictor  variables.  The positions  of  the  
points  correspond to the different  treatments,  with points  in the direction of  a given vector  more typical  of  that  
predictor  variable.  Thus,  ASVs  with points  in the upper  left-hand quadrant  are more commonly  found in crash 
samples. Only the ten ASVs with distance farthest from the origin are shown. Many others are related to  
variables  of  interest.   
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Because so much of the variance in microbial community structure was associated with our 

variables of interest, it is not possible to identify particular ASVs that predict the variables of 

interest. Rather, general linear mixed models showed that when allowing for treatment and strain 

to be excluded as random effects, 155 of 446 observed (63%) of the ASVs were statistically 

significantly related to "Project" (P < 0.01). Similarly, when holding project and strain as random 

effects, 31% of the ASVs were related to "Treatment" (fed vs starved only) (P < 0.01). 

No ASV from the Vibrio genus occurred frequently enough to pass quality filtration cutoffs. 

Although some vibrios were occasionally quantified at very low amplicon copy numbers in some 

samples, none were present consistently across replicates in any group, and none were present at 

least twice in 20% of our samples; therefore, they were excluded from our analysis. 

4.1 Discussion 

Detailed analysis of shellfish hatchery production trends is not common in the research literature 

as many hatcheries are private entities and may not want to publicize their production process or 

production problems for competitive reasons. Our disclosure of hatchery production problems 

across the network of Atlantic research hatcheries contrasts this sentiment as it was our intention 

to highlight crashes as an important topic of future investigation to bolster shellfish aquaculture. 

Another major objective of this research was to share long-term hatchery production trends of a 

mature hatchery staffed with seasoned personnel that have kept exceptional records of the 

production process. Our analysis revealed quantitative information about the ‘when and how’ 

HPLOH production was most efficient, which can be used in the future to improve hatchery 

performance and move closer towards optimization. 
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4.2 Study site, water quality and larval production at HPLOH 

The HPLOH resides in the mesohaline portion of the Chesapeake Bay, which experiences water 

quality characteristics, such as salinities (10 ppt), pH (7.7), and Ωar (0.33), that would be 

considered adverse to larval production. The low Ωar in the Choptank River is attributable to a 

combination of eutrophication, microbial-respired primary production, and low salinity (Kemp et al., 

2005). Laboratory studies have shown clearly that the calcification rates of juvenile C. virginica 

from the mesohaline portion of Chesapeake Bay decline with pH (Waldbusser et al., 2010). From 

an aquaculture perspective, the carbonate chemistry found regularly in the Choptank River 

represents extreme values most hatcheries would try to avoid. For example, Whiskey Creek 

Shellfish Hatchery (Netarts Bay, OR) found that 53% of relative production of Crassostrea gigas 

was correlated to Ωar that larvae experienced during the first 24 hours of production and a Ωar > 

1.75 was needed for positive growth of the production brood. Conversely, the average Ωar at 

HPLOH (0.33) would elicit 100% production failure at Whiskey Creek (Barton et al., 2012), 

demonstrating that carbonate chemistry thresholds for hatchery production are likely regionally-

and species-dependent. Historically, however, the HPLOH conditioned, spawned, and cultivated 

larvae in undersaturated river water regularly without aid of any additional carbonate buffering. 

Based upon the growing body of evidence that larvae development and growth responds to �ar, 

the hatchery has used Na2CO3 since 2016 to improve larval development. Interestingly, we only 

detected a moderate improvement in the rate of production attributable to buffering and actually 

detected a small but significant increase in yield when batches were unbuffered. (Fig. 6). 

Our study suggests that hatchery production of C. virginica can be maintained despite the low 

alkalinity and relatively acidified conditions found in the mesohaline portion of the Chesapeake 

Bay. It is not clear, however, how production at HPLOH has overcome low Ωar to achieve reliable 

production of C. virginica. Acidification stress imposes energetic burdens on numerous processes 

of the developing larvae, including homeostasis, calcification, and development (Gray et al., 2017; 

Kurihara, 2008; Waldbusser et al., 2015b). The high-quality and high-volume diets that larvae 
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receive in hatcheries may allow them to cope with energetic costs of undersaturated carbonate 

conditions (Gibbs et al. 2021; Thomsen et al 2013). Alternatively, other evolutionary factors may be 

at play. Some oysters in Chesapeake Bay may be more adapted to conditions of coastal 

acidification. Broodstock for the HPLOH is collected from local tributaries fed by the undersaturated 

water of the Choptank. Yet, unpublished spatfall data from Maryland Dept. of Natural Resources 

show these same tributaries (Harris Creek and Broad Creek) have experienced consistent, albeit 

irregular, recruitment over the past 34 years. In general, others have found populations naturally 

exposed to low pH/low Ωar may be much more adapted to fluctuating or extreme acidification 

stress than populations from more buffered and stable environments (Pansch et al., 2014). The 

Pacific oyster C. gigas has repeatedly shown vulnerability to low pH/low Ωar (Kurihara et al., 2007; 

Timmins-Schiffman et al., 2013; Waldbusser et al., 2015a), but populations from the Yellow Sea 

which are exposed seasonally to pH values between 7.7 to 7.4 appear resistant to acidification 

stress at larval and post-larval stages (Ginger et al., 2013). Similarly, in short-term studies, C. 

virginica that originated from Saint-Simon Bay (Brunswick, Canada) with natural acidification, 

produced larvae with greater survival under acidified conditions (pH = 7.46) using standard 

hatchery protocols (Clements et al., 2020). 

Cultivating larvae in the mesohaline portion of the Chesapeake Bay provides both advantages and 

disadvantages not found in saltier regions of this estuary. For one, the low salinity waters are 

thought to have lower annual recruitment but also represent a refuge from some forms of disease 

pressure (MSX and Dermo) (Mann and Powell, 2007; Mccollough et al., 2007). Although adult 

oysters grow rapidly in the highly productive waters of the Choptank River, salinity can drop rapidly 

with intense or prolonged rainfall, pushing salinity well below the threshold where adults will not 

actively feed and grow (~5 ppt) (Casas et al., 2018). For Maryland, 2018 was the wettest year on 

record (Hopkins et al., 2020). It is likely that the low salinity in the fall of 2018 and first half of 2019 

greatly reduced the overwintering condition and gonadal development of broodstock used in the 

2019 production season. 
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4.3 Experimental larval assays during persistent crashes 

The subsequent series of larval assays provided little explanation as to what environmental 

insult(s) drove the persistent crashes at HPLOH throughout most of the 2019 production season. 

Indeed, the only conclusion was that failed production was more complicated than a simple salinity 

issue (Table 2). Factors that were also ruled out include salinity negatively affecting food, artificial 

salt quality, automated feeder contamination, pesticides/toxicology, and broodstock quality. Indeed, 

reciprocal transfer experiments revealed broodstock derived from HPLOH could produce 

competent larvae when reared at another facility. Conversely, 3-day old larvae brought to and 

reared at HPLOH were able to develop. These data suggest the culprit driving crashes at HPLOH 

was most lethal when larvae were exposed to it during the first hours or days after fertilization (the 

trochophore stage through prodissiconch I). Previous toxicological studies as well as other 

hatchery production studies mentioned above have confirmed this early, unshelled larval life-stage 

to be most vulnerable to environmental perturbations (Barton et al., 2012; His et al., 1999; Ragg et 

al., 2019). 

Although some assays enabled us to rule out certain suspects and identify important windows of 

exposure to insults, others left us with more questions than answers. Interestingly, hatchery water 

and cultured larvae that were assayed for Vibrio spp., which may cause hatchery production failure  

(Prado et al., 2005; Richards et al., 2015; Sugumar et al., 1998; Ushijima et al., 2018), came back 

not only negative for harmful Vibrio spp. (e.g., V. tubiashii or V. coralliilyticus) but also revealed the 

absence of all Vibrio spp detectable on this agar medium. Such an outcome is highly unusual, 

especially during periods of major mortalities and suggests that whatever was suppressing larval 

growth may have also suppressed growth of Vibrio spp.  One Vibrio that does not grow well on 

TCBS agar is V. hollisae, which can also infect shellfish, so this species could have influenced 

mortalities (Gary Richards – US Dept. of Agriculture, personal communication). Vibrios, however, 

are not the only bacterial pathogens that can elicit larval oyster mortalities, so other pathogens 

should be considered in future investigations.  For example, the Ostreid herpesvirus 1, a highly 
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virulent pathogen of the Pacific oyster can also infect and kill multiple bivalve species (Arzul et al., 

2017); only one study to date, conducted in 2002 has tested for OsHV-1 in larval C. virginica 

(Burge et al., 2017; Friedman et al., 2005). Comorbidity from suboptimal culture conditions 

combined with bacterial processes represents a new and important avenue worth exploring. Coffin 

et al. (2021) recently found endogenous, exploitative bacteria can accelerate mortality of bivalves 

under adverse culture environmental conditions. 

Experimental assays conducted to examine some of the more common factors thought to influence 

production were neither comprehensive nor exhaustive. For example, we considered low-salinity 

harmful algal species (e.g. Prorocentrum minimum and Karlodinium veneficum) or the toxic 

chemicals they exude could have compromised food quality or larval production. HAB events 

commonly overlap spatially and temporally with the oyster spawning season (Glibert et al., 2007; Li 

et al., 2015), have been increasing in frequency in Chesapeake Bay, and pose a threat to 

environmental health and aquatic life (Li et al., 2015), including early-life stages of C. virginica 

(Brownlee et al., 2008; Glibert et al., 2007). We did not, however, explicitly test for the presence of 

these species or substances. Rather, we simply examined how various filtration systems (sand 

filtration, ozonation, activated charcoal, etc.), thought to be capable of removing the HAB species 

and their organic chemicals (Falconer et al., 1989; Gonçalves and Gagnon, 2011; Newcombe and 

Nicholson, 2004), modified culture production. Additionally, we explored if harmful algae could 

have contaminated HPLOH algal cultures, which are supplied with sand-filtered (effective filtration 

of ~50 μm particles) river water, by comparing growth and survival rates of larvae fed standard 

diets versus live algal diets from pure cultures diluted with pre-filtered river water or algal pastes. 

As no filtration system improved production outcomes, we assumed HABs were not present and 

did not interfere with larval production. Additionally, contamination of algal stocks with HABs would 

likely have been recognized by the HPLOH algologist, who monitors and maintains cultures. We 

recognize this is an incomplete analysis, but even large research hatcheries, such as HPLOH, 
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have limited resources that at times limit lines of inquiry when preliminary findings suggest pivoting 

and exploring other avenues. 

The observation that microbiota differed significantly between the two projects in which larvae grew 

normally or crashed (Fig. 10) could suggest a possible relationship between the microbiota and 

hatchery crashes. Additionally, among crashed larvae, we observed starved larvae survived for 

longer periods of time and had microbiota that were more similar to non-crashed larvae, 

suggesting a possible three way interaction between larval digestion, the microbiota, and the 

mortality dynamics associated with the crash. Notably our observations of statistically detectable 

differences between crash and non-crashed larvae contrasted with Ramachandran et al’s (2018) 

previous analysis, which showed no detectable bacterial community variability between tanks with 

high and low survival rates within the same facility. In contrast, it was more similar that of Timmins-

Schiffiman (2021) in which a pH driven mortality event in a hatchery was shown to covary with 

bacterial community variability. A main caveat to this finding is that, although treatment tanks were 

replicated, and there were multiple treatments within our two experiments, we sampled only during 

one crash event, and one non-crash event. Future studies should sample at multiple crash and 

non-crash time points. In particular, time series analysis would allow examination of changes in the 

microbiota that precede a crash, rather than just co-occur with crashes. Another caveat, is that we 

have not yet examined the community structure of viruses associated with the larvae, and viruses 

may affect both larval health and the microbiota. 

If our observations prove robust in subsequent analysis, several different factors could relate 

microbial community structure to the health of their larval hosts. Some microbiota are oyster 

pathogens (Richards et al., 2015; Travers et al., 2015), and so there could be some element of 

these vastly different communities that affects host health. Microbiota also modulate the immune 

systems of many host species (Chu and Mazmanian, 2013; Geva-Zatorsky et al., 2017), and could 

make the hosts susceptible to pathogenesis (Croswell et al., 2009) by organisms that we do not 

test for, such as viruses. Conversely, the health of the larvae may affect the microbiota rather than 
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vice versa. Indeed, the presence of decomposing oysters, present to some degree in the crash 

samples, could create a refuge for a very different microbiota than those of living hosts. It is also 

possible that during the crash there is a problem with the larval food, and that dysbiosis could 

occur as the hosts struggle to process this food. The observation that the microbiota of larvae 

collected during a crash were dissimilar from larval microbiota during a time of normal production 

suggests the possibility that microbiota associated with larvae could relate to, or even drive these 

crashes. With only two time points, however, it is not possible to deconvolve normal temporal 

variability from crash effects. Accordingly, studies that investigate the microbiota at multiple time 

points, both during crashes and times of normal production, are warranted. 

4.4 Long-term production trends 

Examining the variation in long-term trends in HPLOH production yield does indicate there are both 

hatchery and environmental factors that have important effects. Larval survival to the first water 

change 24 hr after stocking is a major production bottleneck at HPLOH and likely other hatcheries 

because of the highly sensitive nature of the embryo to early prodissococh life-stages. This may 

represent a critical time period that the hatchery staff could focus on, as fully shelled larvae are 

more resistant and resilient to suboptimal culture conditions. Many additional contributors to larval 

production occur prior to the spawn, indicating environmental conditions during broodstock 

conditioning is of critical importance (Utting and Millican, 1997). Environmental factors we found to 

be significant for broodstock conditioning and resultant larval production were average salinity, pH, 

and temperature, as well as source and year the broodstock was collected. Female fecundity and 

gonadal index also were found to be significant endogenous factors that were predictive of larval 

performance and hatchery production yield. Each of these environmental factors could conceivably 

be manipulated by the hatchery staff to improve production outcomes. Similarly, the hatchery staff 

could explore how these environmental factors or others (e.g. diet) improve fecundity, which has 
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also been shown to be positively correlated with production yield and rate. Alternatively, breeders 

may want to focus on working with larger, more fecund individuals to improve production. Indeed, 

time series analysis, in which larvae are archived continuously over one or more growing seasons 

with crash and non-crash periods would allow researchers to identify microbial trends that precede, 

rather than simply coincide with crashes. 

4.5 Random forest analysis of production yield and production rate 

Random forest analysis allowed us to obtain a data-driven model of relationships between the 

hatchery production yield and environmental conditions. Without pre-specifying the form of 

individual relationships or the form and number of interaction effects, the method chose variables 

by their ability to iteratively differentiate levels of yield. At the same time, predictive importance of 

the variables in the random forest was assessed by permuting individual variables, therefore, joint 

importance of the variables was not assessed. Although random forest is more robust to 

collinearity of variables than a usual regression (because variables are randomly subset at each 

new tree split, and collinear variables may be randomly removed), the selected relevant variables 

may still be collinear or redundant. Hence, random forest facilitated selection of the most important 

variables to focus on but future research is required to obtain a deeper understanding of the 

underlying mechanisms and interactions. 

The random forest techniques have been successfully implemented in a number of related tasks, 

such as predicting oyster norovirus outbreaks (Shamkhali Chenar and Deng, 2017), mussel growth  

(Bergström et al., 2015), and water temperature for marine aquaculture (Otsuka et al., 2018). 

Although the sample of about 200 observations allowed us to study a number of variables and test 

their statistical significance, the power of machine learning techniques emerges with large volumes 

of data. For example, effects at relatively extreme combinations of values are important for 

predicting production crashes, but are now estimated using only few corresponding observations 
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and thus bear a large uncertainty. Exploring larger samples would allow us to study the effects of 

different factors in more detail and improve the random forest model for decision making in oyster 

aquaculture. Nevertheless, results for our random forest analysis may be immediately useful for the 

managers in two major ways. First, the data-driven assessment of factors can allow managers to 

prioritize and focus on manipulating specific broodstock and culture conditions (i.e. salinity and 

percent survival to D-hinge, respectively) to achieve greater yields at faster rates. Second, 

estimated relationships are also data-driven and are not restricted to parametric linear functions as 

is usually done in statistical regression analysis. Those relationships can be studied for the 

presence and location of change points, thresholds, and combined effects responsible for the best 

possible outcomes. Indeed, a portion of analysis included partial dependence plots 

(Supplementary Materials Fig. 11 - 14) that display the conditions under which each important 

factor influences a given brood's yield and production rate. These can be used directly by a 

hatchery to begin ‘tuning’ production towards higher yields produced at quicker rates. 

4.6 Prospective and Summary 

As a high-volume, state-of-the-art research hatchery, HPLOH has been producing larvae while at 

the same time keeping fastidious notes that were immediately digitally archived. Aside from gross 

production statistics (i.e. larvae produced, number of spawns, etc.), these data were collected for 

the purpose of improving hatchery performance. When record keeping began, it was impossible to  

know which data would be important to record and help guide hatchery optimization. As a result, 

these records are by no means perfect and one lesson learned was that the data management at 

HPLOH could be improved with some regular QAQC, which could prevent data gaps and prevent 

inconsistencies that create confusion when gathering and analyzing data. Furthermore, this first 

analysis indicates only the direction for future studies that may improve production at HPLOH (e.g. 

broodstock conditioning, initial culture conditions). Therefore, we wish to highlight several points 
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concerning data collection and future directions of research on hatchery production and crashes 

elsewhere. 

First, our statistical analysis of past production points to factors that the hatchery staff can 

manipulate and investigate further to improve future production. To develop mitigation strategies 

and avoid sudden downturn in production, however, forecasting should be a major technological 

goal. We could imagine monitoring precipitation and predicting declines in river salinity prior to 

freshwater arrival, at which time the hatchery could store “good” water as a possible avoidance 

strategy. 

Second, the hatchery culture conditions and environmental data used as possible predictors of 

production are commonly monitored within shellfish hatcheries throughout the US. There is a long 

list of biological and chemical factors that are not observed routinely but could be vital for better 

understanding of production trends. For example, after extensive production monitoring and testing 

at Whiskey Creek Hatchery, Ωar was identified as a key driver of larval production. Since that time, 

this hatchery expanded its carbonate chemistry monitoring by permanently installing a Burkolator®, 

enabling them to record with high temporal resolution all carbonate variables. Perhaps because of 

increasing HAB event frequency in Chesapeake Bay, greater monitoring of HAB species and 

toxins through more sophisticated means, such as a Flocytobot (McLane®, East Falmouth, MA), 

may be important in the future. Furthermore, salient environmental drivers may change over time 

coincident with shifts in climate change, alteration in local land use, or other anthropogenic factors. 

Third, although there are bound to be some common factors that govern production among many 

or all shellfish hatcheries (e.g. survival to D-stage, temperature, algae, etc.), local conditions and 

site-specific environmental factors are also likely to be important. As a result, most hatcheries that 

strive to optimize production will likely have to collect a wide variety of production information and 

local environmental data. Afterward, and with careful analysis, specific production factors may 

emerge such that collection efforts can be fine-tuned and paired-down. Nevertheless, we also 
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encourage greater communication among hatcheries to share information on short- and long-term 

production problems and mitigation strategies used to overcome them. Such information may be 

valuable for saving time and effort when trying to diagnose problems and reducing the expenses of 

delayed production. 

Fourth, our study of production trends at HPLOH was greatly improved by the breadth of data 

available to us. This is certainly a consequence of the regularity with which data are gathered 

across the production process, digitized, and stored. Furthermore, the HPLOH has a dedicated 

staff member who maintained and collated these data. Many hatcheries, research hatcheries 

included, collect data but these data often are written on paper, lack organization or consistent 

notation, contain significant and lengthy data gaps, and are not centralized or digitized. We 

recognize that not all hatcheries have the means to dedicate personnel to data acquisition, but we 

hope that this study demonstrates the value of collecting a variety of data to help hatcheries audit 

production processes and move toward optimization. 

Fifth, developing new culture technology that hatchery staff can pivot to and resume production 

when ‘bad water’ is persistent, such as recirculating aquaculture systems (RAS), may be an 

important avoidance strategy in the future. These systems may allow production to proceed, albeit 

at a smaller scale, by using entirely artificial conditions that are less reliant on the fluctuating 

conditions of natural water bodies. As such, there appears to be growing interest in using RAS 

across all stages of shellfish production (Frias and Segovia, 2010; Qiu et al., 2017; Ramos et al., 

2021). 

Sixth, due to the complexities with identifying crash sources, efficiently and reliably responding to 

crashes may require managers to send samples from productive and unproductive periods to a 

multidisciplinary team (biologists, chemists, pathologists, microbiologists, metagenomists, etc.) that 

is capable of quickly analyzing and identifying contaminants so that appropriate mitigation 

procedures can be developed. Rapid response in collection and preservation or analysis is crucial 
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during a crash as the presence and stability of chemical constituents might be short. Data from 

periods of high larvae productivity would enable for quick comparisons and establishments of 

contaminant thresholds as some potentially harmful compounds will occur naturally and vary in 

concentration. Additionally, because sources of crashes occur over time, such analysis may have 

been repeated by the entire team many times per season. Indeed, the authors of this paper first 

came together in early 2019 to form a proposal that would readily analyze the inorganic/organic 

chemistry, biogeochemistry, bacterial and viral communities, algal toxins, etc. of crashed oyster 

larvae across all research hatcheries listed herein. We strongly suggest that this approach be 

examined more to both explore the variety of insults that disrupt production and how these vary 

over space and time. Eventually, it is our hope that new technology could be developed that can 

rapidly predict the arrival of such insults, diagnose impacted facilities, or at least eliminate 

candidate culprits. 

Finally, the economics of hatchery crashes and the consequences on the private shellfish industry 

as a whole are not well understood and cannot be explored until more hatcheries share data for 

examination by economists. Private hatcheries may be unwilling to share production problems with 

researchers or other industry members (i.e. competitors), perhaps fearing how this information may 

shape their brand; however, a major benefit of detailing crashes and investigating their drivers with 

research hatcheries was the eagerness of members to share production details to solve an 

industry-wide problem. Although precise economic information remains scarce, it is certain that 

production delays cause the profitability of hatcheries, and the growers they supply, to suffer. This 

is especially true for new or smaller hatcheries that may lose three to four weeks of production, if 

they rely on single batches that crash toward the end of the two-week production process (i.e. 

spawn to set). This time loss may be another significant cost, considering the entire production 

season often lasts only 12-20 weeks. In some locations, hatcheries have closed or been brought to 

the brink of failure following persistent crashes that can create a bullwhip effect on supply chains, 

threatening growers and market availability of oysters (Weiss, 2008). 
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Culture of Crassostrea virginica larvae has advanced greatly, albeit slowly, since its humble 

beginnings in the late 19th century. A primitive understanding of oyster biology and lack of 

technology that was needed to prepare and maintain cultures hampered development of effective 

culture systems (see review by Kennedy 2014). After continued investigation and study through the 

early and mid-20th century, methods for oyster culture had become reliable, arguably culminating 

in the first comprehensive manual for cultivation of bivalve larvae by Loosanoff and Davis (1963). 

Since then, bivalve larval culture has continued to advance. Nevertheless, sporadic larval crashes 

have been a consistently sore topic within the industry. There has been limited motivation for 

researchers to invest effort in understanding these failures, arguably because they are currently 

accepted as a common and unavoidable cost of production that is rarely reported; however, we 

should not accept larval failures or crashes as a major bottleneck that constrains overall shellfish 

aquaculture production. As in other industries, especially in the agricultural sector, we must identify 

the weakest links in the production process and fix these to improve production reliability and 

greater profitability. Shellfish aquaculture should be treated no differently. To meet domestic and 

international goals of increasing supply of shellfish, which is thought of as the most ecologically 

sustainable source of animal protein (Shumway et al., 2003), we argue hatchery crashes must be 

addressed. 

Acknowledgements: 

This research was sponsored by UMCES Horn Point Laboratory. We thank A. Hollins for 

assistance with the microbiome sequencing. 

25 

https://www.zotero.org/google-docs/?ntrGo2
https://www.zotero.org/google-docs/?e76TMU
https://www.zotero.org/google-docs/?XGuC9X


 

 

 

  

 

 

 

 

 

 

 

 

  

  

 

 

References 

Arzul, I., Corbeil, S., Morga, B., Renault, T., 2017. Viruses infecting marine molluscs. J. Invertebr. 

Pathol., Invertebrate Viruses and the Food Chain 147, 118–135. 

https://doi.org/10.1016/j.jip.2017.01.009 

Barton, A., Hales, B., Waldbusser, G.G., Langdon, C., Feely, R.A., 2012. The Pacific oyster, 

Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: 

Implications for near-term ocean acidification effects. Limnol. Oceanogr. 57, 698–710. 

Barton, A., Waldbusser, G.G., Feely, R.A., Weisberg, S.B., Newton, J.A., Hales, B., Cudd, S., 

Eudeline, B., Langdon, C.J., Jefferds, I., others, 2015. Impacts of coastal acidification on 

the Pacific Northwest shellfish industry and adaptation strategies implemented in response. 

Oceanography 28, 146–159. 

Bergström, P., Lindegarth, S., Lindegarth, M., 2015. Modeling and predicting the growth of the 

mussel, Mytilus edulis: implications for planning of aquaculture and eutrophication 

mitigation. Ecol. Evol. 5, 5920–5933. https://doi.org/10.1002/ece3.1823 

Breiman, L., 2001. Random forests. Machine Learning 45(1), 5–32. 

https://doi.org/10.1023/A:1010933404324 

Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1984. Classification and Regression Trees. 

Taylor & Francis, New York. 

Brownlee, E.F., Sellner, S.G., Sellner, K.G., Nonogaki, H., Adolf, J.E., Bachvaroff, T.R., Place, 

A.R., 2008. Responses of Crassostrea virginica (Gmelin) and C. ariakensis (Fujita) to 

bloom-forming phytoplankton including ichthyotoxic Karlodinium veneficum (Ballantine). J. 

Shellfish Res. 27, 581–591. https://doi.org/10.2983/0730-

8000(2008)27[581:ROCVGA]2.0.CO;2 

Burge, C.A., Shore‐Maggio, A., Rivlin, N.D., 2017. Ecology of emerging infectious diseases of 

26 

https://doi.org/10.1002/ece3.1823
https://doi.org/10.2983/0730
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.jip.2017.01.009


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Invertebrates, in: Ecology of Invertebrate Diseases. John Wiley & Sons, Ltd, pp. 587–625. 

https://doi.org/10.1002/9781119256106.ch16 

Casas, S.M., Lavaud, R., La Peyre, M.K., Comeau, L.A., Filgueira, R., La Peyre, J.F., 2018. 

Quantifying salinity and season effects on eastern oyster clearance and oxygen 

consumption rates. Mar. Biol. 165, 90. https://doi.org/10.1007/s00227-018-3351-x 

Chu, H., Mazmanian, S.K., 2013. Innate immune recognition of the microbiota promotes host-

microbial symbiosis. Nat. Immunol. 14, 668–675. https://doi.org/10.1038/ni.2635 

Clements, J.C., Carver, C.E., Mallet, M.A., Comeau, L.A., Mallet, A.L., 2020. CO2-induced low pH 

in an eastern oyster (Crassostrea virginica) hatchery positively affects reproductive 

development and larval survival but negatively affects larval shape and size, with no 

intergenerational linkages. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsaa089 

Coffin, M.R.S., Clements, J.C., Comeau, L.A., Guyondet, T., Maillet, M., Steeves, L., Winterburn, K., 

Babarro, J.M.F., Mallet, M.A., Haché, R., Poirier, L.A., Deb, S., Filgueira, R., 2021. The killer 

within: Endogenous bacteria accelerate oyster mortality during sustained anoxia. Limnol. 

Oceanogr. n/a. https://doi.org/10.1002/lno.11798 

Croswell, A., Amir, E., Teggatz, P., Barman, M., Salzman, N.H., 2009. Prolonged impact of 

antibiotics on intestinal microbial ecology and susceptibility to enteric salmonella infection. 

Infect. Immun. 77, 2741–2753. https://doi.org/10.1128/IAI.00006-09 

Degenhardt, F., Seifert, S., Syzmczak, S., 2019. Evaluation of variable selection methods for 

random forests and omics data sets. Briefings in Bioinformatics. Oxford Academic. Brief. 

Bioinform. 20, 492–503. 

Ekstrom, J.A., Suatoni, L., Cooley, S.R., Pendleton, L.H., Waldbusser, G.G., Cinner, J.E., Ritter, J., 

Langdon, C., van Hooidonk, R., Gledhill, D., Wellman, K., Beck, M.W., Brander, L.M., 

Rittschof, D., Doherty, C., Edwards, P.E.T., Portela, R., 2015. Vulnerability and adaptation 

27 

https://doi.org/10.1128/IAI.00006-09
https://doi.org/10.1002/lno.11798
https://doi.org/10.1093/icesjms/fsaa089
https://doi.org/10.1038/ni.2635
https://doi.org/10.1007/s00227-018-3351-x
https://doi.org/10.1002/9781119256106.ch16


 

 

 

 

 

 

  

 

  

 

  

 

 

   

 

 

 

 

of US shellfisheries to ocean acidification. Nat. Clim. Change 5, 207–214. 

https://doi.org/10.1038/nclimate2508 

Elston, R., Leibovitz, L., Relyea, D., Zatila, J., 1981. Diagnosis of vibriosis in a commercial oyster 

hatchery epizootic: Diagnostic tools and management features. Aquaculture 24, 53–62. 

https://doi.org/10.1016/0044-8486(81)90043-0 

Estes, R.M., Friedman, C.S., Elston, R.A., Herwig, R.P., 2004. Pathogenicity testing of shellfish 

hatchery bacterial isolates on Pacific oyster Crassostrea gigas larvae. Dis. Aquat. Organ. 

58, 223–230. https://doi.org/10.3354/dao058223 

Falconer, I.R., Runnegar, M.T.C., Buckley, T., Huyn, V.L., Bradshaw, P., 1989. Using activated 

carbon to remove toxicity from drinking water containing cyanobacterial blooms. J. AWWA 

81, 102–105. https://doi.org/10.1002/j.1551-8833.1989.tb03170.x 

Frias, R., Segovia, M., 2010. Gonad development of the Japanese oyster Crassostrea gigas in a 

recirculating system: first step toward the development of conditioning and maturation 

protocols. J. Shellfish Res. 29, 303–308. https://doi.org/10.2983/035.029.0204 

Friedman, C.S., Estes, R.M., Stokes, N.A., Burge, C.A., Hargove, J.S., Barber, B.J., Elston, R.A., 

Burreson, E.M., S.Reece, K., 2005. Herpes virus in juvenile Pacific oysters Crassostrea 

gigas from Tomales Bay, California, coincides with summer mortality episodes. Dis. Aquat. 

Organ. 63, 33–41. https://doi.org/10.3354/dao063033 

Geva-Zatorsky, N., Sefik, E., Kua, L., Pasman, L., Tan, T.G., Ortiz-Lopez, A., Yanortsang, T.B., 

Yang, L., Jupp, R., Mathis, D., Benoist, C., Kasper, D.L., 2017. Mining the human gut 

microbiota for immunomodulatory organisms. Cell 168, 928-943.e11. 

https://doi.org/10.1016/j.cell.2017.01.022 

Gibbs, M.C., L.M. Parker, E. Scanes, M. Byrne, W. A. O’Conner, P.M. Ross. Energetic lipid 

responses of larval oysters to ocean acidification. Mar. Poll. B. 168, 112441 

28 

https://doi.org/10.1016/j.cell.2017.01.022
https://doi.org/10.3354/dao063033
https://doi.org/10.2983/035.029.0204
https://doi.org/10.1002/j.1551-8833.1989.tb03170.x
https://doi.org/10.3354/dao058223
https://doi.org/10.1016/0044-8486(81)90043-0
https://doi.org/10.1038/nclimate2508


 

   

  

   

   

   

 

 

 

  

 

  

 

  

 

Ginger, K.W.K., Vera, C.B.S., R, D., Dennis, C.K.S., Adela, L.J., Yu, Z., Thiyagarajan, V., 2013. 

Larval and post-larval stages of pacific oyster (Crassostrea gigas) are resistant to elevated 

CO2. PLOS ONE 8, e64147. https://doi.org/10.1371/journal.pone.0064147 

Glibert, P.M., Alexander, J., Meritt, D.W., North, E.W., Stoecker, D.K., 2007. Harmful algae pose 

additional challenges for oyster restoration: impacts of the harful algae Karlodinium 

veneficum and Prorocentrum minimum on early life stages of Crassostrea virginica and 

Crassostrea ariakensis J. Shellfish Res. 26, 919–925. 

Gonçalves, A.A., Gagnon, G.A., 2011. Ozone application in recirculating aquaculture system: an 

overview. Ozone Sci. Eng. 33, 345–367. https://doi.org/10.1080/01919512.2011.604595 

Gray, M.W., Langdon, C.J., Waldbusser, G.G., Hales, B., Kramer, S., 2017. Mechanistic 

understanding of ocean acidification impacts on larval feeding physiology and energy 

budgets of the mussel Mytilus californianus. Mar. Ecol. Prog. Ser. 

https://doi.org/10.3354/meps11977 

Helm, M.M., Millican, P.F., 1977. Experiments in the hatchery rearing of Pacific oyster larvae 

(Crassostrea gigas Thunberg). Aquaculture 11, 1–12. 

His, E., Beiras, R., Seaman, M.N.L., 1999. The assessment of marine pollution-bioassays with 

bivalve embryos and larvae. Academic Press, pp. 1–178. 

Hopkins, K.G., Bhaskar, A.S., Woznicki, S.A., Fanelli, R.M., 2020. Changes in event-based 

streamflow magnitude and timing after suburban development with infiltration-based 

stormwater management. Hydrol. Process. 34, 387–403. https://doi.org/10.1002/hyp.13593 

Hornick, K.M., Plough, L.V., 2019. Tracking genetic diversity in a large-scale oyster restoration 

program: effects of hatchery propagation and initial characterization of diversity on restored 

vs. wild reefs. Heredity 123, 92–105. https://doi.org/10.1038/s41437-019-0202-6 

Jones, J.B., 2006. Why won’t they grow?–Inhibitory substances and mollusc hatcheries. Aquac. 

29 

https://doi.org/10.1038/s41437-019-0202-6
https://doi.org/10.1002/hyp.13593
https://doi.org/10.3354/meps11977
https://doi.org/10.1080/01919512.2011.604595
https://doi.org/10.1371/journal.pone.0064147


 

 

  

   

 

 

 

 

 

 

 

  

 

 

 

Int. 14, 395–403. 

Kemp, W.M., Boynton, W.R., Adolf, J.E., Boesch, D.F., Boicourt, W.C., Brush, G., Cornwell, J.C., 

Fisher, T.R., Glibert, P.M., Hagy, J.D., others, 2005. Eutrophication of Chesapeake Bay: 

historical trends and ecological interactions. Mar. Ecol. Prog. Ser. 303, 1–29. 

Kennedy, V.S., 2014. Technological Constraints During the First 40 Years of Eastern Oyster 

Crassostrea virginica Aquaculture. Rev. Fish. Sci. Aquac. 22, 55–72. 

https://doi.org/10.1080/10641262.2013.822464 

Kesarcodi-Watson, A., Kaspar, H., Lategan, M.J., Gibson, L., 2008. Probiotics in aquaculture: the 

need, principles and mechanisms of action and screening processes. Aquaculture 274, 1– 

14. 

Kuang, Z., McConnell, L.L., Torrents, A., Meritt, D., Tobash, S., 2003. Atmospheric deposition of 

pesticides to an agricultural watershed of the Chesapeake Bay. J. Environ. Qual. 32, 1611– 

1622. https://doi.org/10.2134/jeq2003.1611 

Kurihara, H., 2008. Effects of CO2-driven ocean acidification on the early developmental stages of 

invertebrates. Mar. Ecol. Prog. Ser. 373, 275–284. https://doi.org/10.3354/meps07802 

Kurihara, H., Kato, S., Ishimatsu, A., 2007. Effects of increased seawater pCO2 on early 

development of the oyster Crassostrea gigas. Aquat. Biol. 1, 91–98. 

Kursa, M.B., Rudnicki, W.R., 2010. Feature selection with the Boruta package. J Stat Softw 36, 1– 

13. 

Kursa, M.B., Rudnicki, W.R., 2020. Boruta: Wrapper Algorithm for All Relevant Feature Selection. 

R package version 7.0.0. https://CRAN.R-project.org/package=Boruta 

Langston, A.L., 2015. 2015 AQ Summit: Identified R&D Needs Report. DigitalCommons@UMaine, 

Annual Maine Aquaculture R&D and Education Summits. 

Lewis, T.E., Garland, C.D., O’brien, T.D., Fraser, M.I., Tong, P.A., Ward, C., Dix, T.G., McMeekin, 

30 

https://CRAN.R-project.org/package=Boruta
https://doi.org/10.3354/meps07802
https://doi.org/10.2134/jeq2003.1611
https://doi.org/10.1080/10641262.2013.822464


 

 

 

  

 

 

 

 

 

 

 

  

  

  

 

 

 

 

T.A., 1988. The use of 0.2-μm membrane-filtered seawater for improved control of bacterial 

levels in microalgal cultures fed to larval Pacific oysters (Crassostrea gigas). Aquaculture 

69, 241–251. 

Li, J., Glibert, P.M., Gao, Y., 2015. Temporal and spatial changes in Chesapeake Bay water quality 

and relationships to Prorocentrum minimum, Karlodinium veneficum, and CyanoHAB 

events, 1991–2008. Harmful Algae 42, 1–14. https://doi.org/10.1016/j.hal.2014.11.003 

Loosanoff, V.L., Davis, H.C., 1963. Rearing of bivalve mollusks. Adv. Mar. Biol. 1, 1–136. 

Lukenbach, M., Lipton, D., Webster, D.W., Abel, S., Zinn, T., Leggett, T., Rhodes, E., Sellner, K.G., 

2008. A framework for native oyster aquaculture development in Maryland (No. 08–166). 

Chesapeake Research Consortium, Edgewater, MD. 

Mann, R., Powell, E.N., 2007. Why oyster restoration goals in the Chesapeake Bay are not and 

probably cannot be achieved. J. Shellfish Res. 26, 905–917. 

Mccollough, C.B., Albright, B.W., Abbe, G.R., Barker, L.S., Dungan, C.F., 2007. Acquisition and 

progression of Perkinsus marinus infections by specific-pathogen-free juvenile oyster 

(Crassostrea virginica Gmelin) in a mesohaline Chesapeake Bay tributary. J. Shellfish Res. 

26, 465–477. 

Newcombe, G., Nicholson, B., 2004. Water treatment options for dissolved cyanotoxins. J. Water 

Supply Res. Technol.-Aqua 53, 227–239. https://doi.org/10.2166/aqua.2004.0019 

NOAA, 2016. Annual Landings [WWW Document]. Commer. Fish. Stat. URL 

https://www.st.nmfs.noaa.gov/commercial-fisheries/commercial-landings/annual-

landings/index (accessed 9.19.16). 

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’hara, R.B., Simpson, G.L., 

Solymos, P., Stevens, M.H.H., Wagner, H., 2013. Package ‘vegan.’ Community Ecol. 

Package Version 2, 1–295. 

31 

https://www.st.nmfs.noaa.gov/commercial-fisheries/commercial-landings/annual
https://doi.org/10.2166/aqua.2004.0019
https://doi.org/10.1016/j.hal.2014.11.003


 

 

 

  

  

 

 

 

 

 

 

 

   

 

  

 

Otsuka, T., Kitazawa, Y., Ito, T., 2018. Multiple water-level seawater temperature prediction 

method for marine aquaculture, in: Mouhoub, M., Sadaoui, S., Ait Mohamed, O., Ali, M. 

(Eds.), Recent trends and future technology in applied intelligence, Lecture Notes in 

Computer Science. Springer International Publishing, Cham, pp. 366–371. 

https://doi.org/10.1007/978-3-319-92058-0_35 

Prado, S., Romalde, J.L., Montes, J., Barja, J.L., 2005. Pathogenic bacteria isolated from disease 

outbreaks in shellfish hatcheries. First description of Vibrio neptunius as an oyster 

pathogen. Dis. Aquat. Organ. 67, 209–215. https://doi.org/10.3354/dao067209 

Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., Glöckner, F.O., 2007. 

SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA 

sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196. 

https://doi.org/10.1093/nar/gkm864 

Qiu, T., Qi, J., Zheng, J., Liu, Y., 2017. Design and performance of a recirculating aquaculture 

system for oyster larval culture. Aquac. Res. 48, 5699–5706. 

https://doi.org/10.1111/are.13392 

Ragg, N.L.C., Gale, S.L., Le, D.V., Hawes, N.A., Burritt, D.J., Young, T., Ericson, J.A., Hilton, Z., 

Watts, E., Berry, J., King, N., 2019. The effects of aragonite saturation state on hatchery-

reared larvae of the Greenshell mussel Perna canaliculus. J. Shellfish Res. 38, 779–793. 

https://doi.org/10.2983/035.038.0328 

Ramachandran, P., Reed, E., Commichaux, S., Strain, E., Depaola, A., Rikard, S., Ottesen, A., 

2018. Characterization of the Microbiota of Oyster Larvae (Crassostrea virginica) and Tank 

Water from an Aquaculture System with High and Low Larval Survival Rates. Genome 

Announc 6. https://doi.org/10.1128/genomeA.00597-18 

Ramos, C. de O., da Silva, F.C., Gomes, C.H.A. de M., Langdon, C., Takano, P., Gray, M.W., de 

Melo, C.M.R., 2021. Effect of larval density on growth and survival of the Pacific oyster 

32 

https://doi.org/10.1128/genomeA.00597-18
https://doi.org/10.2983/035.038.0328
https://doi.org/10.1111/are.13392
https://doi.org/10.1093/nar/gkm864
https://doi.org/10.3354/dao067209
https://doi.org/10.1007/978-3-319-92058-0_35


 

 

 

     

 

  

  

 

 

 

 

 

  

 

  

 

 

Crassostrea gigas in a recirculation aquaculture system. Aquaculture 540, 736667. 

https://doi.org/10.1016/j.aquaculture.2021.736667 

Richards, G.P., Watson, M.A., Needleman, D.S., Church, K.M., Häse, C.C., 2015. Mortalities of 

Eastern and Pacific oyster larvae caused by the pathogens Vibrio coralliilyticus and Vibrio 

tubiashii. Appl. Environ. Microbiol. 81, 292–297. https://doi.org/10.1128/AEM.02930-14 

Robert, R., Gérard, A., 1999. Bivalve hatchery technology: The current situation for the Pacific 

oyster Crassostrea gigas and the scallop Pecten maximus in France. Aquat. Living Resour. 

12, 121–130. https://doi.org/10.1016/S0990-7440(99)80021-7 

Shamkhali Chenar, S., Deng, Z., 2017. Environmental indicators of oyster norovirus outbreaks in 

coastal waters. Mar. Environ. Res. 130, 275–281. 

https://doi.org/10.1016/j.marenvres.2017.08.009 

Shumway, S.E., Davis, C., Downey, R., Karney, R., Kraeuter, J., Parsons, J., Rheault, R., Wikfors, 

G., 2003. Shellfish aquaculture–in praise of sustainable economies and environments. 

World Aquac. 34, 8–10. 

Sugumar, G., Nakai, T., Hirata, Y., Matsubara, D., Muroga, K., 1998. Vibrio splendidus biovar II as 

the causative agent of bacillary necrosis of Japanese oyster Crassostrea gigas larvae. Dis. 

Aquat. Organ. 33, 111–118. https://doi.org/10.3354/dao033111 

Thömsen, J., I. Casties, C. Pansch, A. Körtzinger, F. Melzner. Food availability outweighs ocean 

acidification effects in juvenile Mytilus edulis: laboratory and field experiments. Global 

Change Bio. 19: 1017-1027. 

Timmins-Schiffman, E., O’Donnell, M.J., Friedman, C.S., Roberts, S.B., 2013. Elevated pCO2 

causes developmental delay in early larval Pacific oysters, Crassostrea gigas. Mar. Biol. 

160, 1973–1982. 

Timmins-Schiffman, E., White, S.J., Thompson, R.E., Vadopalas, B., Eudeline, B., Nunn, B.L., 

33 

https://doi.org/10.3354/dao033111
https://doi.org/10.1016/j.marenvres.2017.08.009
https://doi.org/10.1016/S0990-7440(99)80021-7
https://doi.org/10.1128/AEM.02930-14
https://doi.org/10.1016/j.aquaculture.2021.736667


 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

Roberts, S.B., 2021. Coupled microbiome analyses highlights relative functional roles of 

bacteria in a bivalve hatchery. Environmental Microbiome 16, 7. 

https://doi.org/10.1186/s40793-021-00376-z 

Travers, M.-A., Boettcher Miller, K., Roque, A., Friedman, C.S., 2015. Bacterial diseases in marine 

bivalves. J. Invertebr. Pathol., Pathogens and Disease Processes in Marine Molluscs 131, 

11–31. https://doi.org/10.1016/j.jip.2015.07.010 

UMCES Horn Point Laboratory, 2020. About Horn Point Oyster Hatchery | Horn Point Lab Oyster 

Hatchery. URL http://hatchery.hpl.umces.edu/overview/about-horn-point-oyster-hatchery/ 

(accessed 7.24.20). 

Urban Jr, E.R., Langdon, C.J., 1984. Reduction in costs of diets for the American oyster, 

Crassostrea virginica (Gmelin), by the use of non-algal supplements. Aquaculture 38, 277– 

291. 

USDA, 2019. Aquaculture Data [WWW Document]. Aquac. Trade Data. URL 

https://www.ers.usda.gov/data-products/aquaculture-data.aspx (accessed 12.30.19). 

Ushijima, B., Richards, G.P., Watson, M.A., Schubiger, C.B., Häse, C.C., 2018. Factors affecting 

infection of corals and larval oysters by Vibrio coralliilyticus. PLOS ONE 13, e0199475. 

https://doi.org/10.1371/journal.pone.0199475 

Utting, S.D., Millican, P.F., 1997. Techniques for the hatchery conditioning of bivalve broodstocks 

and the subsequent effect on egg quality and larval viability. Aquaculture, Proceedings of 

the fish and shellfish larviculture symposium LARVI ’95 155, 45–54. 

https://doi.org/10.1016/S0044-8486(97)00108-7 

Waldbusser, G.G., Hales, B., Langdon, C.J., Haley, B.A., Schrader, P., Brunner, E.L., Gray, M.W., 

Miller, C.A., Gimenez, I., 2015a. Saturation-state sensitivity of marine bivalve larvae to 

ocean acidification. Nat. Clim. Change 5, 273–280. 

34 

https://doi.org/10.1016/S0044-8486(97)00108-7
https://doi.org/10.1371/journal.pone.0199475
https://12.30.19
https://www.ers.usda.gov/data-products/aquaculture-data.aspx
http://hatchery.hpl.umces.edu/overview/about-horn-point-oyster-hatchery
https://doi.org/10.1016/j.jip.2015.07.010
https://doi.org/10.1186/s40793-021-00376-z


 

 

 

  

 

  

 

 

 

 

 

Waldbusser, G.G., Hales, B., Langdon, C.J., Haley, B.A., Schrader, P., Brunner, E.L., Gray, M.W., 

Miller, C.A., Gimenez, I., Hutchinson, G., 2015b. Ocean acidification has multiple modes of 

action on bivalve larvae. PloS One 10, e0128376. 

Waldbusser, G.G., Voigt, E.P., Bergschneider, H., Green, M.A., Newell, R.I.E., 2010. 

Biocalcification in the eastern oyster (Crassostrea virginica) in relation to long-term trends in 

Chesapeake Bay pH. Estuaries Coasts 1–11. 

Walker, T., 2017. Seed supply a challenge for North American oyster producers. Hatch. Int. 

Weiss, K.R., 2008. A warning from the sea. latimes. https://www.latimes.com/local/la-me-

oysters13-2008jul13-story.html 

Wright, M.N., Wager, S., Probst, P., 2020. ranger: A Fast Implementation of Random Forests. URL 

https://CRAN.R-project.org/package=ranger, R package version 0.12.1 

35 

https://www.latimes.com/local/la-me-oysters13-2008jul13-story.html
https://www.latimes.com/local/la-me-oysters13-2008jul13-story.html
https://CRAN.R-project.org/package=ranger

	Hatchery crashes among shellfish research hatcheries along the Atlantic coast of the United States: a case study at Horn Point Laboratory oyster research hatchery
	Introduction
	Methods
	Results
	Discussion
	References



