Supplementary information

Half a century of global decline in oceanic sharks and rays

In the format provided by the authors and unedited

Supplementary Methods 1

Correction of nominal longline and seine fishing effort to effective fishing effort

We used the technological efficiency, or 'creep factor', following eqn. 2 and 3 from ⁶⁷, to adjust the fishing effort of longline and seine gears, the two industrial gears that catch most oceanic sharks, from ³⁶ to adjust for the progressive increase in the effectiveness of fishing gear due to vessel and gear technological improvements.

Supplementary Methods 2

The details of generation time (GT) were presented to the workshop for review and the final choices were used in the published IUCN Red List assessments and associated supplementary material for each species. We encountered nine situations and describe the quality of data in order of increasing confidence.

- 1. No suitable age and GT estimates were available, even from related species, for the Megamouth Shark.
- 2. Age and GT were borrowed from a related species, e.g. we assumed the Longfin Mako GT was the same as the Shortfin Mako, the Smooth hammerhead GT was the same as the Scalloped Hammerhead, the Giant Manta Ray is similar to the Reef Manta Ray, the Shortfin, Atlantic, Pygmy, Sicklefin, and Bentfin Devilray are based on the Giant Devilray and hence are overestimates.
- 3. For many species there were no or few choices as there was only a single, unvalidated, age and growth estimate, e.g. Crocodile Shark, Whale Shark, Basking Shark, and Pelagic Stingray.
- 4. Female median age-at-maturity and maximum age are estimated from aquarium-held specimens and mark-recapture data, e.g. Reef Manta Ray.
- 5. Female median age-at-maturity and maximum age varies slightly between regions and it was not clear which study was 'better' or more representative and neither study is validated, e.g. Pelagic Thresher and Blue Shark. Pelagic Thresher shark GT is 16.5 years in Taiwan and 20.6 years in Indonesia and the average of both was used in the Red List assessment was 18.5 years.
- Female median age-at-maturity and maximum age varies between regions and the more conservative, precautionary observed age estimate was chosen, e.g. Silky Shark, Oceanic Whitetip Shark, and Blue Shark.

- Female median age-at-maturity and maximum age varies between regions and different regional estimates were used in the estimation of population reduction for the Red List Assessment, e.g. Salmon Shark, Great Hammerhead, and Dusky Shark.
- 8. The growth curve available encompassed a narrow range of sizes than that observed elsewhere in the geographic distribution, and the growth curve was extrapolated to yield a more plausible maximum age (A_{max}). In the Bigeye Thresher the observed female age-at-maturity is 12–13 years and maximum age 20 years in Taiwan, Northwest Pacific⁶⁸. These Taiwanese age data were used to generate growth curves that encompass a wider age and size range than the observed data, and thus were used to estimate female A_{mat} of 9 years and A_{max} of 28 years resulting in GT of 18.5 years⁶⁹.
- 9. There was a bomb radiocarbon validated estimate for one region and this was assumed to be valid for the species range, e.g. Common Thresher and White Shark.

Supplementary Table

Table S1. Description of the 57 time-series of the 18 oceanic sharks and rays. [Associated time-series dataset available at www.sharkipedia.org and at https://www.sharkipedia.org and https://wwww.sharkipedia.org and <a href=

Max. size: maximum size as total length, or *disc width in centimeters. CPUE: Catch Per Unit Effort. SPUE: Sightings Per Unit Effort. GT: Generation time in years.

Latin name	N°	Start	End	Degion of dataset	Data tura	Geographical	Max.	GT	References	
Common name	IN	Start	End	Region of dataset	Data type	zone	size	GI	References	
A. Carcharhiniformes: Ca	A. Carcharhiniformes: Carcharhinidae									
Carcharhinus falciformis	1.	1992	2013	North Atlantic	Standardized CPUE	Tropical	371	15	Lynch et al. 2018 ⁷¹	
	2.	1995	2017	North Pacific	Standardized CPUE	Tropical	371	15	Lennert-Cody et al. 2018 ⁷²	
Silky Shark	3.	1995	2016	South Pacific	Standardized CPUE	Tropical	371	15	Clarke et al. 2018 ⁷³	
	4.	1992	2015	North Atlantic	Standardized CPUE	Tropical	395	20.4	Young et al. 2016 ⁷⁴	
	5.	2004	2010	South Atlantic	Standardized CPUE	Tropical	395	20.4	Tolotti et al. 2013 ⁷⁵	
Carcharhinus longimanus	6.	1998	2011	Indian Ocean	Standardized CPUE	Tropical	395	20.4	Ramos-Cartelle et al. 2012 ⁷⁶	
Oceanic Whitetip Shark	7.	1995	2010	North Pacific	Standardized CPUE	Tropical	395	20.4	Brodziak and Walsh 201377	
	8.	1996	2014	North Pacific	Updated standardized CPUE	Tropical	395	20.4	Rice et al. 2015 ⁷⁸	
	9.	1995	2009	North and South Pacific	Stock assessment	Tropical	395	20.4	Tremblay-Boyer et al. 2019 ⁵¹	
	10.	1960	2015	North Atlantic	Stock assessment	Temperate	420	29.8	SEDAR 2016 ²⁴	
Carcharhinus obscurus	11.	1978	2003	Indian Ocean	Nominal CPUE	Temperate	420	38	Dudley and Simpfendorfer 2006 ⁷⁹	
Dusky Shark	12.	1975	2005	Indian Ocean	Standardized CPUE	Temperate	420	38	Braccini and O'Malley 2018 ⁸⁰	
	13.	2006	2015	Indian Ocean	Standardized CPUE	Temperate	420	38	Braccini and O'Malley 2018 ⁸⁰	
_	14.	1971	2013	North Atlantic	Stock assessment	Temperate	380	10	ICCAT 2016 ⁸¹	
Drianaga alawaa	15.	1971	2013	South Atlantic	Stock assessment	Temperate	380	10	Carvalho and Winker 2015 ⁸²	
Prionace glauca	16.	1949	2016	Indian Ocean	Stock assessment	Temperate	380	10.5	Rice 2017 ⁸³	
Blue Shark	17.	1971	2015	North Pacific	Stock assessment	Temperate	380	10.5	ISC 2017 ⁸⁴	
	18.	1994	2014	South Pacific	Stock assessment	Temperate	380	10.5	Takeuchi et al. 201666	

Latin name	N°	Ctort	End	Denien of detect	Data tana	Geographical	Max.	CT.	Poforonaco	
Common name	IN ⁻	Start	End	Region of dataset	Data type	zone	size	GT	References	
B. Carcharhiniformes: S	phyrn	idae								
	19.	1995	2017	North Atlantic	Nominal CPUE	Tropical	420	24.1	J.K. Carlson and W.B. Driggers	
	13.	1990	2017	North Adamic		Πυρισαι	420	Z4. I	unpubl. data	
	20.	1994	2017	North Atlantic	Standardized CPUE	Tropical	420	24.1	J.K. Carlson and W.B. Driggers	
Sphyrna lewini	20.	1994	2017	North Alianuc	Standardized Grue	Tropical	420	24.1	unpubl. data	
Scalloped Hammerhead	21.	1981	2005	North Atlantic	Stock assessment	Tropical	420	24.1	Jiao et al. 2011 ²⁸	
	22.	1978	2003	Indian Ocean	Standardized CPUE	Tropical	420	24.1	Dudley and Simpfendorfer 2006 ²⁶	
	23.	1996	2006	South Pacific	Catch	Tropical	420	24.1	Noriega et al. 2011 ⁸⁵	
	24.	1964	2004	South Pacific	Standardized CPUE	Tropical	420	24.1	Simpfendorfer et al. 2011 ^{86,‡}	
	25	1995	2017	North Atlantic	Nominal CPUE	Tropical	610	24.75	J.K. Carlson and W.B. Driggers	
	25.	1990	2017	North Alianuc	Nominal GPUE	Πορισαι	010	24.75	unpubl. data	
Sphyrna mokarran	26	4004	2017	North Atlantic	Standardized CPUE	Tranical	610	04 75	J.K. Carlson and W.B. Driggers	
Great Hammerhead	26.	1994	2017			Tropical	610	24.75	unpubl. data	
	27.	1981	2005	North Atlantic	Stock assessment	Tropical	610	24.75	Jiao et al. 2011 ²⁸	
	28.	1978	2003	Indian Ocean	Standardized CPUE	Tropical	610	23.7	Dudley and Simpfendorfer 2006 ²⁶	
	29.	1981	2005	North Atlantic	Stock assessment	Tropical	400	24.1	Jiao et al. 2011 ²⁸	
Ontrans Tracopo	20	4002	2017	North Atlantia	Otor dordinad CDLIE	Tranical	400	04.4	J.K. Carlson US pelagic fisheries	
Sphyrna zygaena	30.	1992	2017	North Atlantic	Standardized CPUE	Tropical	400	24.1	unpubl. data	
Smooth Hammerhead	31.	1978	2014	Indian Ocean	Nominal CPUE	Tropical	400	24.1	Dicken et al. 2018 ⁸⁷	
	32.	1950	2009	South Pacific	Standardized CPUE	Tropical	400	24.1	Reid et al. 2011 ⁸⁸	
C. Lamniformes: Alopiid	lae									
									E. Romanov unpubl. data,	
Manica nalogicus	33.	1967	1987	Indian Ocean	Nominal CPUE	Tropical	365	18.5	Southern Scientific Research	
Alopias pelagicus Pelagic Thresher	3 3.	1907	1901	Indian Ocean	Nominal GPUE	Tropical	300	10.0	Institute of Marine Fisheries and	
Pelagic Thresher									Oceanography, Kerch, Crimea.	
	34.	1996	2014	North and South Pacific	Standardized CPUE	Tropical	365	18.5	Rice et al. 2015 ^{78,†}	
Alopias superciliosus	35.	1992	2013	North Atlantic	Standardized CPUE	Tropical	484	18.5	Young et al. 2016 ⁸⁹	

Latin name	NI0	Ste	End	Region of dataset		Geographical	Max.	GT	References	
Common name	N°	Start	End		Data type	zone	size	GI		
Bigeye Thresher									E. Romanov unpubl. data,	
	36.	1966	1986	Indian Ocean	Nominal CPUE	Tranical	484	18.5	Southern Scientific Research	
	30.	1900	1900	Indian Ocean	Nominal CPDE	Tropical		10.0	Institute of Marine Fisheries and	
									Oceanography, Kerch, Crimea.	
	37.	1995	2014	North and South Pacific	Standardized CPUE	Tropical	484	18.5	Fu et al. 2018 ⁹⁰	
Alopias vulpinus	38.	1992	2013	North Atlantic	Standardized CPUE	Temperate	573	25.5	Young et al. 2016 ⁸⁹	
Common Thresher	39.	1981	2013	North Pacific	Nominal CPUE	Temperate	573	25.5	Teo et al. 2016 ⁹¹	
D. Lamniformes: Lamnid	lae									
	40.	1961	2008	North Atlantic	Standardized relative abundance	Temperate	640	53	Curtis et al. 2014 ⁴³	
	41.	1961	2010	North Atlantic	Standardized relative abundance	Temperate	640	53	Curtis et al. 201443	
Carcharodon carcharias	42.	1978	2012	Indian Ocean	Standardized CPUE	Temperate	640	53	Dudley and Simpfendorfer 200626	
White Shark	43.	1980	2010	North Pacific	Nominal CPUE	Temperate	640	53	Dewar et al. 2013 ⁹²	
	44.	1950	2009	South Pacific	Standardized CPUE	Temperate	640	53	Reid et al. 2011 ⁸⁸	
	45.	1950	2017	North and South Atlantic	Stock assessment	Temperate	445	25	ICCAT 2019 ²⁵	
Isurus oxyrinchus	46.	1971	2015	Indian Ocean	Preliminary stock assessment	Temperate	445	24	Brunel et al. 201893	
Shortfin Mako	47.	1975	2016	North Pacific	Stock assessment	Temperate	445	24	ISC 2018 ⁹⁴	
	48.	1995	2013	South Pacific	Standardized CPUE	Temperate	445	24	Francis et al. 201495	
Isurus paucus	40	1000	2045	North Atlantia		Trenical	427	25	J.K. Carlson US pelagic fisheries	
Longfin Mako	49.	1992	2015	North Atlantic	Standardized CPUE	Tropical	427	20	unpubl. data	
	50.	1926	2009	North Atlantic	Stock assessment	Temperate	357	19.5	ICCAT 2010 ⁹⁶	
Lamna nasus	51.	1961	2009	North Atlantic	Stock assessment	Temperate	357	19.5	ICCAT 2010 ⁹⁶	
	52.	1962	2009	North Atlantic	Stock assessment	Temperate	357	19.5	Campana et al. 2013 ⁹⁷	
Porbeagle	ED	1962	2015	South Atlantic, South	Dick accoccmont	Tomporato	233	38.25	Hoyle et al. 2017 ⁹⁸	
	53.	1902	2013	Pacific and Indian Ocean	Risk assessment	Temperate	200	30.23	1 IUYIE EL al. 2017°°	
D. Myliobatiformes: Dasy	yatida	<u>e</u>								
Pteroplatytrygon violacea	54.	2004	2015	North Atlantic	Standardized CPUE	Temperate	90*	6.5	J.K. Carlson US pelagic fisheries	
Pelagic Stingray	01.		20.0		Stanuaruizeu CPUE	remperate	30		unpubl. data	

<i>Latin name</i> Common name	N°	Start	End	Region of dataset	Data type	Geographical zone	Max. size	GT	References
E. Myliobatiformes: Mob	oulidae	-							
Mobula alfredi	55.	2003	2018	Indian Ocean	Nominal SPUE	Tropical	500*	29	A. Marshall Marine Megafauna
Reef Manta Ray	55.	2003	2010			riopical	500	23	Foundation unpubl data.
Mobula birostris	56.	2003	2018	Indian Ocean	Nominal SPUE	Tropical	700*	29	A. Marshall Marine Megafauna
Giant Manta Ray	50.	2003	2010					23	Foundation unpubl data.
Mobula kuhlii	57.	2003	2018	Indian Ocean	Nominal SPUE	Tropical	135*	12.8	A. Marshall Marine Megafauna
Shortfin Devilray	57.	2003						12.0	Foundation unpubl data.

† Alopias species-complex was used to represent catches from the Pacific for *Alopias pelagicus* in this species Red List assessment and in this analysis. The three thresher shark species

A. pelagicus, A. *superciliosus*, and *A. vulpinus*, were combined by ⁷⁸ due to a lack of species-specific data. These data are most likely to comprise the two first species^{99,100, E. Romanov unpubl.} ^{data}, however the proportion of the two species in this data is not defined⁷⁸, and these data are used only as a possible indication of *Alopias pelagicus* trends.

[‡] These data comprise catches of *Sphyrna lewini* and *S. mokarran*. As the proportion of *S. mokarran* was low (less than a 15%; see ¹⁰¹), these data represent *S. lewini* in this species Red List assessment and in this analysis.

Table S2. IUCN Red List Status of the 18 oceanic sharks and rays.

CR, Critically Endangered; EN, Endangered; VU, Vulnerable; NT, Near Threatened; LC, Least Concern.

Retrospective Red List assessment based on 2018 IUCN Species Survival Commission Shark Specialist Group workshop participants' expert judgement are blue when no assessment was available and green when assessment(s) was available.

*Previous assessment(s) refers to a different species concept.

Latin name	I	UCN Red List S	Red List Status for RLI			
Common name	Pre2000s	2000s	2010s	1980*	2005	2018
A. Carcharhiniformes: Carcharhinidae						
Carcharhinus falciformis		I Coose: NToose	NT ₂₀₁₅ ; VU ₂₀₁₇	NT	NT	VU
Silky Shark		LO2000, NT2007	INT2015, VO2017	INT	INI	vo
Carcharhinus galapagensis		NT2003	LC ₂₀₁₈	LC	LC	LC
Galapagos Shark		1112003	2018	LU	20	LO
Carcharhinus longimanus		NT ₂₀₀₀ ; VU ₂₀₀₆	CRoose	VU	VU	CR
Oceanic Whitetip Shark		NT2000, V O 2006	01/2018	VU	VU	OR
Carcharhinus obscurus	EN ₁₉₉₆	NT ₂₀₀₀ ; VU ₂₀₀₇	FN 2040	LC	VU	EN
Dusky Shark	LIN1996	NT 2000, VO2007	LIN2018	LU	vo	LIN
Prionace glauca		NT2000; NT2005	NT2040	LC	NT	NT
Blue Shark		1112000, 1112005	1112018	LU		
B. Carcharhiniformes: Sphyrnidae						
Sphyrna lewini		NT2000; EN2007	CRoote	VU	EN	CR
Scalloped Hammerhead		INT2000, LIN2007	01/2018	VO		ÖK
Sphyrna mokarran		DD2000; EN2007	CRoose	VU	EN	CR
Great Hammerhead		DD2000, L112007	01(2018	VO		OR
Sphyrna zygaena		NT ₂₀₀₀ ; VU ₂₀₀₅		NT	VU	VU
Smooth Hammerhead		NT 2000, VO2005	V U 2018		vo	vo
C. Lamniformes: Alopiidae						
Alopias pelagicus		VU ₂₀₀₄	EN ₂₀₁₈	VU	VU	EN
Pelagic Thresher		V U 2004	LIN2018	VO	vo	LIN
Alopias superciliosus		VU ₂₀₀₇	VU ₂₀₁₈	VU	VU	VU
Bigeye Thresher		V O2007	02018	vo	vo	vo
Alopias vulpinus		DD ₂₀₀₀ ; DD ₂₀₀₂ ;	VU ₂₀₁₈	VU	VU	VU
Common Thresher		VU ₂₀₀₇	V U2018		•0	vo
D. Lamniformes: Cetorhinidae						
Cetorhinus maximus	VU ₁₉₉₆	VU ₂₀₀₀ ; VU ₂₀₀₅	EN2018	EN	EN	EN
Basking Shark	1000	2000, * - 2003	2010			

Latin name	I	UCN Red List S	Red List Status for RLI				
Common name	Pre2000s	2000s	2010s	1980*	2005	2018	
E. Lamniformes: Lamnidae							
Carcharodon carcharias	VU ₁₉₉₆	VU2000; VU2005		VU	VU	VU	
White Shark	V O 1996	V O2000, V O2005	V O 2018	vo	vo	vo	
Isurus oxyrinchus		NT ₂₀₀₀ ; VU ₂₀₀₄	EN2018	LC	VU	EN	
Shortfin Mako		N 2000, V O 2004	L1 12010	20		<u> </u>	
Isurus paucus		VU ₂₀₀₆	EN ₂₀₁₈	LC	VU	EN	
Longfin Mako		02000	L1 12010	20		<u> </u>	
Lamna ditropis		DD2000; LC2008	L C 2018	LC	LC	LC	
Salmon Shark		DD2000, CO2008	LO2018	LU	20	LO	
Lamna nasus	VU ₁₉₉₆	NT ₂₀₀₀ ; VU ₂₀₀₆	VI 12010	VU	VU	VU	
Porbeagle	V O 1996	THI 2000, V U 2006	V U2018	vo	vu	vu	
F. Lamniformes: Megachasmidae							
Megachasma pelagios		DD ₂₀₀₀ ; DD ₂₀₀₅		LC	LC	LC	
Megamouth Shark		DD2000, DD2005	LC2015	LU	LU	LC	
G. Lamniformes: Odontaspididae							
Odontaspis noronhai				LC	LC	LC	
Bigeye Sand Tiger		DD ₂₀₀₀ ; DD ₂₀₀₅	L U 2018	LU	LU	LC	
H. Lamniformes: Pseudocarchariidae							
Pseudocarcharias kamoharai		NT2000; NT2005	I Cause	LC	LC	LC	
Crocodile Shark		IN I 2000, IN I 2005	L U 2018	LC	LC	LC	
I. Orectolobiformes: Rhincodontidae							
Rhincodon typus	DD1996	VU ₂₀₀₀ ; VU ₂₀₀₅	ENI	LC	VU	EN	
Whale Shark	DD1996	V U2000, V U2005	□IN 2016	LU	VU		
J. Myliobatiformes: Dasyatidae							
Pteroplatytrygon violacea			I Cause		LC	LC	
Pelagic Stingray		LC ₂₀₀₇	LC ₂₀₁₈	LU	LC	LC	
K. Myliobatiformes: Mobulidae							
Mobula alfredi		\/L1	1/11		1/11	1/11	
Reef Manta Ray		VU ₂₀₁₀	VU ₂₀₁₈	LC	VU	VU	
Mobula birostris		\/	ENarra		VU		
Giant Manta Ray		VU ₂₀₀₀	EN ₂₀₁₈	LC	vU	EN	
Mobula eregoodoo		NT ₂₀₀₃	EN ₂₀₁₈	LC	VU	EN	
Longhorned Pygmy Devilray		TM I 2003	LIN2018	LU	vU	EIN	
Mobula hypostoma		DDaara	ENarra		V/L1		
Atlantic Devilray		DD ₂₀₀₈	EN ₂₀₁₈	LC	VU	EN	
Mobula kuhlii			EN ₂₀₁₈	LC	VU	EN	
Shortfin Devilray		DD ₂₀₀₇	⊑1N 2018	LU	VU		

Latin name	IL	Red List Status for RLI				
Common name	Pre2000s	2000s	2010s	1980*	2005	2018
<i>Mobula mobular</i> Giant Devilray			EN ₂₀₁₈	LC	VU*	EN
<i>Mobula munkiana</i> Pygmy Devilray		NT ₂₀₀₆	VU ₂₀₁₈	LC	NT	VU
Mobula tarapacana Sicklefin Devilray		DD ₂₀₀₆	VU _{2016;} EN ₂₀₁₈	LC	NT	EN
<i>Mobula thurstoni</i> Bentfin Devilray		NT2006	NT ₂₀₁₆ ; EN ₂₀₁₈	LC	VU	EN

Table S3. Description of the 15 stock assessment outputs of 8 species used in the Figure 4d andExtended Figure 9.

MSY: Maximum Sustainable Yield. SSB: Stock Spawning Biomass. B: Biomass. N: Abundance *no global fishing mortality trajectory was available for this stock assessment.

The Blue Shark stock assessment⁶⁶ couldn't be included because no estimates of MSY-related quantities were possible.

Genus	species	Туре	References	Source	
Carcharhinus	longimonuo	SSB/SSB _{MSY}	Tremblay-Boyer et al. 2019 ⁵¹ ; Mean weighted run	Civen by Trembley Pover	
Carchanninus	longimanus	SSD/SSDMSY	between all models	Given by Tremblay-Boyer	
Carcharhinus	obscurus	SSFec/SSFec _{MSY}	SEDAR 2016 ²⁴ ; Base run page 42 table 3.7	From report	
Isurus	oxyrinchus	B/B _{MSY}	Brunel et al. 201893; page 14 figure 6 (panel B and C)	From report	
Isurus	oxyrinchus	SSFec/SSFec _{MSY}	ICCAT 2019 ²⁵ ; base 3; run 3	Given by Winker	
	overinghug	SSB/SSB _{MSY}	ISC 201894; page 82 figure 15 (black line/blue line);	From report	
Isurus	oxyrinchus	SSD/SSDMSY	modeling period (1975-2016)	From report	
Lomno	20010	SSN/SSN _{MSY}	Campana et al. 2013 ^{97*} ; page 38 table 12 and page		
Lamna	nasus	SSIN/SSINMSY	35 table 9; model 1	From report	
Lamna	nasus	B/B _{MSY}	ICCAT 2010 ⁹⁶ ; page 1996 figure 23; C; NeastEAtl	From report	
Lamna	nasus	B/B _{MSY}	ICCAT 2010 ⁹⁶ ; page 1992 figure 17; D; NWestAtl	From report	
Prionace	glauca	B/B _{MSY}	Carvalho et al. 2015 ⁸² ; Run 2	Given by Winker	
Prionace	glauca	SSF/SSF _{MSY}	ICCAT 2016 ⁸¹ ; page 35 figure 13 and figure 14; Run 6	From report	
Prionace	glauca	SSB/SSB _{MSY}	ISC 2017 ⁸⁴ ; Reference case model	Given by Winker	
Prionace	glauca	SB/SB _{MSY}	Rice et al. 2017 ⁸³	Given by Winker	
Sphyrna	lewini	N/N _{MSY}	Jiao et al. 2011 ²⁸ ; Average between all 7 models	Given by Jiao	
Sphyrna	mokarran	N/N _{MSY}	Jiao et al. 2011 ²⁸ ; Average between all 7 models	Given by Jiao	
Sphyrna	zygaena	N/N _{MSY}	Jiao et al. 2011 ²⁸ ; Average between all 7 models	Given by Jiao	

Supplementary Discussion 1

Conservative Living Planet Index for oceanic sharks and rays

Our analysis is intentionally conservative. There are three reasons why the true abundance trend index values are likely to be lower and the calculated percent declines worse than estimated here. First, our baseline for 1970 likely represents the already depleted state for several species compared to unfished levels²⁷. Some shark populations were fished down prior to 1970, often due to incidental catch in fisheries targeting highly valued large oceanic teleosts (primarily tunas and billfishes). Some, notably the Porbeagle in the Northwest Atlantic, had already collapsed by the 1960s¹⁰². We also estimated a 25% chance that species were already below MSY by the 1970s, underscoring that fishing levels were already unsustainable half a century ago. Therefore, our LPI is likely to be a conservative estimator of the degree of decline. Second, unreported catches (landings and/or discards) are not included in our time-series dataset, which can result in underestimates of relative abundance (although trends in abundance may be unaffected if the under-reporting rate remains constant)¹⁰³. Third, very high mortality of Shortfin Mako in the Northwest Atlantic revealed using satellite telemetry suggests that traditional stock assessments could underestimate fishing mortality for this species, and that this problem may be more widespread⁴⁴.

Supplementary Discussion 2

Are steep declines of devil rays in Mozambique exceptional, or a rare window on the history of exploitation in the Indian Ocean?

Over the past decade or so, steep declines in devil rays have been recorded by scientists in many countries¹⁰⁴. While large body size is usually correlated with sensitivity to overexploitation in sharks, the relatively small-bodied devil rays tend to have very low annual reproductive output (typically one pup per year or every other year)¹⁹ and small localized populations, leaving them also particularly ill-equipped to withstand fishing pressure⁷. A key discussion point at the IUCN Red List workshop was whether these declines are unique, one-off occurrences or whether they are the synecdoche — the part that reflects the whole. Mozambique and Sri Lanka both recently came out of longstanding civil wars — Mozambique (spanning 1977 to 1992), Sri Lanka (1983 to 2009). Fishing and international trade was limited during these conflicts but rapidly resumed and expanded once the conflicts ceased¹⁰⁵. Hence, both places have only relatively recently seen

improved access to fishing gears that allow incidental capture of these large oceanic rays and, to some degree, exposure to industrialized fisheries and to the growing Chinese market demand for highly valued gill plates. Consequently, a range of devil ray species were subject to target and by-catch fisheries in both countries^{106,107}. The participants felt that a valid working hypothesis was that steep declines in these two countries occurred at a time sufficiently recent to have been observed and tracked by local scientists. The rapidity of decline in Mozambique given limited fishing effort, coupled with ongoing declines in Sri Lanka as catching intensity grows, suggests that similar steep declines may have occurred in other Indian Ocean countries a decade or two previously, prior to scientific observation of these species and their fisheries^{108,109}. These declines also match declines reported in other areas with intense fishing pressure, like Indonesia^{106,110}. There are plenty of anecdotal clues from other regions that suggest that populations of devil rays have declined in similar ways in other areas as well, but these most recently studies have been documented more comprehensively. One way to test this hypothesis would be to undertake traditional ecological knowledge surveys of the occurrence of species aggregations, the timing of appearance of gillnets, and the start of gill plate exports resulting in the onset of fisheries targeting and retaining bycatch of these species around the Indian Ocean^{106,107}.

Supplementary Discussion 3

Details on tuna Regional Fishery Management Organizations management progress

The world's four major Regional Fishery Management Organizations focused on tunas (tRFMOs) have, to varying degrees, prohibited retention of inherently sensitive oceanic shark species that are also of relatively low value to the associated pelagic fisheries, e.g., (1) Bigeye Thresher (*Alopias superciliosus*) in the Atlantic, (2) devil rays in the Pacific and Indian Oceans (with some exceptions), (3) the Oceanic Whitetip Shark in all major ocean basins (see ^{51,74–78}), and (4) species taken mainly in fisheries not affected by the management action (e.g. hammerhead sharks *Sphyrna* spp., with the exception of *S. tiburo* in select Atlantic pelagic fisheries of developed countries). The first and still only international shark fishing quotas (for Atlantic Blue Sharks, *Prionace glauca*) were not adopted until late 2019. For the other shark species making up a significant portion of high seas fleets' catch, the tRFMOS have set only a few species-specific measures (e.g., as suite of landing condition options for Atlantic Shortfin

Mako, bycatch limits for Silky Sharks (*Carcharhinus falciformis*) in the Eastern Tropical Pacific, and gear restrictions in the Western and Central Pacific), in addition to finning bans. While Ecosystem-Based Fisheries Management (EBFM) is often touted as a remedy for bycatch problems, tRFMOs' efforts to manage sharks using EBFM have been evaluated as inadequate with respect to scientific advice and implementation^{41,42}. Moreover, sharks, particularly Shortfin Mako and Blue Sharks, are increasingly targeted or welcomed as secondary catch by high seas longliners.

References:

- 7. Dulvy, N. K. et al. Challenges and priorities in shark and ray conservation. Curr. Biol. 27, R565–R572 (2017).
- 19. Pardo, S. A., Kindsvater, H. K., Reynolds, J. D. & Dulvy, N. K. Maximum intrinsic rate of population increase in sharks, rays, and chimaeras: the importance of survival to maturity. *Can. J. Fish. Aquat. Sci.* **73**, 1159–1163 (2016).
- 24. Southeast Data, Assessment, and Review (SEDAR). *Update assessment to SEDAR 21. HMS Dusky Shark*. (SEDAR, North Charleston, SC, USA, 2016).
- 25. International Commission for the Conservation of Atlantic Tunas (ICCAT). *Report of the 2019 ICCAT Shortfin Mako Shark Stock Assessment Update Meeting*. 41 (2019).
- Dudley, S. F. & Simpfendorfer, C. A. Population status of 14 shark species caught in the protective gillnets off KwaZulu–Natal beaches, South Africa, 1978–2003. *Mar. Freshw. Res.* 57, 225–240 (2006).
- 27. Roff, G., Brown, C. J., Priest, M. A. & Mumby, P. J. Decline of coastal apex shark populations over the past half century. *Commun. Biol.* **1**, 1–11 (2018).
- 28. Jiao, Y., Cortés, E., Andrews, K. & Guo, F. Poor-data and data-poor species stock assessment using a Bayesian hierarchical approach. *Ecol. Appl.* **21**, 2691–2708 (2011).
- 36. Anticamara, J. A., Watson, R., Gelchu, A. & Pauly, D. Global fishing effort (1950–2010): trends, gaps, and implications. *Fish. Res.* **107**, 131–136 (2011).
- 37. Vannuccini, S. Shark utilization, marketing, and trade. (Food & Agriculture Org., 1999).
- 38. Salafsky, N. *et al.* A standard lexicon for biodiversity conservation: unified classifications of threats and actions. *Conserv. Biol.* **22**, 897–911 (2008).
- Juan-Jordá, M. J., Mosqueira, I., Cooper, A. B., Freire, J. & Dulvy, N. K. Global population trajectories of tunas and their relatives. *Proc. Natl. Acad. Sci.* 108, 20650–20655 (2011).
- 40. Lawson, J. M. & Fordham, F. Realizing the Potential of the Convention on Migratory Species to Conserve Elasmobranchs. (2018).
- 41. Juan-Jordá, M. J., Murua, H., Arrizabalaga, H., Dulvy, N. K. & Restrepo, V. Report card on ecosystem-based fisheries management in tuna regional fisheries management organizations. *Fish Fish.* **19**, 321–339 (2018).
- 42. Gilman, E., Passfield, K. & Nakamura, K. Performance of regional fisheries management organizations: ecosystem-based governance of bycatch and discards. *Fish Fish.* **15**, 327–351 (2014).

- Curtis, T. H. *et al.* Seasonal distribution and historic trends in abundance of white sharks, *Carcharodon carcharias*, in the western North Atlantic Ocean. *PLoS One* 9, e99240; 1–12 (2014).
- 44. Queiroz, N. et al. Global spatial risk assessment of sharks under the footprint of fisheries. Nature 572, 461–466 (2019).
- Tremblay-Boyer, L., Carvalho, F., Neubauer, P. & Pilling, G. Stock assessment for oceanic whitetip shark in the Western and Central Pacific Ocean. *Rep. WCPFC Sci. Comm. Fifteenth Regul. Sess.* 12–20 August 2018 *Pohnpei Fed. States Micrones.* 98 (2019).
- 66. Takeuchi, Y., Tremblay-Boyer, L., Pilling, M. & Hampton, J. Assessment of blue shark in the southwestern *Pacific*. (2016).
- 67. Palomares, M. & Pauly, D. On the creeping increase of vessels' fishing power. Ecol. Soc. 24, (2019).
- Liu, K.-M., Chiang, P.-J. & Chen, C.-T. Age and growth estimates of the bigeye thresher shark., *Alopias superciliosus. Fish. Bull.* 96, 482–491 (1998).
- 69. Chen, P. & Yuan, W. Demographic analysis based on the growth parameter of sharks. *Fish. Res.* **78**, 374–379 (2006).
- Pacoureau, N. *et al.* Data used in the Living Planet Index analysis in Pacoureau et al. 2020 Half a century of global decline in oceanic sharks and rays. (2020) doi:10.5281/zenodo.4135325.
- 71. Lynch, P. D., Shertzer, K. W., Cortés, E. & Latour, R. J. Abundance trends of highly migratory species in the Atlantic Ocean: accounting for water temperature profiles. *ICES J. Mar. Sci.* **75**, 1427–1438 (2018).
- Lennert-Cody, C., Aires-da-Silva, A. & Maunder, M. Updated stock status indicators for Silky Sharks Eastern Pacific Ocean, 1994–2017. in *Inter-American Tropical Tuna Commission Scientific Advisory Committee Ninth Meeting, Document SAC-09-13* (2018).
- Clarke, S. C., Langley, A., Lennert-Cody, C. E., Aires-da-Silva, A. & Maunder, M. Pacific-wide silky shark (*Carcharhinus falciformis*) stock status assessment. *14th Regul. Sess. Sci. Comm. WCPFC Busan Repub. Korea* 137 (2018).
- 74. Young, C. N. *et al. Status review report: oceanic whitetip shark (Carcharhinus longimanus).* (Final Report to National Marine Fisheries Service, Office of Protected Resources, 2016).
- 75. Tolotti, M. T. *et al.* Size, distribution and catch rates of the oceanic whitetip shark caught by the Brazilian tuna longline fleet. *Fish. Res.* **143**, 136–142 (2013).
- 76. Ramos-Cartelle, A. et al. Standardized catch rates of the oceanic whitetip shark (Carcharhinus longimanus) from observations of the Spanish longline fishery targeting swordfish in the Indian Ocean during the 1998–2011 period. (2012).
- Brodziak, J. & Walsh, W. A. Model selection and multimodel inference for standardizing catch rates of bycatch species: a case study of oceanic whitetip shark in the Hawaii-based longline fishery. *Can. J. Fish. Aquat. Sci.* **70**, 1723–1740 (2013).
- Rice, J., Tremblay-Boyer, L., Scott, R., Hare, S. & Tidd, A. Analysis of stock status and related indicators for key shark species of the Western Central Pacific Fisheries Commission. in *Western and Central Pacific Fisheries Commission 11th Regular Session* 1–146 (2015).

- Dudley, S. F. & Simpfendorfer, C. A. Population status of 14 shark species caught in the protective gillnets off KwaZulu–Natal beaches, South Africa, 1978–2003. *Mar. Freshw. Res.* 57, 225–240 (2006).
- Braccini, M. & O'Malley, J. Temperate Demersal Gillnet and Demersal Longline Fisheries Resource Status Report 2017. in *Status Reports of the Fisheries and Aquatic Resources of Western Australia 2016/2017* 176– 181 (Western Australian Department of Primary Industries and Regional Development).
- International Commission for the Conservation of Atlantic Tunas (ICCAT). Report of the 2015 Blue Shark Stock Assessment. SCRS/2015/018. Int. Comm. Conserv. Atl. Tunas Collect. Vol. Sci. Pap. 72, 866–1019 (2016).
- 82. Carvalho, F. & Winker, H. Stock assessment of south Atlantic blue shark (Prionace glauca) through 2013. (2015).
- 83. Rice, J. Stock Assessment of Blue Shark in the Indian Ocean using Stock Synthesis. in (Working Party on Ecosystems and Bycatch, Indian Ocean Tuna Commission Report: IOTC-2017-WPEB13-33, 2017).
- 84. ISC Shark Working Group. Stock Assessment and Future Projections of Blue Shark in the North Pacific Ocean Through 2015. (2017).
- Noriega, R., Werry, J. M., Sumpton, W., Mayer, D. & Lee, S. Y. Trends in annual CPUE and evidence of sex and size segregation of *Sphyrna lewini*: Management implications in coastal waters of northeastern Australia. *Fish. Res.* 110, 472–477 (2011).
- Simpfendorfer, C. A., de Jong, S. K. & Sumpton, W. Long-term trends in large shark populations from inshore areas of the Great Barrier Reef World Heritage Area: results from the Queensland Shark Control Program. *MTSRF Transit. Program Proj. Rep.* 39 (2011).
- Dicken, M. L., Winker, H., Smale, M. J. & Cliff, G. Sharks caught in the KwaZulu-Natal bather protection programme, South Africa. 14. The smooth hammerhead shark *Sphyrna zygaena* (Linnaeus). *Afr. J. Mar. Sci.* **40**, 157–174 (2018).
- Reid, D. D., Robbins, W. D. & Peddemors, V. M. Decadal trends in shark catches and effort from the New South Wales, Australia, Shark Meshing Program 1950–2010. *Mar. Freshw. Res.* 62, 676–693 (2011).
- 89. Young, C. N. et al. Status review report: common thresher shark (Alopias vulpinus) and bigeye thresher shark (Alopias superciliosus). (Final Report to National Marine Fisheries Service, Office of Protected Resources, 2016).
- 90. Fu, D. *et al.* Pacific-wide sustainability risk assessment of bigeye thresher shark (*Alopias superciliosus*). West. Cent. Pac. Fish. Comm. Wellingt. N. Z. (2018).
- Teo, S. L. H., Rodriguez, E. G. & Sosa-Nishizaki, O. Status of common thresher sharks, *Alopias vulpinus*, along the west coast of North America: Updated Stock Assessment Based on Alternative Life History. US Dep. Commer. NOAA Tech. Memo. NMFS-SWFSC-595 (2016).
- 92. Dewar, H. *et al.* Status review of the northeastern Pacific population of white sharks (*Carcharodon carcharias*) under the Endangered Species Act. (2013).
- 93. Brunel, T. *et al.* A preliminary stock assessment for the shortfin mako shark in the Indian Ocean using datalimited approaches. (2018).
- 94. ISC Shark Working Group. Stock Assessment of Shortfin Mako Shark (Isurus oxyrinchus) in the Pacific Ocean Through 2016. 118 (2018).

- 95. Francis, M. P., Clarke, S. C., Griggs, L. H. & Hoyle, S. D. Indicator based analysis of the status of New Zealand blue, mako and porbeagle sharks. *Indicator* **5**, 13 (2015).
- International Commission for the Conservation of Atlantic Tunas (ICCAT). Report of the 2009 Porbeagle Stock Assessment Meeting. SCRS/2009/014. *Int. Comm. Conserv. Atl. Tunas Collect. Vol. Sci. Pap.* 65, 1909–2005 (2010).
- Campana, S. E., Gibson, A. J. F., Fowler, M., Dorey, A. & Joyce, W. Population dynamics of Northwest Atlantic porbeagle (Lamna nasus), with an assessment of status and projections for recovery. (Fisheries and Oceans Canada, Science, 2013).
- Hoyle, S. D., Edwards, C. T. T., Roux, M. J., Clarke, S. C. & Francis, M. P. Southern Hemisphere Porbeagle Shark (*Lamna nasus*) Stock Status Assessment. in 65 (2017).
- 99. Ebert, D. A., Fowler, S. L. & Compagno, L. J. *Sharks of the world: a fully illustrated guide*. (Wild Nature Press, 2013).
- 100. Clarke, S. *et al.* Report of the pacific shark life history expert panel workshop, 28-30 april 2015. *West. Cent. Pac. Fish. Comm. Sci. Comm. Elev. Regul. Sess.* (2015).
- 101. Harry, A. V. *et al.* Evaluating catch and mitigating risk in a multispecies, tropical, inshore shark fishery within the Great Barrier Reef World Heritage Area. *Mar. Freshw. Res.* **62**, 710–721 (2011).
- 102. Campana, S. E. *et al.* The rise and fall (again) of the porbeagle shark population in the Northwest Atlantic. *Sharks Open Ocean Biol. Fish. Conserv.* 445–461 (2008).
- 103. Pauly, D. & Zeller, D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. *Nat. Commun.* **7**, 10244 (2016).
- 104. Lawson, J. M. *et al.* Sympathy for the devil: a conservation strategy for devil and manta rays. *PeerJ* **5**, e3027 (2017).
- 105. Pierce, S. J. et al. Shark fishing in Mozambique: a preliminary assessment of artisanal fisheries. Eyes Horiz. Maputo (2008).
- 106. O'Malley, M. p, Townsend, K. A., Hilton, P., Heinrichs, S. & Stewart, J. D. Characterization of the trade in manta and devil ray gill plates in China and South-east Asia through trader surveys. *Aquat. Conserv. Mar. Freshw. Ecosyst.* 27, 394–413 (2017).
- 107. Croll, D. A. *et al.* Vulnerabilities and fisheries impacts: the uncertain future of manta and devil rays. *Aquat. Conserv. Mar. Freshw. Ecosyst.* **26**, 562–575 (2016).
- 108. Rohner, C. A. *et al.* Trends in sightings and environmental influences on a coastal aggregation of manta rays and whale sharks. *Mar. Ecol. Prog. Ser.* **482**, 153–168 (2013).
- 109. Rohner, C. A., Flam, A. L., Pierce, S. J. & Marshall, A. D. Steep declines in sightings of manta rays and devilrays (Mobulidae) in southern Mozambique. (2017).
- 110. Lewis, S. A. *et al.* Assessing Indonesian manta and devil ray populations through historical landings and fishing community interviews. *PeerJ Prepr.* (2015).