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Section S1. Supporting Methods 10 

 11 

Defining spatiotemporal vs spatial oases 12 

We used time-series data from our previous analysis of spatiotemporal oases (Guest et al. 2018) 13 

to examine the sensitivity of oasis designation to temporal replication. How many years of data 14 

do we need to eliminate errors in designating a given reef site as an oasis? And conversely, what 15 

is the error rate when we have only one year of data? The latter question is directly relevant to 16 

the spatial analysis we present in this paper. We consider the oases identified from the complete 17 

time-series (Guest et al. 2018) as the most accurate designation because they are based on 11 to 18 

24 years of data for each of four regions (Florida Keys, US Virgin Islands, main Hawaiian 19 

Islands, and French Polynesia).  20 

 21 

We used simulations to examine the consequence of varying the number of years available for 22 

analysis. Each simulation consisted of drawing a random number (i) of years from the complete 23 

time-series in each region, and then designating each reef site as an oasis or not, based on the 24 

proportion of occasions where a site exhibited coral cover two standard deviations above its 25 

regional mean value (i.e., z-score > 2). Whereas Guest et al. (2018) considered any site that had a 26 

positive z-score to be a potential spatiotemporal oasis, we used two standard deviations in our 27 

simulations because this was the threshold used to assign spatial oases in the current study. For 28 

each set of simulations (n = 1,000) with a given number of years i, we calculated the percent of 29 

true/false positives and negatives, with corresponding quartiles. For example, a true positive 30 

correctly identifies an oasis (i.e., sensitivity), and a false positive misidentifies a site as an oasis. 31 

Even with only one year of data, false positive error rates were minimal (0 – 5%) and true oases 32 
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were always identified correctly (i.e., sensitivity was 100%) for the US Virgin Islands, main 33 

Hawaiian Islands, and French Polynesia, (Fig. S1), suggesting that the assignment of oases with 34 

the stricter criteria used in this study was robust to subsampling. However, error rates were 35 

considerable for the Florida Keys, with sensitivity ranging between 70 and 100%. These 36 

misidentifications may be due to the fact that the Florida Keys have been subjected to many and 37 

diverse disturbances over the past few decades (e.g., cold-water intrusions, bleaching, disease; 38 

Courtney et al. 2020). More disturbances would result in greater variability in coral cover, and 39 

thus a higher error rate in oasis designations based on one or only a few years of data. 40 

Considering that our current analysis relies on recent data (2012 – 2017; Fig. S2), after decades 41 

of coral decline, we consider the designation of spatial oases using our highly-replicated dataset 42 

to be reasonably robust to errors arising from frequent disturbances.  43 

 44 

Coral reef data 45 

We used data collected by the United States National Oceanic and Atmospheric Administration 46 

(NOAA) Coral Reef Conservation Program’s (CCRP) National Coral Reef Monitoring Program 47 

(NCRMP) which monitors reefs in the Pacific and Atlantic Oceans 48 

(https://www.coris.noaa.gov/monitoring/). Data on benthic cover in the Pacific Ocean were 49 

collected between 2012 and 2017 by the Coral Reef Ecosystem Program of NOAA’s Pacific 50 

Island Fisheries Science Center. At each randomly selected reef site (McCoy et al. 2016), a 51 

digital camera (Canon PowerShot S110, 12.1 megapixel) recorded an area of 0.7 m2 of the 52 

benthos at 1 m intervals along a 30 m transect line (30 photographs site-1). These photographs 53 

were analyzed using stratified-random point counts (10 points photograph-1) to estimate the 54 

percentage cover of coral species and genera, as well as other benthic groups (Williams et al. 55 
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2019). Data on benthic cover in the western Atlantic (Florida, Puerto Rico, and the U.S. Virgin 56 

Islands) were collected between 2013 and 2017 by NOAA’s NCRMP program and partners. 57 

Regions were sampled every two years. A grid-based stratified random design was used to select 58 

sample locations. Line-point-intercept transects (15 m in length) were used to estimate benthic 59 

cover to the lowest possible taxonomic resolution (scleractinian corals, as well as calcified 60 

octocorals and hydrozoan corals), functional group (other benthic organisms), or substratum 61 

type. For the purposes of our analyses, we summed the total percentage cover of calcifying 62 

corals as our response variable. We acknowledge that using total percent cover may mask 63 

important dynamics of coral functional groups or taxa (Nyström 2006, Darling et al. 2019) or 64 

population demographics (Hughes 1996, Edmunds and Elahi 2007), but it does correlate well 65 

with one measure of a reef community’s ability to produce calcium carbonate structures (coral 66 

calcification capacity; Guest et al. 2018). Here, we use total cover as an aggregate metric of coral 67 

reef condition to illustrate our modeling approach to identifying the correlates of oases, but the 68 

approach can be extended to any continuous metric that can be used to assign a binary 69 

categorization of oasis / not oasis.  70 

 71 

Environmental predictors of coral reef oases 72 

To determine which environmental features were associated with the occurrence of coral oases, 73 

we compiled remote sensing data from several sources. We selected predictors hypothesized to 74 

influence coral cover from macroecological (> 1000 km) to local scales (< 1 km), including 75 

abiotic and socioeconomic covariates. We used the Marine Socio-Environmental Covariates 76 

(MSEC) dataset to obtain net primary productivity, wave energy, land area, and human 77 

population density (Yeager et al. 2017). We also derived sea-surface temperature, light 78 
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attenuation in the water column, and storm activity from other published databases (Table S2). 79 

These variables were chosen due to previously demonstrated associations with coral cover (e.g., 80 

Williams et al. 2015, Darling et al. 2019), or hypothesized relationships based on mechanistic 81 

biological understanding (e.g., through laboratory experiments). In addition to using a measure 82 

of central tendency (i.e., the mean) for primary productivity, temperature, light attenuation, and 83 

wave exposure, we also considered a measure of variability (i.e., coefficient of variation; CV). 84 

With the mean and CV, we were able to characterize the physical regime in as few parameters as 85 

possible. We did not include depth as a covariate because a statistical analysis demonstrated no 86 

relationship (χ2 = 0.002, P = 0.97) between coral cover and depth at each site. That is, we 87 

compared a linear mixed-effects model (random intercepts of sub-jurisdiction) with a coefficient 88 

for depth to a null model with only an intercept term. We also visualized the relationship 89 

between coral cover and depth for each jurisdiction in Fig. S3. The extent to which relationships 90 

between environmental covariates and oasis occurrence changes with spatial extent is unclear, 91 

and we describe some of our expectations below.  92 

 93 

Temperature. Sea-surface temperature (SST) was obtained from the National Aeronautics and 94 

Space Administration (NASA). For each site, we extracted the mean and variance of monthly 95 

mean products of SST to characterize the thermal environment in as few parameters as possible. 96 

Specifically, level-3 BIN monthly composites (Jan 2003 – Dec 2017) of MODIS SST (nighttime 97 

4μm) acquired from NASA OBPG archives (https://oceancolor.gsfc.nasa.gov/cgi/l3). These were 98 

mapped using the SeaDAS (version 7.4) routine l3mapgen to a cylindrical equidistant projection 99 

with 2.5 arcminute resolution and boundaries of 15S – 29N, 144E – 64W (longitude 0 = 180). 100 

Cubic interpolation was used to fill gaps in the data, which resulted primarily from land and 101 
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persistently cloudy conditions in equatorial Pacific regions. Pixels identified as land (according 102 

to the GSHHS version 2.3.7 "high" resolution landmask, mapped to the same projection as 103 

above; Wessel and Smith 1996) were removed. The mean and variance was derived from the 104 

calculated monthly mean SST. Although it would have been useful to obtain an estimate of 105 

higher frequency temperature variability, as corals may benefit from exposure to large thermal 106 

fluctuations on daily to weekly scales (e.g., Safaie et al. 2018), we chose to calculate summary 107 

statistics using monthly means because of the highly variable number of satellite observations 108 

per grid cell over shorter timescales due to cloudy conditions. Moreover, our monthly estimates 109 

of SST mean and variance were highly correlated (r > 0.98) with weekly estimates from the 110 

global Coral Reef Temperature Anomaly Database (CoRTAD Version 5) from the National 111 

Oceanic and Atmospheric Administration (www.nodc.noaa.gov/sog/cortad/). We standardized 112 

the metric of variability using the coefficient of variation (CV) by squaring the variance and 113 

dividing by the mean. At macroecological scales, coral cover in the central-western Pacific was 114 

positively associated with average SST (Williams et al. 2015) and average minimum SST 115 

(Robinson et al. 2018), consistent with the global distribution of coral reefs in tropical waters. 116 

Therefore, we expected a positive association between coral oases and mean SST at 117 

macroecological scales, but variable associations at local scales depending on the prevalence of 118 

adaptation or acclimatization to ‘hot spots’ at finer management scales due to variation in water 119 

flow and residence time (Craig et al. 2001, Oliver and Palumbi 2011, Palumbi et al. 2014). 120 

Similarly, long-term variability in temperature may precondition corals to thermal anomalies and 121 

reduce bleaching (Sully et al. 2019), and thus we expected a positive association between coral 122 

oases and the CV of temperature, but the consistency of this expectation across spatial extents 123 

was unclear.  124 
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 125 

Light attenuation. Light attenuation (quantified as the diffuse attenuation coefficient for 126 

downwelling irradiance at 490nm; Kd490 in m-1) was obtained from the National Aeronautics 127 

and Space Administration (NASA) (Barnes et al. 2013). Higher values of Kd490 represented 128 

greater light attenuation and thus lower water clarity and vice versa. Light attenuation, as 129 

measured by Kd490, includes suspended particles (which both absorb and scatter light) and 130 

dissolved organic matter (DOM; which only absorbs light). In contrast, turbidity describes 131 

particles and not DOM, and thus we do not use the term turbidity to describe Kd490 (e.g., Sully 132 

and van Woesik 2020). For each site, we extracted the mean and variance of Kd490 to 133 

characterize the light environment in as few parameters as possible. Specifically, level-3 BIN 134 

monthly composites (Jan 2003 – Dec 2017) of Kd490 (as derived using the KD2 algorithm) 135 

acquired from NASA OBPG archives (https://oceancolor.gsfc.nasa.gov/cgi/l3). These were 136 

mapped using the SeaDAS (version 7.4) routine l3mapgen to a cylindrical equidistant projection 137 

with 2.5 arcminute resolution and boundaries of 15S – 29N, 144E – 64W (longitude 0 = 180). 138 

Cubic interpolation was used to fill gaps in the data, which resulted primarily from land and 139 

persistently cloudy conditions in equatorial Pacific regions. Pixels identified as land (according 140 

to the GSHHS "high" resolution landmask, mapped to the same projection as above) were 141 

removed. The mean and variance was derived from the monthly mean Kd490, which was 142 

particularly important because seasonal variation (i.e., fewer during cloudy summer months) in 143 

the number of satellite observations precluded the use of a finer temporal resolution (e.g., weekly 144 

estimates of Kd490). As with SST, we used CV as a standardized estimate of variability in Kd490 145 

by squaring the variance and dividing by the mean. Due to the fact that high irradiance can 146 

exacerbate temperature-related bleaching in corals (Lesser et al. 1990), protection from high 147 
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light, through cloud cover or productive nearshore waters, can ameliorate coral bleaching 148 

associated with exceptional warming events (Fitt and Warner 1995, Mumby et al. 2001). The 149 

suspension of sediment in the water column, turbidity, is another mechanism that can reduce 150 

light attenuation. Turbidity is typically considered a stressor to corals that requires specific 151 

mechanisms of adaptation (Anthony and Larcombe 2000), due to the smothering effects of 152 

sedimentation and associated reductions in available light for photosynthesis (Kleypas 1996). In 153 

summary, the remotely sensed measurement of light attenuation (Kd490) is influenced 154 

simultaneously by a number of physical and biological processes in the water column, and can 155 

have both positive and negative effects on coral physiology, especially in the context of a 156 

variable thermal environment. A global analysis demonstrated that coral bleaching was 157 

associated positively with Kd490, but associated negatively with the interaction between Kd490 158 

and SST; whether the interaction reflected the expectation that light attenuation would be 159 

beneficial under thermally stressful conditions was not investigated (Sully and van Woesik 160 

2020). Based on these previous case studies and synthesis, we expected a negative, or complex 161 

association (e.g., intermediate levels of light attenuation as beneficial; Sully and van Woesik 162 

2020), between extinction coefficient Kd490 and the probability of oasis occurrence. Similarly, 163 

we expected a complex association between the CV of light attenuation and oasis occurrence. 164 

For example, higher CV indicates greater inconsistency in the detrimental effects or potential 165 

benefits of reduced irradiance. We did not have explicit hypotheses about how these 166 

relationships would change with spatial extent. 167 

 168 

Primary productivity. Estimates of net primary productivity (NPP) in the seawater column based 169 

on NOAA CoastWatch were derived from 8-day composite layers from 2003-2013 170 
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(https://coastwatch.pfeg.noaa.gov/erddap/griddap/erdPPbfp28day.graph?productivity). NPP was 171 

modelled on a 2.5 arcminute grid based on photosynthetically available radiation, SST, and 172 

chlorophyll a concentration. The mean of each sampling week (8-day composite) was used for 173 

calculating the mean and standard deviation for the entire period (2003-2013). These latter two 174 

products were downloaded from the MSEC database (Yeager et al. 2017). Each site was then 175 

joined to the nearest (straight-line distance) estimate of primary productivity (i.e., centroid of the 176 

2.5 arcminute grid cell) using the R package `fuzzyjoin` (Robinson 2019). Across the Indo-177 

Pacific, this metric of net primary productivity was associated with lower coral cover, suggesting 178 

unfavorable conditions for corals in eutrophic areas (Darling et al. 2019). In contrast, coral cover 179 

across the central-western Pacific was associated positively with mean estimates of chlorophyll 180 

a, as well as anomalies in chlorophyll a (Williams et al. 2015, Robinson et al. 2018), interpreted 181 

to reflect beneficial effects of increased nutrient supply, either directly as an energetic subsidy to 182 

corals, or through the positive, indirect effects of herbivorous fish populations. Thus, the 183 

influence of NPP on sites vary with spatial extent.   184 

 185 

Wave energy. Wave energy flux (the power transmitted per unit of wavefront width) at a 2.5 186 

arcminute resolution was calculated using the WAVEWATCH III hindcast dataset 187 

(http://polar.ncep.noaa.gov/waves/CFSR_hindcast.shtml), which spanned 31 years at a 3-hour 188 

temporal resolution. Estimates of wave energy were modified at sheltered locations by 189 

considering wind speed, fetch and depth (Marchand and Gill 2017). Mean wave energy was 190 

calculated for each day, and then used for calculating mean and standard deviation for the entire 191 

period (1979-2009). These latter two products were downloaded from the MSEC database 192 

(Yeager et al. 2017). Each site was then joined to the nearest (straight-line distance) estimate of 193 
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wave energy (i.e., centroid of the 2.5 arcminute grid cell) using the R package `fuzzyjoin` 194 

(Robinson 2019). At macroecological scales, coral cover is associated negatively with mean 195 

wave energy (Robinson et al. 2018, Darling et al. 2019) and the magnitude of wave anomalies 196 

(Williams et al. 2015), due to fragmentation and mortality caused by large physical disturbances. 197 

However, wave energy can also mitigate the deleterious effects of high temperature anomalies at 198 

local scales through the effects of internal waves (Wall et al. 2015, Wyatt et al. 2020), hurricanes 199 

(Manzello et al. 2007), and water flow (Nakamura and van Woesik 2001), and thus the 200 

consistency of wave energy effects across spatial extent is unclear.  201 

 202 

Storms. Storm data were obtained from the International Best Track Archive for Climate 203 

Stewardship (IBTrACS  v03r10) (Knapp et al. 2010) which merges storm information from 204 

multiple climate centers into one product with a common format. Initial dates vary according to 205 

the source agency, but all data are available from 1897 through 2016 or 2017. Data for 2017 for 206 

the North Atlantic basin (the only basin missing data with sampling that year) were 207 

complemented with data from NOAA’s National Hurricane Center. We limited our study to 208 

storms at Saffir-Simpson intensity three (i.e., Category 3; sustained wind speed ³ 96 knots) and 209 

above. Storms reaching Category 3 and higher are considered major storms because of their 210 

potential for generating waves of sufficient energy to cause significant loss of life and damage 211 

(Simpson and Saffir 1974). For each site, we calculated the number of major storms within a 212 

radius of 100 km. This area of influence reflects the grid size commonly used in storm 213 

climatological studies (Elsner et al. 2012) and encompasses potential damage from storms to 214 

coral communities observed in situ (Woodley et al. 1981, Treml et al. 1997, Puotinen 2004, 215 

Gardner et al. 2005). The frequency of major storms was calculated for 30 years before the date 216 
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of site sampling to provide an estimate of storm exposure that was comparable to the duration of 217 

other metrics considered in this study. As described for ‘wave energy’ above, we expected that 218 

over large spatial extents, periodic cyclone impacts would have a negative impact on coral cover 219 

because of physical damage to the reef. However, hurricanes can also provide short-term relief 220 

from thermal stress (Manzello et al. 2007), which may result in a more complex relationship with 221 

coral oases at smaller spatial extents.   222 

 223 

Land area. The total amount of land area within a 50 km radius of each site was used as a proxy 224 

for terrestrial inputs (e.g., nutrients, pollution) onto coral reefs, and was calculated using the 0.25 225 

arcminute the global, self-consistent, hierarchical, high-resolution shoreline (GSHHS) database 226 

(Wessel and Smith 1996). This product was downloaded from the MSEC database (Yeager et al. 227 

2017). We hypothesized that greater land area would be associated with a lower probability of 228 

oasis occurrence, if land area is indeed a proxy for negative terrestrial influences to nearshore 229 

coral reefs. The amount of rainfall and the inclination of land likely influence the flow of 230 

terrestrial subsidies into nearshore habitats, but we do not consider these characteristics in our 231 

analysis.   232 

 233 

Human population density. The number of people within a 50 km radius of each site in 2015 was 234 

used as a proxy for human impacts on coral reefs. The population count estimates were produced 235 

by the Socioeconomic Data and Applications Center at a resolution of 0.5 arcminute. This 236 

product was downloaded from the MSEC database (Yeager et al. 2017). Human population 237 

density is typically assumed to be correlated positively with harmful impacts, including 238 

pollution, fishing, and coastal modifications. Coral cover was associated negatively with 239 
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uninhabited islands in the central Pacific (Smith et al. 2016), and associated negatively with 240 

population gravity (a function of human population size and reef accessibility) (Darling et al. 241 

2019) in the Indo-Pacific. In contrast, human population size was not associated with coral cover 242 

in a global synthesis (Bruno and Valdivia 2016), and thus the overall effect of this factor is not 243 

clear and may depend on spatial extent.  244 

 245 

Summarizing predictors and assessing multicollinearity 246 

Each site was associated with a 2.5 arcminute grid cell for the purposes of our statistical model. 247 

Temperature and light attenuation were estimated using the centroid of the site grid cells. For the 248 

variables that were calculated for each specific site (i.e., land area, human population density), 249 

the mean value was calculated using all the sites within a grid cell. The same was done for 250 

estimates of primary productivity and wave energy, but in this case, the mean value was the same 251 

as the individual value for each site, because the resolution of these two predictors was 2.5 252 

arcminutes. Lastly, the total number of storms over the past 30 years was calculated as the mean 253 

across all sites within a given grid cell. The distributions of all covariates at each management 254 

scale are visualized in Figs. S4-S7.  255 

 256 

We assessed multicollinearity among the predictors using variance inflation factors (VIF; Table 257 

S3) and Pearson correlation coefficients (r), for each scale of analysis. In general, we followed 258 

the approach suggested by Zuur et al. (2010) and removed predictors with the highest VIFs and 259 

correlation coefficients sequentially until all VIFs < 3 and r < 0.7, but we also considered the 260 

hypotheses being tested. Specifically, there were strong correlations (r > 0.7) between human 261 

population density and land use area, as well as the mean and CV of SST at several spatial 262 
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extents included in our analysis. When there were strong correlations, we chose to retain 263 

population density rather than land area as an overall measure of human impacts, and we chose 264 

to retain the variability (CV) of SST rather than the mean, to test the hypotheses outlined above. 265 

However, we emphasize that these estimates will be more difficult to interpret due to their 266 

covariance with the other known predictors.  267 

 268 

When predictors were standardized at the cross-basin and basin spatial extents, we removed land 269 

area and mean SST (Table S3). When predictors were standardized by region, we removed land 270 

area but retained both mean and CV of SST (Table S3). At the sub-regional scale, we were able 271 

to retain all the predictors (Table S3). Some sub-regions displayed no variability in the predictors 272 

and thus the standardized predictor was undefined. Therefore, we added a small (< 5% of the 273 

minimum observed value) value to human population density, storms, and land area. Due to the 274 

fact that land area was not included at the three larger spatial extents, we also chose to remove it 275 

from the sub-regional analysis. The total number of grid cells (i) was 890 across 32 sub-regions 276 

(Table S1).   277 
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Section S2: Supporting Tables 278 

Table S1. The number of grid cells (i) sampled within each sub-region, nested within region and 279 

basin, used in the present analysis of oases.  280 

Basin Region Sub-region i 
Western Atlantic Florida Keys-lower 34 
Western Atlantic Florida Keys-middle 31 
Western Atlantic Florida Keys-upper 38 
Western Atlantic Florida Southeast Florida 41 
Western Atlantic Florida Tortugas 51 
Western Atlantic Puerto Rico Puerto Rico-east 46 
Western Atlantic Puerto Rico Puerto Rico-north 21 
Western Atlantic Puerto Rico Puerto Rico-southwest 66 
Western Atlantic US Virgin Islands St. John 10 
Western Atlantic US Virgin Islands St. Thomas 18 
Western Atlantic US Virgin Islands St. J & St. T offshore 16 
Western Atlantic US Virgin Islands St. Croix 33 
Pacific Mariana Islands Guam 30 
Pacific Mariana Islands Marianas-lower 24 
Pacific Mariana Islands Marianas-middle 18 
Pacific Mariana Islands Marianas-upper 6 
Pacific Mariana Islands Rota 8 
Pacific Northwest Hawaiian Islands French Frigate 30 
Pacific Northwest Hawaiian Islands Kure 8 
Pacific Northwest Hawaiian Islands Lisianski 16 
Pacific Northwest Hawaiian Islands Pearl & Hermes 23 
Pacific Main Hawaiian Islands Hawaii 74 
Pacific Main Hawaiian Islands Kahoolawe 7 
Pacific Main Hawaiian Islands Kauai 26 
Pacific Main Hawaiian Islands Lanai 32 
Pacific Main Hawaiian Islands Maui 37 
Pacific Main Hawaiian Islands Molokai 41 
Pacific Main Hawaiian Islands Niihau 19 
Pacific Main Hawaiian Islands Oahu 47 
Pacific American Samoa Manua Islands 12 
Pacific American Samoa Rose 4 
Pacific American Samoa Tutuila 23 
    
    
    
    

  281 



15 

Table S2. Table of predictors considered in this study. 282 
  283 

Description Years Units Source 
Net primary productivity of 
carbon, mean of weekly 
means 

2003-2013 mg C m-2 day-1 Yeager et al. 2017 

Net primary productivity of 
carbon, standard deviation of 
weekly means 

2003-2013 mg C m-2 day-1 Yeager et al. 2017 

Wave energy flux, mean of 
weekly means 1971-2009 kW m-1 Yeager et al. 2017 

Wave energy flux, standard 
deviation of weekly means 

1971-2009 kW m-1 Yeager et al. 2017 

Land area within a 50 km 
radius 

 km2 Yeager et al. 2017 

Human population count 
within a 50 km radius 

2015 individuals Yeager et al. 2017 

Sea-surface temperature, 
mean of monthly means 2003-2017 °C 

NASA OBPG archives 
(https://oceancolor.gsfc.nasa.gov) 

Sea-surface temperature, 
standard deviation of monthly 
means 

2003-2017 °C 
NASA OBPG archives 

(https://oceancolor.gsfc.nasa.gov) 

Light attenuation, mean of 
monthly means 

2003-2017 Kd490 in m-1 NASA OBPG archives 
(https://oceancolor.gsfc.nasa.gov) 

Light attenuation, standard 
deviation of monthly means 

2003-2017 Kd490 in m-1 NASA OBPG archives 
(https://oceancolor.gsfc.nasa.gov) 

Number of category 3, 4, 5 
storms within a 100 km radius 

30 years prior 
to site survey count IBTrACS  v03r10, Knapp et al. 2010 
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Table S3. Variance inflation factors (VIF) for the final set of predictors considered for each 284 

spatial extent. The variance inflation factor was not included (NA) in the table for predictors that 285 

were removed due to multicollinearity (i.e., correlation coefficients > 0.7 or VIF > 3.0). Note that 286 

land area was not used for any of the analyses due to collinearity at three of the four spatial 287 

extents.   288 

Predictor Cross-basin Basin Region Sub-region 
Human population density within 
50km (log) 1.76 1.49 1.33 1.32 

Light attenuation (CV) 1.36 1.23 1.31 1.19 

Light attenuation (mean) 2.36 2.09 1.41 1.45 

Land area within 50km (log) NA NA NA 1.41 

Number of storms in past 30 years 1.29 1.20 1.18 1.03 
Net primary productivity (CV) 1.35 1.30 1.25 1.11 

Net primary productivity (mean) 1.91 1.22 1.30 1.18 

Sea-surface temperature (CV) 2.15 2.35 1.53 1.41 

Sea-surface temperature (mean) NA NA 1.67 1.28 

Wave energy (CV) 1.12 1.11 1.27 1.26 
Wave energy (mean) 1.83 1.28 1.44 1.32 

  289 
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Table S4. Bayesian P values for lack of fit between data simulated from posterior predictive 290 

distributions and observations for each scale of analysis. Extremely small Bayesian P values (P < 291 

0.05) indicate that the model predicted a smaller metric (e.g., the number of oases per grid cell) 292 

than observed in the data; extremely large Bayesian P values (P < 0.95) indicate that the model 293 

predicted a larger metric than observed in the data. Goodness of fit was evaluated using a 294 

Pearson χ2 discrepancy metric for binomial data and a Freeman-Tukey discrepancy metric. The 295 

Pearson discrepancy was calculated as 𝜒! = ∑ $ "!	$	%!&!
'%!&!()	$	%!)

%
!

+ , where 𝑦+ is the observed number 296 

of oases, 𝑝+ is the estimated probability of detection, and 𝑛+ is the number of visits, in grid cell i. 297 

To avoid division by zero we added 0.001 to pi in the denominator (Tobler et al. 2015, Kéry and 298 

Royle 2016). The Freeman-Tukey discrepancy was calculated as ∑ )*𝑦+ − *𝑝+	𝑛+,
!
	+ .  299 

 300 
Spatial extent Pearson 𝜒! Freeman-Tukey 
Cross-basin 0.46 0.21 
Basin 0.18 0.24 
Region 0.12 0.20 
Sub-region 0.15 0.13 

  301 
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Table S5. The direction of each predictor’s coefficient at each spatial extent, along with the 302 

associated probability of the direction (i.e., the proportion of Markov chain iterations that were 303 

positive, or negative). Missing values (NA) in the table were for predictors that were removed 304 

due to multicollinearity (see Table S3), or for predictors whose coefficient switched from 305 

positive to negative at different spatial extents (e.g., mean wave energy). Coefficient of variation, 306 

CV.  307 

 308 

Predictor Direction 
Cross-
basin Basin Region Sub-region 

Human population density within 50km (log) Negative 0.961 0.843 0.782 0.967 
Light attenuation (CV) Negative 0.598 NA 0.761 0.76 
Light attenuation (CV) Positive NA 0.625 NA NA 
Light attenuation (mean) Positive 0.891 1 1 1 
Number of storms in past 30 years Negative 0.846 0.566 0.579 NA 
Number of storms in past 30 years Positive NA NA NA 0.559 
Net primary productivity (CV) Negative 0.715 0.773 0.611 0.819 
Net primary productivity (mean) Negative 0.607 NA NA NA 
Net primary productivity (mean) Positive NA 0.728 0.692 0.595 
Sea-surface temperature (CV) Negative 0.875 0.846 NA NA 
Sea-surface temperature (CV) Positive NA NA 0.995 0.886 
Sea-surface temperature (mean) Negative NA NA NA 0.596 
Sea-surface temperature (mean) Positive NA NA 1 NA 
Wave energy (CV) Negative 0.967 0.796 0.595 NA 
Wave energy (CV) Positive NA NA NA 0.797 
Wave energy (mean) Negative 0.601 NA 0.758 NA 
Wave energy (mean) Positive NA 0.503 NA 0.624 

  309 
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 310 
Section S3: Supporting Figures 311 

 312 

Figure S1. Results of simulations to understand the sensitivity of coral oasis designation to 313 

temporal replication (number of years with coral cover data), using time-series data from Guest 314 

et al. (2019). In all plots, the y-axis represents the median percent value (with upper and lower 315 

quartiles) of, for example, the true positive rate (green). That is, what percentage of simulations 316 

assigned each site the ‘true’ designation of an oasis, or not? The true designation is based on the 317 

complete time series of coral cover data within a region. We also include true negative, false 318 

negative, and false positive rates.  319 
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 321 

Figure S2. Patterns of coral cover (%) by year and region. Note that some regions were sampled 322 

only in a single year (e.g., American Samoa, Mariana Islands, Northwest Hawaiian Islands). 323 

Boxplots display the median and interquartile range (IQR) of data, with outliers plotted as circles 324 

beyond whiskers when the values are 1.5 × IQR from the first or third quartile.         325 
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 326 

Figure S3. The relationship between coral cover (%) and depth (m) at the reef sites in each 327 

region. The orange and blue points represent sites in the western Atlantic and Pacific basins, 328 

respectively. The line represents a smoothed fit using a generalized additive model to illustrate 329 

that there is no consistent effect of depth on coral cover.  330 
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 332 

Figure S4. Distributions of covariates, standardized relative to the entire dataset (i.e., cross-basin 333 

extent). Boxplots display the median and interquartile range (IQR) of data, with outliers plotted 334 
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as circles beyond whiskers when the values are 1.5 × IQR from the first or third quartile. Sea-335 

surface temperature, SST; coefficient of variation, CV.  336 

  337 
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 338 
Figure S5. Distributions of covariates, standardized relative to each ocean basin (Pacific, western 339 

Atlantic). Boxplots display the median and interquartile range (IQR) of data, with outliers plotted 340 
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as circles beyond whiskers when the values are 1.5 × IQR from the first or third quartile. Sea-341 

surface temperature, SST; coefficient of variation, CV.   342 
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 343 
Figure S6. Distributions of covariates, standardized relative to each region. Boxplots display the 344 

median and interquartile range (IQR) of data, with outliers plotted as circles beyond whiskers 345 
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when the values are 1.5 × IQR from the first or third quartile. Sea-surface temperature, SST; 346 

coefficient of variation, CV.   347 
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 348 
Figure S7. Distributions of covariates, standardized relative to each sub-region. Boxplots display 349 

the median and interquartile range (IQR) of data, with outliers plotted as circles beyond whiskers 350 
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when the values are 1.5 × IQR from the first or third quartile. Sea-surface temperature, SST; 351 

coefficient of variation, CV.   352 
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 353 

Figure. S8. The statistical model correctly identified a greater percentage of cells with detected 354 

coral oases than a null model at four spatial extents. See Methods for details. Boxplots display 355 

the median and interquartile range (IQR) of data, with outliers plotted as circles beyond whiskers 356 

when the values are 1.5 × IQR from the first or third quartile.  357 
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 359 

Figure S9. The relationship between mean light attenuation, the coefficient of variation (CV) in 360 

sea-surface temperature, and median predicted probability of oasis occurrence (𝜓) at the regional 361 

extent in Florida (related to Figure 6).   362 
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 363 

Figure S10. The relationship between mean sea-surface temperature (SST), the coefficient of 364 

variation (CV) in SST, and median predicted probability of oasis occurrence (𝜓) at the regional 365 

extent in Florida (related to Figure 6).   366 
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