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Abstract
Predicting the dynamics of harvested species is essential for assessing stock status and establishing index-based management

strategies. However, conventional approaches for short-lived species predict dynamics poorly, possibly because unobserved
interactions with other species and abiotic factors are often treated as noise. Alternatively, the empirical dynamic modeling
(EDM) approach, which uses the time delays of the observed states to compensate for unobserved interactions, may improve the
predictions for short-lived species. We test this idea using time series data of two federally managed, short-lived penaeid shrimp
species, whose abundances were surveyed over 30 years (1987–2018) across the US Gulf of Mexico. We show that (i) abundance
dynamics of these annual shrimp stocks are well-predicted by EDM, (ii) the dynamics are spatially similar across most of the
gulf, and (iii) the stock dynamics are characterized by nonlinear density-dependent interaction and vary with temperature. Our
findings suggest that EDM may be more responsive than single-species, catch-at-age models in assessing the stock dynamics
for short-lived penaeid shrimp species.

Key words: penaeid shrimp fisheries, short-lived species, nonlinear time-series forecasting, dynamic correlation, spatial syn-
chrony, Gulf of Mexico fisheries management

Introduction
Dynamics of short-lived marine species are notoriously dif-

ficult to predict, often exhibiting large fluctuations in pop-
ulation size and increased sensitivity to environmental vari-
ability compared with longer-lived stocks (Hsieh et al. 2006;
Essington et al. 2015; Pinsky and Byler 2015). This high vari-
ability in abundance is often attributed to stochastic envi-
ronmental processes underlying recruitment (Somarakis et
al. 2019; Siple et al. 2021). However, interactions with other
species (e.g., predation and competition), depending on abi-
otic environmental conditions, can also give rise to apparent
stochasticity when these species interactions are not consid-
ered (Munch et al. 2020).

In the Gulf of Mexico (GOM), penaeid shrimps are short-
lived, annual stocks that pose several challenges to fisheries
management (see Gulf of Mexico penaeid shrimp fisheries
management history below). In addition to their high vari-
ability in abundance, one major limitation of applying more
advanced, stock assessment models to evaluate the stock dy-
namics for these annual stocks is the lag time in acquiring
and processing the necessary fisheries data to populate, for
instance, an integrated, catch-at-age assessment model (i.e.,
Stock Synthesis, SS; Maunder and Punt 2013; Methot and Wet-

zel 2013). Specifically, processing and receiving landings and
catch-at-age data from various state partners in the south-
eastern USA tends to lag behind the ability to process fish-
eries independent survey data. This logistical delay repre-
sents nearly two generations (ca. 2 years) for these shrimp
species. Consequently, the stock assessment model outputs
and management advice are out of date because the pro-
jections are based on previously assumed model structure,
rather than informed by data or the inherent predictability
of data. Other approaches, such as surplus production mod-
els, stock-recruitment analyses, and virtual population anal-
yses, also depend on data that take time to acquire and re-
sult in a substantial lag for these shrimp stocks. The time lag
from data collection to management may represent a com-
mon issue of stock assessment for both short-lived and long-
lived marine species. But this issue is particularly pressing for
volatile annual species, like penaeid shrimp in GOM, a predic-
tive rather than retrospective assessment tool is warranted.

There may be a variety of factors that can affect the dy-
namics of the GOM penaeid shrimp stocks. Penaeid shrimps
are broadcast spawners——adults spawn year-round in offshore
waters, and then postlarval recruits (∼10 mm in length) set-
tle in shallow estuarine waters throughout the northwestern
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GOM (Nance and Nichols 1988). Postlarval recruits grow to
reach subadult size (∼70 mm) in just a few months, and then
migrate to offshore waters to spawn and repeat this annual
lifecycle. During postlarval to subadult stages, individuals are
highly susceptible to variable environmental conditions in
shallow water estuaries——temperature, salinity, and dissolved
oxygen have all been correlated with stock productivity pre-
viously (Zein-Eldin and Griffith 1967; Barrett and Gillespie
1973; Keiser and Aldrich 1976; Minello et al. 2003). Impor-
tantly, penaeid shrimps are often forage species (Fujiwara et
al. 2016) and may be strongly influenced by interactions with
other species embedded in a dynamic food web. Disease dy-
namics caused by parasitic ciliates may also affect penaeid
shrimp dynamics (Swinford and Anderson 2021; Tuckey et al.
2021).

Because we often lack direct estimates of the abovemen-
tioned effects on GOM penaeid shrimp dynamics, it is com-
mon to treat these hidden interactions as process noise
(Sugihara et al. 2011; Best and Punt 2020; Munch et al. 2020).
Modern SS models compensate by modeling these hidden ef-
fects as time-varying parameters (Maunder and Punt 2013;
Methot and Wetzel 2013). Although an important advance,
this approach still treats variation in vital rates (e.g., nat-
ural mortality, fecundity, and somatic growth) as random,
ignoring the possibility that they reflect nonlinear, state-
dependent dynamics (Sugihara et al. 2011). Treating nonran-
dom effects, such as unobserved species interactions, as ran-
dom effects might be appropriate when the goal is to fil-
ter noise for state estimation (Ziebarth et al. 2010); how-
ever, this approach may mischaracterize population variabil-
ity and produce poor out-of-sample predictions (Sugihara et
al. 2011; Perretti et al. 2013; Munch et al. 2020). Not account-
ing for nonlinear feedbacks can potentially lead to inaccurate
estimation of harvest benchmarks (Glaser et al. 2014; Fogarty
et al. 2016) and suboptimal management (Brias and Munch
2021). An ideal approach to managing GOM penaeid shrimp
fisheries (see GOM penaeid shrimp fisheries management his-
tory below) would be an assessment tool that could, at least
implicitly, account for these nonlinear, state dependent dy-
namics.

Empirical dynamic modeling (EDM) provides an equation-
free framework to tackle the prediction problem when the
underlying dynamics are nonlinear and dependent on unob-
served variables (Sugihara and May 1990; Chang et al. 2017;
Munch et al. 2020). EDM approximates dynamics based on
Takens’ embedding theorem (Takens 1981) using lags of the
observed states to account for hidden/unobserved state vari-
ables (Schaffer 1985). Consequently, EDM may extract more
of the deterministic signal from indices of abundance. This
was found to be the case for menhaden in GOM (Deyle et
al. 2018), salmon in Fraser River (Ye et al. 2015), and sar-
dine in Gulf of California (Giron-Nava et al. 2021). In a global
meta-analysis, EDM predicted recruitment more accurately
than traditional stock-recruitment models in 90% of 185 cases
analyzed (Munch et al. 2018). However, applications of EDM
for the purpose of making fishery management decisions re-
mains limited (but see Deyle et al. 2018).

Unfortunately, few managed fish stocks have time series of
biomass, catch, and (or) effort that extend back more than

40 years. To make better use of short time series (e.g., less
than 30 observations), Munch et al. (2017) proposed a hier-
archical Bayesian framework for EDM. This approach uses
Gaussian process regression (hereinafter, GP-EDM) to com-
bine data from multiple stocks and improve forecast perfor-
mance. This method also produces an estimate of dynamic
(i.e., model) similarity among populations or sites. Recently,
Rogers and Munch (2020) applied hierarchical GP-EDM to
blue crab abundance, finding that local dynamics were simi-
lar throughout the US east coast, even though the time series
were only weakly correlated. By identifying sub-regions with
similar dynamics, GP-EDM may also provide information use-
ful for spatial fisheries management (Schindler et al. 2010;
Takashina and Mougi 2015; Engen et al. 2018).

Here, we aim to provide a proof of concept for use of GP-
EDM to assess annual penaeid shrimp dynamics in the US
GOM as an index-based approach for fisheries management.
Specifically, we (i) predict the temporal dynamics of two
penaeid shrimp species, brown shrimp and white shrimp,
across federally managed statistical zones, (ii) develop a “gulf-
scale” abundance index, (iii) compare correlations between
observed abundance fluctuations versus predictive intrinsic
dynamics of a paired statistical zones, and (iv) demonstrate
nonlinear, state-dependent interactions in GOM shrimp dy-
namics.

GOM penaeid shrimp fishery management
history

The Gulf of Mexico Fishery Management Council (GMFMC)
considers annual stock status determination criteria (SDC) for
several federally harvested shrimp stocks, including three pe-
naeid species: brown, white and pink shrimp (Farfantepenaeus
aztecus, Litopenaeus setiferus, and Farfantepenaeus duorarum, re-
spectively). In 2012, integrated SS models were developed,
deemed to produced best scientific information available by
the Gulf Scientific and Statistical Committee (SSC), and used
to estimate SDC by the GMFMC. In 2019, an assessment model
review found several technical concerns among these three
penaeid shrimp SS models (e.g., conflicting indices, conver-
gence issues, and residual patterns), prompting the GMFMC
to initiate a Southeast Data, Assessment, and Review (SEDAR)
research track process for all three stocks. Compared to an
operational assessment (updating an existing model with cur-
rent data inputs), the SEDAR research track process allows for
consideration of new data inputs and (or) modeling types.

An initial goal of the SEDAR research track process is to
define all available model inputs (e.g., time series of catch
and catch-per-unit-effort (CPUE)) and (based on those avail-
able data inputs, limitations, and assumptions, as well as in-
formation on the biology and ecology of the stock) to define
an appropriate assessment tool given data availability. Pre-
liminary findings of the research track process showed that
data limitations (e.g., lack of recruitment information) pro-
hibits the use of an advanced stock assessment model to esti-
mate SDC for these shrimp stocks. Given technical concerns
and data limitations exist, consideration of an index-based
approach for these shrimp species is warranted——particularly
if an index-based method could implicitly account for en-
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vironmental or other “unobserved” ecological interactions
that likely drive annual penaeid shrimp stock dynamics but
that lack time series of observational data (i.e., EDM). Further,
interim analyses——stock “health checks” that simply update
a representative index of stock abundance (fishery indepen-
dent CPUE)——are now annually considered by the GMFMC for
updating management for several federally managed finfish
species.

Materials and methods

SEAMAP and GMFMC
Our analyses focused on two of the three federally man-

aged penaeid shrimp species in the GOM, brown shrimp
and white shrimp. Previously, SS models (Methot and Wetzel
2013) were annually updated with time series data of fish-
ery catch and effort (CPUE) (1984–2018), fishery size compo-
sition data (1984–2018), and fishery-independent CPUE and
length composition time series data from both the Southeast
Area Monitoring and Assessment Program (SEAMAP) (1987–
2018) and the west-Louisiana inshore trawl survey (1984–
2018) (Masi 2018). Benchmarks from the last assessment up-
date for these two penaeid shrimp stocks were presented to
the SSC and GMFMC in 2020 (also see Gulf of Mexico penaeid
shrimp fisheries management history), using 2018 terminal
year input data (Masi 2018).

In the present study, we used fishery-independent data
from the SEAMAP Summer Groundfish Trawl Survey across
statistical zones 9–21 (Fig. 1). This was because GOM pe-
naeid shrimp fisheries management required that all man-
aged shrimp statistical zones, where target species have oc-
curred (zones 9–21), should be included into the analysis. To
align the time series length of shrimp statistical zone, the
shorter time series data from zones 9, 10, and 12 were com-
bined into the adjacent zone 11 that comprised full length
of time series, and zone 13 was merged into the adjacent
zone 14.

We focused on summer-season CPUE data of brown shrimp
and white shrimp at an interannual scale, because they were
well-represented for the duration of the SEAMAP survey. We
did not include pink shrimp for analysis because the available
data were too limited in space and time to use EDM. In each
statistical zone, CPUE was estimated using all tows for brown
shrimp and tows at stations <25 fathom deep (1 fathom =
1.828 m) for white shrimp. Additionally, we considered im-
portant environmental variables potentially driving shrimp
dynamics including bottom temperature, bottom dissolved
oxygen, and bottom salinity. Long-term (i.e., 1987–2018) aver-
ages were used to impute the missing values (total n < 10) of
environmental variables in each of our representative GOM
shrimp statistical zones. The timeframe of environmental
variables was aligned with the timeframe of CPUE data for
EDM analyses of shrimp dynamics.

Gaussian process empirical dynamic modeling
We used GP regression (Williams and Rasmussen 2006)

combined with EDM to recover nonlinear dynamics and en-
vironmental drivers, as well as predict CPUE time series (see

Munch et al. 2017 for details). We begin with describing the
method for a single time series and then introduce the hier-
archical approach.

Let xt and Tt represent the CPUE and environmental vari-
able (e.g., temperature) at time t. We model xt as a func-
tion of lags of CPUE (xt−1, …, xt−L) and environmental variable
(Tt−1, …, Tt−K), where L + K = m is the maximum number of
lags used. Here, we set m = 4 to facilitate finding a parsi-
monious model. We used GP regression to approximate this
function (Munch et al. 2017; Rogers and Munch 2020). Gath-
ering all inputs into a vector, Xt−m = {CPUEt−1, …, CPUEt−L,
Tt−1, …, Tt−K}, the hierarchical Bayesian model was formu-
lated as follows:

P (xt | f, Xt−m,Ve ) ∼ N ( f (Xt−m ) ,Ve )

P ( f |θ) ∼ GP (0,�)

P (θ) ∼ hyperparameter priors

(1)

where, in the first layer of eq. 1, P(xt | f,Xt−m,Ve) represents
the probability density of observing CPUE at next time step
(year ahead) given the input data, function approximation,
and parameters. Specifically, xt represents the univariate out-
put variable, which is CPUE at next time step, f is the de-
lay embedding map that we are trying to estimate, and Ve

represents process noise. In the second layer of eq. 1, P(f | θ)
represents the probability density of function approximation
given the parameters, where the unknown function f is as-
signed a GP prior, essentially following a multivariate normal
distribution with mean zero denoted by GP. The covariance
function, �, is a tensor product of squared exponential covari-
ances with pointwise variance τ 2 and inverse length scales φi.
Specifically, � (Xt, Xs ) = τ 2∏m

i=1exp
[−φi (xt−i − xs−i )

2], where
Xt and Xs are delay coordinate vectors for years. The third
layer of eq. 1, P(θ) is the prior specification for the hyperpa-
rameters θ = {φ1, …, φm,Ve,τ 2}. Sparsity in the fitted model
was encouraged by assigning a half-normal prior for φi, such
that f has on average one local extremum over the range of
the data and uninformative lags drop out of the model (i.e.,
φ → 0). Flat priors were used for Ve and τ 2. See Munch et al.
(2017) and supplementary material for more details on prior
specification.

We used the maximum a posteriori (MAP) estimate ap-
proach to obtain parameter estimates and to simultaneously
predict the CPUE time series in each zone. Collecting the next
states in a column vector y = {xt + m, … ,xT}T and all the pair-
wise covariances in �stack, the log marginal posterior is

lnP (ϕ, τ,Ve|y, X ) = const − 1
2

ln|� + VeI|

− 1
2

yT |� + VeI|−1y − 1
2

lnP (θ)

(2)

where I is the identity matrix and � is the covariance matrix
constructed by applying the covariance function, �(Xt,Xs) , to
all pairs of inputs.

Spatially structured GP-EDM
We extended non-spatial GP-EDM mentioned above to si-

multaneously account for state-dependent dynamics across
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Fig. 1. Shrimp statistical zones (five fathom increments; 1 fathom = 1.828 m) in the US Gulf of Mexico.

the statistical zones. Specifically, the spatially structured GP-
EDM included an additional layer of covariance structure be-
tween the embedding maps (shadow manifolds) estimated for
each statistical zone. This was formulated following (Munch
et al. 2017; Rogers and Munch 2020):

P (xi,t | fi, Xi,t−m,Ve ) ∼ N ( fi (Xi,t−m ) ,Vi,e )

P ( fi|θ) ∼ GP (μ, (1 − ρ ) �)

P (μ|θ) ∼ GP (0, ρ�)

P (θ) ∼ hyperparameterpriors

(3)

where the notation in eq. 3 is as defined previously, except
for an additional spatial covariance structure between statis-
tical zones. μ represents the gulf-wide mean function scaled
to have a zero mean and unit covariance between statistical
zones. The hierarchical structure partitions variability in the
dynamics into within- and between-zone components and
the additional parameter ρ, termed the “dynamic correla-
tion” (Rogers and Munch 2020), measures the similarity in the
shape of f across sites (Munch et al. 2017; Rogers and Munch
2020) (see Supplementary Material for details of spatial co-
variance kernel). That is, the dynamical correlation measures
the similarity between reconstructed state space to leverage
the spatial structure of the stocks. This is a marked contrast
to the commonly used “synchrony correlation” that measures
Pearson correlation coefficient between observed time series.
The dynamical correlation may provide the unique informa-
tion about spatial dynamics that may not be detectable from
synchrony correlation. Specifically, for two time series xt and
yt, with dynamics xt+1 = f (xt) and yt+1 = g(yt) the dynamic
correlation measures corr[f(s),g(s)] over states s, rather than

corr[xt,yt] over times t. Thus, the dynamic correlation pro-
vides information on the similarity of the dynamics irrespec-
tive of whether populations are correlated through time. As
above, we obtain the MAP estimates of the hyperparameters
by maximizing the log marginal posterior.

Predicting CPUE time series
We used the GP-EDM estimates to predict the conditional

posterior mean and variance for year-ahead CPUE time series
of brown shrimp and white shrimp across statistical zones.
The posterior mean and covariance for year-ahead predic-
tions, conditional on GP-EDM estimates and data, is multi-
variate normal with mean and covariance given by

m
(
X’) = �

(
X’, X

)
[� (X, X ) + VeI]

−1y

v
(
X’) = �

(
X’,X’) − �

(
X’,X

)
[�(X,X) + VeI]−1�

(
X’,X

)T(4)

where m and v represent the posterior mean and covariance,
respectively, and X’ represents the in-sample or out-of-sample
delay coordinate vectors (inputs) for predictions. After ob-
taining the CPUE predictions for stocks in each statistical
zone, the arithmetic mean of the within-zone predictions was
used as a “gulf-scale” abundance index. We also computed the
area-weighted average as an alternative gulf-scale abundance
index.

The CPUE data were log-transformed and scaled to zero
mean and unit variance prior to GP-EDM estimation. To mea-
sure model performance, predictive correlation (r) (i.e., the
Pearson correlation coefficient between observed CPUE and
GP-EDM predicted posterior mean) was computed for both
zone-specific and gulf-scale predictions. Note that, GP-EDM
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predictions were transformed back to the original scale of
CPUE for computing r.

Comparing dynamic correlation with
synchrony correlation

We compared the spatial synchrony correlations in tem-
poral CPUE dynamics between GOM shrimp statistical zones
for both brown shrimp and white shrimp and contrasted this
with the dynamic correlation estimates for all pairs of statis-
tical zones. Spatial synchrony was determined by the Pear-
son correlation coefficient in observed CPUE through time
between all pairs of statistical zones.

Visualizing state dependence
To illustrate how density dependence varies across statisti-

cal zones and changes with temperature, we plotted the con-
ditional posterior mean for the relationship between current
CPUE and next CPUE, holding CPUE at earlier time lags fixed
at the average and sea bottom temperature at low (25% quan-
tile) and high (75% quantile) levels in each statistical zone.

Results
Using GP-EDM, we produced year-ahead predictions of

brown shrimp and white shrimp in the US GOM. We found
that the stock dynamics of both species were generally well
predicted across statistical zones (Figs. 2 and 3). At the scale
of individual statistical zones, the average prediction accu-
racy was slightly higher for brown shrimp than white shrimp
(predictive r = 0.86 and r = 0.75, respectively; Figs. 2J and
3J). Notably, GP-EDM captured both the cyclic-like dynamic
behavior for brown shrimp (∼3–5 years period cycles in sta-
tistical zones 19, 20, and 21; Fig. 2G–2I) and more episodic
dynamic behavior for white shrimp in the same statistical
zones (Figs. 3G–3I). Leave-one-out (LOO) out-of-sample year-
ahead predictions were comparable with somewhat lower
year-ahead prediction accuracy than the in-sample predic-
tions (predictive r = 0.71 and r = 0.5 for brown shrimp and
white shrimp, respectively; Figs. S2 and S3).

Year-ahead predictions for gulf-wide CPUE were con-
structed by averaging the year-ahead predictions within sta-
tistical zones. At this scale, GP-EDM produced in-sample pre-
dictions for both species (predictive r = 0.89 and r = 0.85 for
brown shrimp and white shrimp, respectively; Figs. 2K and
3K) and reasonable LOO predictions (predictive r = 0.75 and
r = 0.56 for brown shrimp and white shrimp; Figs. S2 and
S3). The simple-averaged gulf-wide CPUE abundance index is
highly correlated (Pearson r = 0.98) with the averaged abun-
dance index weighted by the area of statistical zones.

We evaluated models that included bottom temperature,
salinity, and dissolved oxygen as well as prior CPUE. We found
that the best model included only the previous year’s bot-
tom temperature as well as the previous three and two years
of CPUE for brown shrimp and white shrimp, respectively
(Table 1; Fig. S1). However, the most important variable dif-
fers between these two shrimp species: for brown shrimp,
lag-3 CPUE is the most relevant, whereas lag-2 CPUE and bot-

tom temperature are of similar importance for white shrimp
(Fig. S1).

For brown shrimp and white shrimp, respectively, spatial
similarity in intrinsic dynamics (as measured by the dynamic
correlation) was generally higher than the synchrony corre-
lation in the CPUE time series (Fig. 4). When the synchrony
correlation was strong between a pair of statistical zones, the
dynamic correlation also tended to be strong. However, when
the synchrony correlation was weak between a pair of sta-
tistical zones, the dynamic correlation may be either strong
or weak (Fig. 4). The spatial similarity in dynamic correla-
tions tended to be higher around the western GOM (zones
19, 20, and 21; see Fig. 1). In contrast, the spatial similarity
in synchrony correlations were relatively lower in the west
and higher around Louisiana (zones 14, 15, and 16; see Fig. 1).
Interestingly, a geographical break between zones 11 and 14
appeared in both dynamic and synchrony correlations, which
coincided with the Mississippi River outflow.

The GP-EDM models for both brown shrimp and white
shrimp exhibited density dependence that interacted with
bottom temperature (Figs. 5 and 6). Specifically, the func-
tional form of lag-1 density dependence clearly differed with
the bottom temperature at low or high levels (25% and 75%
quantiles in each statistical zone, blue and red curves, respec-
tively; Figs. 5 and 6). Although the lag-1 density dependence
varied across statistical zones, increasing bottom tempera-
ture appeared to increase the slope of density dependence at
low CPUE levels or to increase carrying capacity at high CPUE
levels (Figs. 5 and 6). By contrast, shrimp population dynam-
ics in statistical zone 11 (where CPUE is merged with zones 9,
10, and 12 of the east Mississippi River outflow; see Fig. 1)
showed almost no effect of increasing bottom temperature
and limited evidence for density dependence.

Discussion
Our results show that penaeid shrimp multistock dynam-

ics in the US GOM are robustly captured through GP-EDM.
Considering the substantial variability observed in annual
penaeid shrimp abundance (fishery-independent CPUE), our
results suggest that a responsive, index-based management
approach may be a more appropriate tool for assessing an-
nual stock dynamics. Extending this model to include shrimp
catch would allow EDM to be used to evaluate harvest policy
for GOM penaeid shrimp, an important area for future re-
search (Brias and Munch 2021; Giron-Nava et al. 2021).

The forecast skill of GP-EDM at a low embedding dimen-
sion (E ∼ 3 to 4) suggests a relatively small number of effec-
tive state variables governing the dynamics of GOM penaeid
shrimps (Figs. 2 and 3; Table 1; Fig. S1). This is surprising,
since vital rates in penaeid shrimps can vary substantially at
different life stages, such as offshore spawning, development
of pelagic larvae, and migration to coastal estuaries during
post-larval stages (van de Kerk et al. 2016). In contrast, our
results suggest that these demographic processes are well
summarized by a few aggregate drivers, whose effects are
recorded in the time-delayed observations of shrimp abun-
dance. Moreover, differences in magnitude of length-scale
parameters for time delays (Fig. S1) signals the “nonlinear-

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

N
O

A
A

N
M

FS
B

F 
on

 0
3/

13
/2

3
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

http://dx.doi.org/10.1139/cjfas-2022-0029


Canadian Science Publishing

62 Can. J. Fish. Aquat. Sci. 80: 57–68 (2023) | dx.doi.org/10.1139/cjfas-2022-0029

Fig. 2. Gaussian process empirical dynamic modeling (GP-EDM) applied to annual catch-per-unit-effort (CPUE) dynamics of
brown shrimp across statistical zones in the US Gulf of Mexico (GOM). (A–I) Statistical zone-scale abundance time series. Dashed
and solid lines represent observed and predicted CPUE, respectively. Shaded area represents 95% prediction interval. (J) Overall
predictive power of GP-EDM on brown shrimp CPUE across statistical zones. Solid line represents the 1:1 relationship. (K) Gulf-
scale (averaged) CPUE time series (abundance index). Dashed and solid line represents observed and predicted average CPUE,
respectively.
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Fig. 3. Gaussian process empirical dynamic modeling (GP-EDM) applied to annual catch-per-unit-effort (CPUE) dynamics of
white shrimp across statistical zones in the US Gulf of Mexico (GOM). (A–I) Statistical zone-scale abundance time series. Dashed
and solid lines represent observed and predicted CPUE, respectively. Shaded area represents 95% prediction interval. (J) Overall
predictive power of GP-EDM on white shrimp CPUE across statistical zones. Solid line represents the 1:1 relationship. (K) Gulf-
scale (averaged) CPUE time series (abundance index). Dashed and solid line represents observed and predicted average CPUE,
respectively.
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Table 1. Model selection of predictive Gaussian process empirical dynamic modeling (GP-EDM)
for Gulf of Mexico (GOM) brown shrimp and white shrimp.

Candidate variables ARD selected variables Zone-scale r Gulf-scale r

Brown shrimp

CPUE CPUE(t − 1), CPUE(t − 2), CPUE(t − 3), CPUE(t − 4) 0.82 (0.69) 0.84 (0.67)

CPUE + T + DO + S CPUE(t − 1), CPUE(t − 2), CPUE(t − 3), T(t − 1) 0.86 (0.71) 0.88 (0.75)

White shrimp

CPUE CPUE(t − 1), CPUE(t − 2) 0.6 (0.5) 0.73 (0.37)

CPUE + T + DO + S CPUE(t − 1), CPUE(t − 2), T(t − 1) 0.75 (0.5) 0.81 (0.56)

Note: For candidate variables, “CPUE” represents possible abundance time lags, while “CPUE + T + DO + S” represents
possible combinations of abundance and environmental time lags as defined in the Materials and methods section. “ARD
selected variables” represents the variables selected in the best predictive GP-EDM model, which has nonzero inverse length-
scale coefficient. Predictive r and LOO r (in parentheses) are computed at statistical zone and gulf-wide scales. Note that the
number of ARD selected variables is equivalent to the embedding dimension (E) in EDM and GP-EDM. CPUE, catch-per-unit-
effort; DO, dissolved oxygen; LOO, leave-one-out; S, salinity; T, bottom temperature.

Fig. 4. Intrinsic dynamic correlation versus synchrony correlation of two GOM penaeid shrimp species between statistical
zones. (A and C) Dynamical correlation of brown shrimp and white shrimp, respectively. (B and D) Synchrony correlation of
brown shrimp and white shrimp, respectively. Geographic map of statistical zones as in Fig. 1.
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Fig. 5. Density dependence in brown shrimp dynamics varies depending on statistical zone and bottom temperature. Y-axis
represents the catch-per-unit-effort (CPUE) predicted by Gaussian process empirical dynamic modeling (GP-EDM) and X-axis
represents the CPUE at previous time step. Red and blue color represents the bottom temperature at a high and low level
(25% and 75% quantile), respectively, in each statistical zone. Other state variables are fixed at mean levels for visualization.
Geographic map of statistical zones as in Fig. 1.

ity” in time series observations of annual shrimp dynamics
(Munch et al. 2017), which cannot be captured by traditional
linear stochastic approaches such as autoregressive models
(Hsieh et al. 2008; Munch et al. 2020). Such nonlinearity, cap-
tured by GP-EDM, in GOM shrimp dynamics might be due
to unobserved interactions with other species and from en-
vironmentally mediated density dependence in various life
stages.

Note that, white shrimp appears to be overestimated early
in the CPUE time series across statistical zones. This may be
because the CPUE is lower and less variable early in the time
series and is higher in both mean and variability later. This
suggests that an EDM model that allows for non-stationarity
over time (e.g., Munch et al. 2017) might be also worth in-
vestigations. There might be several reasons resulting in the
nonstationarity of CPUE time series, such as a trophodynamic
shift in predator abundance (e.g., red snapper) and the down-
ward trend around 2012 influenced by the Deepwater Horizon

oil spill; however, there are no data available to understand
these potential drivers.

Although it is widely recognized that temperature can in-
fluence the population dynamics of marine fauna, the ef-
fects of temperature and density are often modelled inde-
pendently. For GOM penaeid shrimp, GP-EDM indicates that
bottom temperature and density interact nonlinearly. The
conditional mean plots (Figs. 5 and 6) suggest that density
dependence exhibits a roughly Ricker-like functional form.
However, this shape varies across spatial areas and depends
strongly on bottom temperature, such that the slope at low
abundance increases with bottom temperature. These results
are broadly consistent with those of Ye et al. (2015) who
showed that temperature and abundance interact strongly in
the dynamics of Pacific salmon. Our results therefore suggest
that harvest benchmarks for GOM penaeid shrimp could be
determined in part, albeit nonlinearly, based on bottom tem-
perature in the previous year.
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Fig. 6. Density dependence in white shrimp dynamics varies depending on statistical zone and bottom temperature. Y-axis
represents the catch-per-unit-effort (CPUE) predicted by Gaussian process empirical dynamic modeling (GP-EDM) and X-axis
represents the CPUE at previous time step. Red and blue color represents the bottom temperature at a high and low level
(25% and 75% quantile), respectively, in each statistical zone. Other state variables are fixed at mean levels for visualization.
Geographic map of statistical zones as in Fig. 1.

Interestingly, there seems to be a break in both dynamic
and synchrony correlations near areas of Mississippi River
outflow (between zones 11 and 14; Fig. 4), implying spatial
heterogeneity and geographically distinct subpopulation dy-
namics in this area. This suggests that a spatial approach to
setting management targets might be more appropriate than
a single gulf-wide target (Takashina and Mougi 2015), and
might have implications for managements that rely on port-
folio effect mechanisms and synchrony indicators (Schindler
et al. 2010; Carlson and Satterthwaite 2011). Note that, our
EDM results have implicitly accounted for dispersal, and pa-
rameter estimation and predictions are robust to assump-
tions about immigration/emigration process or source–sink
dynamics in space. In fact, spatially structured simulations
with substantial dispersal showed that the hierarchical ap-
proach used here is optimal when there is relatively lit-
tle spatial variation in the local dynamics (Johnson et al.
2021).

Although we have focused here on GP-EDM as a potential
replacement for age-structured (size-structured) assessment
models in annual, short-lived species such as GOM penaeid
shrimp, it may be more valuable to consider GP-EDM and
modern assessment methods as complementary processes.
For instance, GP-EDM may benefit from leveraging the in-
formation incorporated into traditional assessment models,
such as age-specific or size-related vital rates. Another poten-
tial improvement would be to consider age-structured (size-
structured) dynamics when age-specific (e.g., catch-at-age) or
size class time series are available or can be extracted from
traditional assessment models. Extending the hierarchical
GP-EDM approach to incorporate these life-history data struc-
ture is an important area for future research and will be a
useful addition to traditional assessment models for fisheries
forecasting.

Overall, our gulf-scale, year-ahead GP-EDM forecasts (both
in-sample and out-of-sample next time step predictions) pro-
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vide a predictive index that is based on fishery-independent
data, and, therefore, can be updated in almost real time
for timely and effective management. This may address con-
cerns of previous stock assessment approaches raised by the
GOM Fisheries Management Council. By incorporating land-
ings (catch) into the GP-EDM model, it is possible to estimate
steady-state yields and provide harvest benchmarks (e.g.,
maximum yield at equilibrium abundance/biomass) as was
done previously with Gulf of California sardines (Giron-Nava
et al. 2021). However, considering the substantial temporal
variability of GOM penaeid shrimp, a more responsive, state-
dependent approach may be more appropriate. Such poli-
cies can be derived using empirical dynamic programming
or reinforcement learning approaches, an active research
area in optimal control theory and operations research (Brias
and Munch 2021). Applying empirical dynamic program-
ming/reinforcement learning to derive harvest benchmarks
for GOM penaeid shrimp is an important next step.
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