Supplementary Materials

2 Specification of priors

- Let $P(\theta)$ be the prior specification for the hyperparameters $\theta = {\phi_1, ..., \phi_m, V_e, \tau^2}$. Here we
- 4 set V_e and τ^2 to follow flat priors. Specifically, we set the probability density of priors as
- 5 $P(V_e/Var(y))=P(\tau^2/Var(y))=Beta(1.1, 1.1)$, where Var(y) is the sample variance of CPUE data
- at next time step (a year ahead) and y is pre-scaled to mean zero and unit variance in prior to
- 7 GP estimation. Var(y) is used to facilitate numerical stability and convergence, as well as for
- 8 interpretations. Beta(.) is the beta-distribution with the parameter values to approximate a flat
- 9 prior. For inverse-length-scale parameters, we set $\phi_1, ..., \phi_m$ to draw from a half-normal prior
- distribution $P(\phi_m)$. We set $P(\phi_m)$ (m ranges from 1 to the embedding dimension), such that
- the expected number of local extrema in function f is 1 to constrain the "wigglyness vs.
- smoothness" of estimated GP functions.

13 Specification of spatial covariance kernel

- We used the delay coordinate vectors within statistical zones to reconstruct the local shadow
- manifolds and directly estimated the spatial correlation (similarity), ρ in Eq. 3, between the
- local manifolds. We did not use the shared information of manifold distances between
- statistical zones. This assumption of the spatial covariance kernel in the second layer of
- hierarchical Gaussian process (GP) is somewhat simpler and slightly differed from Munch et
- al. (2017). Preliminary analyses show comparable prediction skills using either assumption of
- 20 the spatial covariance kernel for both Brown and White Shrimp.

Fig. S1 Estimate of the inverse length-scale parameters ϕ_i as described in Materials and Methods. The magnitude in estimated parameter represents the relative importance of input variables, selected by automatic relevance determination (ARD) of GP-EDM. Brown and grey represent Brown Shrimp and White Shrimp. "CPUE" and "Temp" represent catch per unit effort and sea bottom temperature. Subscript t-1, t-2, and so on represents lag-1, lag-2 years, and so on. Error bar represents $1\pm$ SE of the estimate. Only the best predictive GP-EDM models (i.e., models with the highest predictive r), for Brown Shrimp and White Shrimp, are shown.

Fig. S2 Out-of-sample (Leave-one-out, LOO) predictions for CPUE of Brown Shrimp across statistical zones. In the left panel, the dashed line represents the raw CPUE data, and the blue line represents GP-EDM predictions. In the right panel, X-axis represents the CPUE (catch-per-unit-effort) predicted by hierarchical GP-EDM and Y-axis represents the observed SEAMAP CPUE on log scale. The colors indicate statistical zones, from the east side (red) to the west side (blue) of the gulf.

Fig. S3 Out-of-sample (Leave-one-out, LOO) predictions for CPUE of White Shrimp across statistical zones. In the left panel, the dashed line represents the raw CPUE data, and the blue line represents GP-EDM predictions. In the right panel, X-axis represents the CPUE (catch-per-unit-effort) predicted by hierarchical GP-EDM and Y-axis represents the observed SEAMAP CPUE on log scale. The colors indicate statistical zones, from the east side (red) to the west side (blue) of the gulf.