
 

 

 

   

  

  

   

     

 

  

   

  

   

 

  

     

 

  

 

  

   

 

  

  

  

  

 

 

Exploring the sensitivity of probabilistic surge estimates to forecast errors  
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Abstract 

Statistical predictions of storm surge are critical for guiding evacuation and emergency 

response/preparedness decisions during landfalling storms. The probabilistic characteristics of these 

predictions are formulated by utilizing historical forecast errors to quantify relevant uncertainties in the 

National Hurricane Center advisories. This ultimately leads to the description of probability distributions 

quantifying the deviation from the nominal advisory for four different storm features: intensity, size, cross-

track variability and along-track variability. Propagation of the uncertainty in these four storm features, 

serving as input to a numerical model for calculating storm surge, leads to the definition of the statistical 

surge estimates. This work investigates the application of variance-based global sensitivity analysis (GSA), 

quantified through the estimation of Sobol’ indices, to explore the importance of the forecast errors in the 

peak storm surge predictions. This GSA can assist in better understanding the impact of the different 

forecast errors for typical storms, and can also offer important insights for a specific storm, regarding the 

characteristics that influence the probabilistic surge predictions across its different advisories, as the storm 

comes closer to landfall. An efficient GSA implementation is presented here to address two key challenges 

of the specific problem: (i) the need to perform the GSA for a multi-dimensional output, corresponding to 

the surge for multiple locations within the geographic domain of interest that will be affected by a specific 

storm, and (ii) the restriction to use only a small number of hydrodynamic numerical simulations, since the 

associated computational burden of such simulations is significant. For addressing these challenges, 

dimensionality reduction through Principal Component Analysis (PCA) and a probability-based estimation 

of the variance of conditional expectations are combined to provide the necessary efficiency in the proposed 

GSA framework. The development of aggregated importance indices across the entire geographic domain 

is also discussed, incorporating the importance of the surge for each separate location (within this domain) 

using a variance-based weighting. This formulation is compared with an alternative, computationally 

efficient, definition of the aggregated importance, based on the readily available PCA information. A 

demonstration of this framework’s utility considering different historical storms (using National Weather 

Service advisories and forecast errors for past events) is provided, establishing comparisons across them 

and across multiple advisories for each storm. 

Keywords: storm surge predictions, landfalling storms, probabilistic surge estimation, storm forecast 

errors, variance-based global sensitivity analysis, Sobol’ indices.   
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1  Introduction 
Recent extremely active hurricane seasons (Blake 2018; Klotzbach et al. 2018; Wood et al. 2019; Pasch 

et al. 2020), as well as concerns related to the future effects of sea level rise, storm intensification and 

increased hurricane occurrence rate projections on coastal areas (Dangendorf et al. 2017; Lim et al. 2018; 

Javeline and Kijewski-Correa 2019), stress the importance of predicting storm-related impacts. The 

estimation of storm surge – the wind-driven rise of water above astronomical tide levels during landfalling 

events – has been receiving increased attention in this context, as it has been repeatedly proven to be an 

especially destructive force for coastal areas (Robertson et al. 2007; Marshall et al. 2019). For evacuation 

and emergency response management decisions during landfalling events, it is important to develop 

probabilistic predictions of the storm surge that can incorporate potential errors related to storm forecasts 

(Taylor and Glahn 2008; Kijewski-Correa et al. 2020). Such errors related to the storm characteristics 

(describing track, size and intensity) (Chen et al. 2019) impact the surge predictions, and should be 

explicitly considered in order to support well-informed decisions (Hamill et al. 2012). The standard 

approach (Taylor and Glahn 2008; Gonzalez and Taylor 2018) for accommodating probabilistic estimates 

of the anticipated surge in this setting, and the one adopted by the National Weather Service (NWS), is to 

combine the National Hurricane Center’s (NHC) official advisory for the storm current/forecasted features, 

along with historical errors associated with the forecasts. These historical errors are utilized to specify the 

probability distribution functions for four different storm features, quantifying ultimately the uncertainty in 

the NHC advisories (Taylor and Glahn 2008): (a) the cross-track variation; (b) the along-track variation 

(i.e. the storm forward translational speed); (c) the storm size, represented by the radius of maximum winds; 

and (d) the storm intensity, represented by the maximum velocity of sustained winds. These features are 

combined with the official advisory to create storm scenarios to serve as input to a hydrodynamical 

numerical model to predict the storm surge. In this context, the aforementioned storm features may be 

considered as the input for predicting the storm surge for a specific NHC advisory. Propagation of the 

uncertainties in their probabilistic description supports finally the derivation of the desired probabilistic 

surge estimates.  

This work investigates the application of global sensitivity analysis (GSA) to explore the sensitivity of 

the probabilistic surge estimates to the different forecast errors. The objective of the GSA (Saltelli et al. 

2008) is to quantify the importance of the different inputs (storm characteristics) with respect to their impact 

on the output (predicted surge). This quantification can provide valuable insights regarding the anticipated 

surge variability, and it can be used to guide various tasks, including dimensionality or uncertainty 

reduction, as has been shown in similar studies (Saltelli 2002; Fu et al. 2012; Vetter and Taflanidis 2014; 

Hu and Mahadevan 2016). Specifically, a variance-based decomposition utilizing Sobol’ indices (Sobol' 

1990) is adopted here for the GSA formulation, since it represents undoubtedly one of the most popular 
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GSA approaches (Saltelli et al. 2008). Sobol’ indices quantify the importance of input characteristics both 

at an individual level, considering exclusively each input, and at an interaction level, where the correlation 

between inputs is also taken into account. In the context of the examined application here, Sobol’ indices 

will reveal which storm input characteristics create the observed variability in the storm surge predictions 

for each location of interest within the given geographic domain.    

A number of recent studies have stressed and examined some form of sensitivity analysis for storm 

surge predictions. Some studies (Peng et al. 2004; Irish et al. 2008; Kennedy et al. 2012; Zhang and Li 

2019; Ramos‐Valle et al. 2020) have focused on parametric investigations that aim to examine how various 

storm input parameters impact the surge output of numerical hydrodynamic models, providing valuable 

insights in understanding better storm physics. Other advanced studies (Resio et al. 2017; Sochala et al. 

2020; Ayyad et al. 2021) have adopted settings similar to the one examined here, and explicitly considered 

the importance of forecast errors or implemented some type of global sensitivity analysis. Specifically, 

Resio et al. (2017) focused on the impact of forecast and numerical errors on the predicted surge for 

landfalling storms. In that study, each type of error was separately examined, and although investigation 

offered an important understanding of the overall sensitivity of surge predictions to the factors that influence 

them, it did not attempt to establish a formal quantification of the contributions of individual types of 

forecast uncertainties to the experienced storm surge. Studies by Ayyad et al. (2021) and Sochala et al. 

(2020) extended this effort, and formally considered the estimation of Sobol’ sensitivity indices to quantify 

the individual importance of storm inputs and, in the second study, the additional importance of some 

numerical model characteristics. Both approaches relied on polynomial chaos expansion (PCE) techniques 

to estimate Sobol’ indices, discussed sensitivity results only for first-order indices, and considered an 

implementation setting that deviates substantially from the established NWS/NHC framework for 

describing the variability in landfalling storm forecasts. None of the aforementioned studies attempted to 

offer any further insights by comparing sensitivity results across different storms and different advisories. 

Contrary to what has been done thus far, this work: (i) adopts directly the  NWS/NHC framework for  

quantifying probabilistic surge quantities, (ii) considers the estimation of both first- and higher-order Sobol’ 

indices, (iii) establishes a data-driven approach for the estimation of these indices that can be integrated 

within any existing computational workflow for surge predictions, and (iv) examines a wide range of case-

study applications to offer in-depth insights for the surge manifestation, as well as to demonstrate the 

robustness of the developed GSA approach. These four topics constitute the novel contributions of this 

paper. 

The challenges regarding an efficient GSA implementation in this setting pertain to the need to perform 

the GSA for a multi-dimensional output, corresponding to the surge for multiple locations (in the order of 

hundreds of thousands) within the geographic domain the storm will impact, and the restriction to use only 
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a small number of numerical storm surge simulations, since the computational burden of these simulations 

is typically significant. Furthermore, these simulations cannot be selected specifically for the purpose of 

accommodating the GSA, meaning that no restrictions can be placed on them having special characteristics 

(as needed for the numerical GSA estimation). The latter aspect is necessary for accommodating an easier 

integration with existing computational workflows, like the one currently employed by NWS through the 

Probabilistic tropical storm Surge (P-Surge) model (Taylor and Glahn 2008; Gonzalez and Taylor 2018). 

To address these challenges, the estimation of the Sobol’ indices is accomplished by combining recent work 

based on dimensionality reduction through Principal Component Analysis (PCA) (Li et al. 2020) and a 

probability-based estimation of the variance of conditional expectations (Hu and Mahadevan 2019). PCA 

restricts the estimation of statistics to a small number of latent outputs, and the probability model-based 

GSA of Hu and Mahadevan (2019) is then extended to efficiently estimate the necessary statistics for the 

latent outputs, supporting ultimately the Sobol’ index calculation for the original output. The development 

of aggregated importance indices is also considered, established by combining the results for individual 

outputs (locations) through a variance-based weighting. This is compared to the indices obtained for the 

individual latent outputs from the PCA. Different case studies – for different past storm events – are 

considered and through them the insights and benefits offered by GSA are extensively discussed. The 

validation of the efficient GSA is also examined by comparing the predicted indices to reference results 

obtained through a double-loop Monte Carlo integration. 

The remainder of the paper is organized as follows. In Section 2 the probabilistic storm surge estimation 

framework for landfalling events is reviewed. Section 3 discusses the GSA formulation and presents the 

proposed data-driven approach for the Sobol’ index estimation. In Section 4 the case-study examples are 

presented in detail, and in the final section (Section 5) the case study results are reviewed.   

 Probabilistic surge characterization for landfalling storms 

2.1 Storm parametrization  

The uncertainty characterization for the definition of probabilistic surge estimates follows the current 

NWS framework regarding the description of the storm forecasts and the associated errors. This is actually 

the framework currently deployed by the NWS to provide guidance on evacuation and emergency 

response/preparedness decisions. A detailed description of the framework is included in (Kyprioti et al. 

2021a). Here this description is briefly reviewed. A detailed presentation of the P-Surge model, the software 

developed by the NWS to support the implementation of this framework for hurricane risk predictions, can 

be found in (Taylor and Glahn 2008; Gonzalez and Taylor 2018). 

The framework for the uncertainty characterization utilizes the NHC advisories during landfalling 

events, providing information for the past and forecasted storm track, size and intensity characteristics. The 

Author Personal Copy (DOI: 10.1007/s11069-022-05598-z) 
4 



 

     

      

 

    

  

   

    

     

     

   

  

  

   

  

    

   

      

     

 

  

  

   

 

    

       

   

 

track is typically described by the latitude, slat, and longitude, slon,  of the storm center, the storm size  is  

quantified by the radius of maximum winds, Rmw, and the storm intensity by the maximum sustained wind 

speed, vw, and/or the pressure difference between the center of the storm and the ambient pressure, DP. 

Note that functional approximations exist (Jelesnianski and Taylor 1973) that relate Rmw, vw and DP, using, 

additionally, storm track information. As such, one of these parameters can be determined if the other two 

characteristics (and the storm track) are known. Part (a) of Figure 1 visualizes this information for advisory 

18 of hurricane Katrina, one of the historical storms that will be used later on in the case studies examined 

in this paper, showing specifically the storm track (slat, slon), the 1-min sustained 10-m wind speed vw, and 

the pressure difference DP. This advisory information can be subsequently used by a parametric model to 

provide wind and pressure fields, to then serve as forcing for a hydrodynamical numerical model to simulate 

the anticipated surge. Examples of such models include the Sea, Lake and Overland Surges from Hurricanes 

(SLOSH) model (Jelesnianski et al. 1992; Glahn et al. 2009) or the ADvanced CIRCulation (ADCIRC) 

model (Luettich et al. 1992).  

To formalize this setup, let q denote the four-dimensional vector of features used to describe each 

storm: 

R  
 

mw 
s 

q =  lat 
 

(1)
 slon 
  

v w  

The variation with time of these characteristics will be described using notation q(t). The NHC forecast  

provides the nominal (median) predictions for the storm features, { (  ); t t   } , with notation ~ used aboveq 0 

the vector q to denote the nominal storm characteristics. Since NHC forecasts do not provide information 

for the future evolution of Rmw, a standard practice is to use the current estimate of Rmw as the future forecast 

(Taylor and Glahn 2008). If Rmw is not readily available, then current information for vw and DP can be 

leveraged (along with the storm track information) to infer this value based on the aforementioned 

functional approximations that relate these three storm characteristics.   

As discussed in the introduction, probabilistic surge predictions are established by accounting for the 

errors in the nominal storm forecasts. Four different types of errors are distinguished: the size, the intensity 

and the along and cross position of the storm center relative to the nominal track (Taylor and Glahn 2008). 

The along track variability impacts the translational velocity of the storm, while the cross track variability 

impacts the storm track itself, including storm bearing. Part (b) of Figure 1 shows different storm tracks 

that originate from the cross track variability of the nominal track advisory shown in part (a) of Figure 1. 

The different storm tracks shown in this figure are obtained through the sampling process currently 

employed in P-Surge for representing probabilistic storm ensembles (Taylor and Glahn 2008). 
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Figure 1.  (a) NHC advisory  18 for hurricane Katrina, showing past (indicated  with t<0)  and forecast (indicated 

with  t>0)  information  for  track  and intensity; (b) Storm  tracks obtained considering  cross track variability of the 
nominal track forecast shown in part (a). 

Let ΔRmw(t) and Δvw(t) denote, respectively, the variability  (error) in the size and intensity of the storm 

parameters and  Δsalong(t) and Δscross(t)  denote, respectively, the along and cross track variability of the storm.  

The vector characterizing the variability  of the storm features is then defined as: 

 Rmw ( )t  
 s ( )t

 q( )t   cross    (2)
salong ( )t  
 
 v tw ( )  

The combination of q (t)  and q(t)  leads to the definition of q(t) for the storm  having forecast error q(t )  

with respect to the  nominal advisory  q (t ) . Size and intensity are defined  directly  through  their respective 

variabilities, R mw ( )t  R mw (t )  R mw ( )t  , v w( )t  v tw ( ) v tw ( ) ,  while for the storm  track, the combination

of Δsalong(t) and Δscross(t) jointly  influence the updated storm  track slat(t) and slon(t)  in the following way:  the 

nominal track  {s lat ( )t ,  slon (t )}  is varied by Δscross(t) perpendicular to its bearing (at each t) to obtain a cross-

path modified  track; then each point of that modified track is varied along the track by  Δsalong(t) to obtain 

the final track. 
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 2.2 Uncertainty description and probabilistic surge estimates    

The probabilistic description of Δq(t) is based on a statistical analysis of past forecast errors performed  

by  the NWS. The suggested formulation, and  the one adopted  in this  study,  is to  treat these errors as  

statistically  independent variables since they  represent forecast uncertainties for fundamentally  different 

storm  characteristics (Taylor and Glahn 2008; Gonzalez and Taylor 2018). This leads, equivalently  to 

independence in the probability  models for Δq(t) (Taylor and Glahn 2008; Gonzalez and Taylor 2018). 

Note that this  does not  mean of course that the storm  features are independent, simply  that the forecast  

errors around the nominal values are independent. Dependences can certainly  exist for the nominal storm 

features. Furthermore, for each storm  feature, a  perfect correlation between different times  is assumed  

(Taylor and Glahn 2008).  This perfect correlation means that if, for example, the vw(t) value is larger by  

one standard deviation than  its nominal  value at t=24 hr, it will still be larger by  one standard deviation than  

its median value at t=48 hr. Of course, the latter standard deviation, describing the magnitude of the 

variability,  will change for different t, and become  larger (larger forecast error) as t  increases. These  

assumptions simplify  the uncertainty  description, requiring a four-dimensional vector x to represent the  

random  variables. The exact definition of x  is dependent upon the probability model assumed for the 

forecast errors, p(x), which is discussed next.   

 Following (Taylor  and Glahn 2008), a Gaussian probability distribution is  assumed for Δsalong(t), 

Δscross(t) and Δvw(t). Under  these assumptions we can define:  

 q ti ( )  σi (t x  ) i ; i=2,...,4   (3)

where xi  are independent standard Gaussian random  variables and σi(t) is their respective standard deviation, 

representing the scaling parameters that dictate the size of the forecast errors at different times. The latter 

ones are selected based on the 5-year mean absolute error statistics ei(t) as: 

 σi ( )t  ei ( )t / a;  i=2,...,4   (4) 

with a  taken as 0.7979 (Gonzalez and Taylor 2018). Parts (b)-(d) of Figure 2 show examples for ei(t) based  

on the 2005, 2012 and 2020 NHC forecast errors for  hurricanes. These years correspond to  some of the 

events that will be utilized later in the case studies. It is  evident that as  t  increases the errors associated with  

the NHC forecast become  larger and that accuracy  of the forecasts has improved over the  years since 

average errors in 2020 are substantially smaller than the average errors of 2005.  

The last parameter ΔRmw, on the other hand, is treated as a discrete random  variable with three possible 

values representing small,  medium  and large size storms, taken to correspond  to the 15th, 50th  and 85th  

percentiles for the storm size error (Taylor and Glahn 2008). Five different error distributions are defined  

based on the nominal storm  size R mw (t ) , that are also shown in part (a) of Figure 2. These ultimately define  

three possible values {R( )r 
mw (t ) | R mw (t );  r   1 0, ,1} , with corresponding probability masses 0.3 (for r=-1),
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0.4 (for r=0) and 0.3 (for r=1) linked to the 15th percentile, 50th percentile and 85th percentile storm size 

errors, respectively. To unify their presentation, a transformation to the standard Gaussian space is also 

adopted for the probabilistic ΔRmw description. This leads ultimately to the relationship: 

( )   1 1 ( ) |t R (  ) if  x  Φ (0 3. )R tmw mw 1
 ( )0  1 1R t( )   R ( ) |t R t( ) if Φ  (0 3. )  x  Φ (0 7. ) (5)mw mw mw 1 

 ( )1  1R t( ) |  R t(  ) if  x  Φ (0 7. ) mw mw 1 

where x1 is a standard Gaussian variable and Φ(.) denotes the standard Gaussian cumulative distribution 

function. 

Figure 2. Uncertainty description as a function of time for the storm characteristics: (a) the 15th, 50th and 85th 
percentiles for the radius of maximum winds for different nominal radius values; (b)–(d) 5-year mean absolute error 

for the along, cross track variation and the wind speed, respectively, for three different error descriptions [2005, 
2012 and 2020 updates of NHC forecast errors].  

The vector with components xi will be denoted herein as x. As discussed above, this four-dimensional 

vector presents the random variables for the uncertainty description. Knowledge of x leads to the definition 

of Δq(t) through Eqs. (3) and (5), which can be then combined with q ( )t  to provide the storm features q(t) 

through the process described at the end of the previous subsection. The use of q(t) as input to a numerical 

model provides subsequently the estimates of the storm surge for the parametrized storm. Notation zj will 

be used to denote the peak storm surge at location  j of the geographic domain of interest and notation 
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3

z j ( |x q) to explicitly denote the dependence of the simulation on the deviation x from the nominal storm 

forecast. To simplify the latter notation, the dependence on q  will be omitted and z j ( )x  will be used 

instead, with the understanding that all results are also dependent upon the nominal forecast q . Therefore, 

for a given advisory, the variable input for the storm surge prediction model corresponds to vector x, which 

constitutes the model input that the GSA needs to consider. Though statistics of interest include the 

probability that the surge will exceed different thresholds of interest or the threshold with a specific 

probability of being exceeded (Hamill et al. 2012; Gonzalez and Taylor 2018), the focus of GSA is directly 

on the variability of the surge predictions. All these statistics are expressed by propagating the uncertainty 

from the assumed probability model p(x) to the predicted surge z j ( )x . 

Global sensitivity analysis 
xFor a specific advisory, the nx-dimensional vector xn  (nx=4), describing the uncertainty in the 

storm forecast, defines the input to the numerical simulation, producing the surge estimate z j ( )x  for the 

different geographic locations of interest j=1,…,nz, where nz denotes the total number of such locations. We 

assume that this numerical model is computationally expensive, creating a restriction on the model 

evaluations that can be considered to perform any probabilistic estimation, and especially a GSA, which as 

it will be discussed next, introduces a larger degree of complexity. Additionally, we assume that the value 

of nz is large, corresponding to over tens of thousand nodes for the surge estimation in typical applications. 

zLet z n denote the nz-dimensional output vector, composed of the surge for all examined locations. 

Recall, as discussed in Section 2.2, that p(x) denotes the probability density function for x. 

3.1 GSA formulation    

The variability of the surge estimates due to forecast errors is quantified through the variance, denoted 

herein as V ,j  expressed for the surge in location j as: 

Var[z j ]   (z j (x)  E[z j ])
2 p(x)dx  (6)  

where Var[.] and E[.] denote the variance and the expectation operators, respectively. The expected value 

for zj, representing the expectation operator definition, is: 

E[z j ]   z j (x) p(x)dx  (7)  

Note that Eq. (7) also corresponds to the mean surge under the influence of the forecast errors. 

Var zVariance-based GSA considers the decomposition of the total variance [ ]j  to the contributions 

coming from each of the inputs xi as well as from the interactions between all groups of inputs (Sobol 2001). 
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Using superscripts to denote the specific output  for the  variance representation (in this  manuscript the  surge 

at a  specific location) and subscripts for the statistics of specific inputs or groups of inputs, the variance 

decomposition can be expressed as: 

n n n 

 V j = V j 
i V j

il   
i1 i1 li 1 

where V j 
i denotes  the contribution from  xi  and V j

il  denotes the contribution from  the interactions between  

xi and xl. The first order contribution is expressed by (Sobol 2001):  

 V j 
i  Vari [ [E~i z j | xi ]]  

where x~i  denotes the input vector excluding the xi  input,  subscripts  i and ~i  are  utilized to describe 

statistics (variance or expectation) with respect to xi or x~i  inputs, respectively,  and E ~i[ |z x  j i ] denotes the 

conditional on xi  expectation with respect to input x~i . The contribution described by  Eq. (9) represents the 

portion of the  total variance that stems from  the uncertainty in input xi.  The second-order contribution is  

given by (Sobol 2001):  

 V j 
il Varil [E~il [z j | xi , xl ]]Vi  

j V j
l  (10)  

with similar notation as the one  established in Eq. (9), simply  extended to multiple inputs. The second-order 

contribution represents the portion of  the  total variance that stems strictly  from the interactions between 

inputs xi  and xl, excluding the portion  of the  variance that is contributed  by each of these inputs individually. 

Higher-(more than two) order contributions are similarly defined.  

Sobol’ indices are established by  normalizing the variance contributions by  the total variance, to define 

this way the relative contribution. For the jth output and the ith input, the first-order indices are defined as:   

j Vari [ [E~i z j | xi ]] V j 

 Si  = i   i  1,...,n ,  j  1,...,n    (11) 
Var [ ]z j 

j V x z 

and quantify  the contribution of the ith input to the variability  of  the jth output without considering its 

interaction with any  of the other inputs. The sensitivity  with respect to interactions of multiple inputs can  

be expressed through higher-order indices. For example, the second-order sensitivity indices between i  and 

l inputs are given by:  

  j Varil [E~il [z j | xi , xl ]]V j V j 

 
i  l V j 

S il
il  =   i  

j 
 1,...,nx ,   l  i  1,...,nx , j  1,...,nz   (12) 

Var [ ]z j V

Additionally,  one can define the total-effect indices as (Sobol  2001; Saltelli et al. 2010):   

(8)  

(9)  
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j
j Var E x 

 1
~i[ [z

 i j |S   ~i ]]  V~ 
iT  1 i     1 n x , 

j 
i ,...,  j 1,...,n

Va z z    (13) 
r [ ]j V

where subscript notation T has been introduced to represent the total-effect indices. These indices quantify  

the contribution of the  ith input  to the variability  of  the jth  output considering the interactions with all 

possible combinations of  the remaining inputs.   It is straightforward to show that the total-effect indices 

represent the sum  of all the first-order and higher-order (second, third, …) indices that involve input xi. 

These sensitivity  indices provide invaluable information for understanding the influence of the input, 

in this case of the different types of forecast errors, on the observed surge output (Saltelli et al. 2008). For  

example, the first-order indices accommodate  a  relative prioritization of the individual importance of each 

type of forecast error, revealing what are the important nominal track characteristics, that their change (in  

future advisories) might drastically  impact the expected surge.  Higher-order indices answer the same type 

of question for variation of multiple track characteristics, identifying the correlation between them  in the 

way  they  impact the surge  manifestation. On  the other hand,  the  total-effect indices reveal  what type of 

forecast errors  (inputs) are not impactful at all. The uncertainty  description for any  input that  has a  total-

effect index close to zero can be ignored  (the nominal track characteristics can be used), with no impact on 

the surge predictions. Such an uncertainty  reduction, if and when  doable, can substantially reduce the  

computational burden for estimating the expected surge, especially  in the current NWS implementation that 

relies on factorial sampling (Taylor and  Glahn 2008; Gonzalez and  Taylor 2018). Further discussion on  the  

utility of the sensitivity analysis for  storm  surge predictions  will be provided in  the case study examples,  

after examining an efficient way  to estimate them.   

In order to simplify  the discussion for the different Sobol’ index estimation, a  unified notation for the 

variances that are encountered in this estimation is introduced:  

 V j 
c Varc[E~c[z j | xc ]]    (14)  

where subscript c  corresponds to the indices (or index) of inputs that  need to be considered, with vector xc  

representing these inputs and x~c  their complement. Dimension of xc  will be denoted as nc  herein.  Note 

that  for the first-order interactions V j j
c  is directly  equal to  Vi , while for the higher-order interaction V j

c  

corresponds to the variance with respect to the input xc  and not to the variances for individual components 

of x j 
c  (for example Varil [E~il [z j | xi , xl ]]  in the definition of Vil ).  For the variance term  appearing in  Eq.  

(11) c=i, for the variance term  appearing in Eq. (13) c=~i, while for the variance term  appearing in Eq. (12)   

c=[i l].  Each different sensitivity  index entails a  different definition of c. Therefore, the calculation of the  

Sobol’ indices requires the estimation of V j  once, and the estimation of V j 
c  for the different definitions of  

c, as needed based on the various desired indices we  wish to calculate. The estimation of V j 
c , involving 
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two separate statistical integrals, can be established using a double-loop Monte Carlo Integration (MCI), 

with the interior loop pertaining to the conditional expectation appearing in Eq. (14), and the exterior to the 

variance of this expectation. As mentioned above this needs to be separately performed for each examined 

index, since each pertains to a different definition of c. Since the double-loop MCI involves a substantial 

computational effort, alternative formulations have been considered over the past two decades (Iooss and 

Lemaître 2015). These formulations include: highly efficient sampling  schemes  to perform the MCI  

(Homma and Saltelli 1996; Sobol 2001); approximations using samples from ancillary density functions 

(Jia and Taflanidis 2016; Li and Mahadevan 2016); approaches that replace the original model with a fast-

to-compute surrogate model (Chen et al. 2005; Sudret 2008; Rohmer et al. 2016), even accommodating an 

entirely analytical estimation of the indices when the surrogate model corresponds to a polynomial chaos 

expansion (Sudret 2008). Though attractive, these approaches cannot be always integrated easily within 

existing computational workflows for probabilistic surge estimation, since they might require specialized 

selection of the storm simulations or might not be able to deal the high-dimensionality of the output. Instead, 

a completely data-driven approximation is established here for the estimation of Vc 
j , supporting this way 

an efficient GSA within any probabilistic storm surge prediction setting. 

3.2 Efficient GSA implementation     

The proposed data-driven estimation of Sobol’ indices assumes the availability of a total of k storm  

surge simulations, for different storm scenarios, represented mathematically by the sample set 

h h h h{ ;h  1,...,k} z h  1 k} , with z  z xx . The respective output is { ;  ,...,  ( )  representing the output vector 

for model input xh . These simulations will correspond to the ones employed to perform the probabilistic 

surge predictions during a landfalling storm (Kyprioti et al. 2021a). Depending on the computational details 

for facilitating these probabilistic predictions, the samples for x may correspond directly to samples from 

p(x) [direct Monte Carlo implementation setting] or may have been established by some other sampling 

scheme (Taylor and Glahn 2008; Gonzalez and Taylor 2018). In the latter case, each sample will have a 

1 k T  k n 1 k T  k nxrelative probability-weight. Let X  [x  ... x ]    and Z  [z  ... z ]   z  denote the input and 

output matrices, respectively, associated with this simulation database. The estimation of Sobol’ indices 

using data [X,Z] is established by utilizing the generalized Probability-Model GSA (PM-GSA) proposed 

recently by Hu and Mahadevan (2019). To address the high-dimensionality of the output (multiple locations 

of interest that the surge needs to be estimated), and avoid the requirement to estimate Vc 
j  for each j 

explicitly, the dimensionality reduction principles presented in (Li et al. 2020) are adopted. The overall 

formulation requires extension of the PM-GSA  to estimate  covariance statistics, and leads to the PCA 

Probability model-based Sensitivity Analysis (PCA-PSA) algorithm discussed in detail in (J2ung and 
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Taflanidis 2022). Here a  brief review is presented, couched within the specific problem  under investigation,  

which is the estimation of the sensitivity indices for storm surge.  

Initially,  in an  effort to reduce the dimensionality of the output,  Principal Component Analysis (PCA) 

is implemented as a dimensionality  reduction technique (Jolliffe 2002). Details for the implementation are 

discussed in Appendix A.  PCA in this setting can be interpreted  as identifying a low-dimensional vector of 

latent outputs  y n p , also called principal components vector, that best explains the variability  of the 

original data Z.  Each principal component output { y jj ;  1, ,np}  has an associated importance (also 

frequently  referenced as magnitude) λj, representing the portion of data variability  explained by the  

component. This importance introduces a  relative prioritization  of the components. The dimensionality  of 

the vector y is n p  min(nz , k  1) , where min(a,b) denotes the minimum  of the two arguments. Instead of  

using all principal components only  the more important ones are  retained in order to accommodate larger 

reduction in  the dimension of  the output,  with  the exact number  chosen so that these retained components 

explain a significant portion of the original output variance (say  over 99%). In the case studies discussed 

later, this leads to values of np between 30 and 50 showing that PCA can offer a substantial dimensionality  

reduction for the application examined here. PCA provides ultimately  the principal components vector y  

and the projection matrix Pn n z p  facilitating the mapping between z  and y. The observation matrix for 

the latent outputs for the k available simulations, denoted by Y y [ 1  ...  y k T  ]  k n p , can be obtained as 

Y  ZP , where, as mentioned in  Appendix  A, Z  corresponds to  the matrix of original normalized  

observations (is related to Z). The quantities needed for the estimation of the sensitivity  indices for each of  

the original outputs can be approximated  by (Li et al. 2020):  

V j  P Σrj y  ( )P T

 
rj 

j 
  

 
 

(15) 
V P Σc

rj y  ( )T
c Prj 

where Prj is the jth row of  P, Σ  YT Y / (k 1  and Σc
y ) y  is the np x  np covariance matrix for random  

variables {E~c[ yj | xc ]; j 1,...,np}.  

The second step in the GSA estimation is the calculation of Σc
y  using data [X,Y], which is established 

by  extending  the probability  model-based approach of Hu and Mahadevan (2019). Adopting a Gaussian  

mixture as a  probability  model the process can be summarized as  follows. The joint probability  density  

function (PDF) of  xc and  yj (nc+1 dimensional PDF)  is initially approximated through a  multivariate  

Gaussian Mixture Model (GMM) utilizing subset [ ,X Yc j  ]  of the original data, where Xc  corresponds to  

the data matrix for input components xc  and Yj corresponds to the data vector for principal component yj  
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(jth column of Y). Utilizing this GMM the statistics  Varc[E~c[yj | xc ]]  and Covc[E~c[yj | ]xc ,E~c[yl | ]xc ] , 

representing the diagonal and off-diagonal terms, respectively, of  Σc
y  can be obtained through the approach  

discussed in Appendix B. Both quantities require Monte Carlo Integration (MCI) with final  expressions 

given by Eqs.  (B.5) and (B.6), respectively.  

Combining these concepts, the PCA-PSA implementation for estimating Sobol’ sensitivity  indices for 

the storm  surge predictions is summarized as follows:  

Step 1:  Perform PCA for the surge  data  matrix  Z and retain the np  principal components so  that ratio  

r  of the explained variance, given by Eq. (A.2)  of Appendix  A, is  greater than a  desired threshold  ro  

(for example 99%  or 99.9%). This process provides the projection matrix P, the importance λj  of each 

principal component yj, j=1…,np, and the data matrix Y  ZP  for the principal components.  

For each of the Sobol’ indices perform the following steps.  

Step 2: Based on the desired index define subset xc.  

Step 3: For each principal component yj {j=1,…,np}, fit a nc+1 dimensional GMM to the data [Xc, Yj] 

where Xc  corresponds to a matrix that includes the columns of X  designated by  xc  and Yj to  the  jth 

column of Y. Repeat this np times, once for each yj.  

Step 4: Estimate the variance statistics  for each j  using  Eq. (B.5) and covariance statistics using Eq. 

(B.6) with all conditional expectations estimated according to  Eqs. (B.3) and (B.4) using the GMM 

closed form  conditional expressions for the respective output yj.  

Step 5: Calculate the required variance statistics for the original output using Eq. (15) and use that to 

estimate the Sobol’ indices of the original output.  

The computationally  intensive part of the PCA-PSA implementation is the nc+1 dimensional GMM fit 

to the  data (Step 2), which for each index needs to be performed np  times, one time for each retained 

principal component. Most other calculations rely  on simple matrix manipulations, and so they  can be 

performed with a negligible  computational burden. The Monte Carlo integration (Step 4) also has a very  

small burden even for large number of MC samples, since the quantities involved have negligible 

computational complexity  on their own.  This shows that the dimensionality  reduction offers substantial 

computational benefits, since only  np GMM  fits are required, instead of  nz  that  would have been the original 

demand if no PCA was implemented. Therefore,  the proposed implementation can be  considered 

computationally efficient even when the storm  output is very  large, since it relies on PCA to define a lower 

dimensional latent output space, to accommodate the GSA estimation.  

The accuracy of PCA-PSA is impacted by  two sources of errors: the PCA approximation, an error that 

should be negligible if a sufficient number of principal components is retained (Li et al. 2020), and the  

probability-model based estimation of the conditional statistics, an error that is expected to have a  moderate 
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impact (Hu and Mahadevan 2019). The latter type of error is dependent upon the dimensionality of the 

probability model that is fitted to the data, which, recall, corresponds to a nc+1 dimensional PDF, and the 

amount of information available for developing this probability model (number of simulations k). 

Therefore, it will always be larger for higher-order and total-effect indices (larger value of nc), compared 

to first-order indices (nc=1). Accuracy of the integrated PCA-PSA formulation was examined in detail in 

(Jung and Taflanidis 2022), demonstrating that the incorporation of the dimensionality reduction within the 

probability model-based GSA does not create any additional sources of error. As long as a sufficient number 

of principal components is utilized, the overall PCA-PSA accuracy is dependent only upon the challenges 

associated with the GMM approximation for the conditional statistics. In the case studies discussed later, 

some further validation results will be briefly discussed.   

3.3 Aggregated importance indicators across the outputs      

The implementation discussed in Section 3.2 supports a computationally efficient estimation of (each 

of) the Sobol’ indices for each output, allowing us to identify the sensitivity and the relative importance of 

the forecast errors for each location of interest (output). The spatial variability of the sensitivity trends, 

obtained by estimating the indices for the different outputs, can reveal some interesting insights, as will be 

also demonstrated in the case study examples presented later. Beyond the spatial varying sensitivity results, 

though, some averaging of these results across the entire geographic domain of interest might be also of 

interest. The latter provides aggregated importance indicators for each input (forecast error), revealing their 

influence on the expected surge across the entire coastal region that the storm is expected to impact.  

Averaging of the results for individual outputs zj, to obtain the desired aggregated importance 

indicators, should incorporate appropriate weights. This can be justified by the fact that locations with small 

experienced surge variation cannot be given equal weight to locations for which the surge variability is 

significant. Since the proposed GSA is variance-based, these weights should be evidently selected based 

on the surge variance for each location. Note that identical definitions have been previously proposed 

(Rohmer et al. 2016) for the quantification of aggregated sensitivity. For the first-order indices, the 

aggregated sensitivity index, denoted Si for the xi input, using as weighting the total variance for location j, 

is then obtained as: 

nz

V Sj 
i
j 

j1Si  
n (16) 

 
z

V j 

j1 

with similar expressions holding for all other higher-order indices.  
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An alternative formulation can be established by  using directly  the sensitivity  indices for the retained  

principal components. In this case, each component yj  is weighted by  its relative importance λj. The PCA-

based aggregated first-order index corresponds to:  

n


p 

λ j
jSi 

 S 1

i  j
n   (17)  


p 

λ j 
j1 

where S j
i  is the first-order sensitivity  index for the jth  principal component, given by:  

i [ j 
Vari [E~ y j | x Si  i ]]  

T 
  (18) 

Y Yj j  / (k  1)

and is easily  calculated using existing information [Eq. (B.5)]. If only  the aggregated importance indicators  

are of interest, and not the geographical variation of the sensitivity  as well, then the PCA-based importance 

of Eq.  (17)  provides a simplified estimation, as it  does not require  the transformation of the  sensitivity 

information to the original output  space through  Eq.  (15), or the  estimation of the covariance statistics of 

Eq. (B.6).  The  important question is of course if there are differences between the aggregated importance 

indices that are identified through the use of Eq. (16)  (original output) or Eq. (17)  (principal components), 

a topic that will be further explored in the case studies examined later in this manuscript.   

4  Illustrative  case studies overview   

4.1 Case study characteristics 

Five different historical storms are examined as illustrative case studies, corresponding  to:  hurricane 

Katrina (2005), hurricane Gustav (2008), hurricane Irene (2011), super storm  Sandy  (2012) and hurricane  

Arthur (2014). These storms are chosen to offer a comprehensive  GSA demonstration examining both  

landfalling (Katrina, Gustav and Sandy) and bypassing (Irene and Arthur)  storms, across different 

geographic regions, that include both the Gulf of Mexico (Katrina and Gustav) and the North Atlantic  

(Irene, Sandy and Arthur). At least  two storms  are selected in each subcategory  (bypassing/landfalling or  

Gulf/North Atlantic), to also facilitate comparisons between them.  For each storm, two different NHC  

advisories will be utilized: (i) for Katrina, advisories 23 and  18 are used, corresponding, respectively,  

roughly to 24  hr and 48 hr before the storm  makes landfall, (ii) for Gustav, advisories 29 and 26 are used, 

corresponding, respectively, roughly  to  24 hr and 48  hr before the storm  makes landfall, (iii) for Sandy 

advisories 26  and 20  are used, corresponding,  respectively, roughly  to  36  hr  and  72 hr before landfall, (iv) 

for Irene advisories 30 and 26 are used, corresponding,  respectively,  roughly  to  24  hr and 48 hr  before the 

storm  bypasses New York and starts gradually  loosing strength, while (v) for Arthur advisories 14 and 10  
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are used, corresponding, respectively, roughly to 24 hr and 48 hr before the storm, similarly to Irene, 

bypasses New York and starts gradually losing strength. To simplify the presentation, the earlier advisory 

(smaller advisory indexing number), representing the time further from landfall, will be denoted by A1 and 

the later advisory (larger advisory number), representing time closer to landfall, will be denoted by A2. The 

tracks for all these storms and advisories are shown in Figure 3. 

The consideration of different advisories allows us to examine how the GSA results evolve as the 

nominal track characteristics change. It also supports an investigation of the impact of the magnitude of the 

forecast errors on the GSA; advisory A1 represents ultimately a case with a larger relative influence of 

forecast uncertainties, corresponding -according to Figure 2- to storm characteristics (track, intensity and 

size) that have a larger variability by the time the storm reaches landfall -when the storm surge is expected 

to reach its peak value across a larger part of the domain. This is also demonstrated by the cross track 

variability shown in Figure 3. The comparison across the advisories is influenced though, not only by the 

size of the forecast uncertainties, but also by the differences in the nominal advisories. In order to investigate 

more clearly the influence of the forecast uncertainties, two different scenarios are examined for the 

uncertainty characterization: (a) the storm occurring in its actual year, denoted as U1; and (b) the storm 

occurring in 2020, denoted as U2. In each case, the NWS forecast errors of that specific year are utilized. 

Since, as evident from Figure 2, the forecast error magnitude for the track and the intensity (but not for the 

storm size) are decreasing across the years, smaller uncertainties will be considered for these storm features 

for uncertainty characterization scenario U2. For consistency, the scaling parameter a in the forecast error 

definition of Eq. (4) is taken as 0.7979 according to the current recommendations (Gonzalez and Taylor 

2018), even though for some of the years that will be examined (for example for 2005) a smaller value of 

a=0.6745 was utilized (at that point) by the NWS. Figure 3 shows for each storm advisory the nominal 

NHC forecast, as well as the tracks that correspond to one standard deviation from the nominal track based 

on the identified cross track variability for scenario U1. 

According to the current NWS probabilistic framework (Gonzalez and Taylor 2018), for each advisory 

the information available is assumed to correspond to: the storm track, DP(t) and vw(t) for the past hurricane 

history (t<0), and the storm track and vw(t) for future forecasts (t>0). Based on the provided DP and vw, the 

storm size Rmw is estimated for the hurricane history. The current estimate for t=0, Rmw(0), is kept constant 

for future predictions (t>0), representing the nominal storm size forecast for t>0. For the relationship among 

vw, DP and Rmw results from the study (Knaff and Zehr 2007) are utilized. The same relationships are used 

to provide the DP(t) predictions for t>0, based on the values of vw(t) and Rmw(t) for the respective time t. 

The output z considered in all comparisons corresponds to the peak storm surge without considering 

any tidal effects. The numerical model utilized for the surge predictions corresponds to a surrogate model 

of ADCIRC (ADvanced CIRrculation Model for Shelves, Coastal Seas, and Estuaries) (Luettich et al. 
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1992). For the implementation discussed here, this approximation is considered to correspond to the exact 

numerical model, and within the PCA-PSA framework is only utilized to perform the k simulations in order 

to obtain the sample set [X, Z]. Its use instead of ADCIRC is necessitated by the extensive case studies 

considered and the need to estimate reference solutions for the Sobol’ indices for some of these cases, to 

validate the PCA-PSA accuracy. Details for the development of the surrogate models for the North Atlantic, 

(used for hurricanes Irene, Arthur and Sandy), and for the Louisiana region, (used for hurricanes Katrina 

and Gustav) can be found in (Kyprioti et al. 2021b) and (Jia et al. 2016), respectively. The surrogate models 

were developed using databases of ADCIRC simulations for the two aforementioned regions of interest and 

are available by the U.S Army Corps of Engineers through their Coastal Hazards System (Nadal-Caraballo 

et al. 2020). The accuracy of the established surrogate models is very high, with correlation coefficient with 

respect to the original database of over 98.5%, providing a very high degree of confidence for their use 

within the case studies considered here. The part of the ADCIRC grid within the domain of impact for these 

storms includes nz=1,860,021 nodes for the North Atlantic case studies and nz =1,552,341 for the New 

Orleans case studies. These numbers showcase the large dimensionality of the examined output, stressing 

the GSA-related challenges. The portion of these nodes that correspond to a depth less than 5 m or 10 m, 

is 78.2% (for 5m) and 90.4% (for 10m) for the North Atlantic case studies, and 83.4% for (5m) and 92.8% 

(for 10m) for the Louisiana case studies. This shows that a large portion of the examined outputs 

corresponds to near-shore nodes, belonging to regions with potentially complex geomorphologies, creating 

interesting GSA trends as will be discussed later. 

The omission of tides is an assumption that was made in past studies that have examined storm surge 

GSA applications (Resio et al. 2017; Sochala et al. 2020; Ayyad et al. 2021), as it accommodates a focus 

on the storm physics, and for our study is additionally dictated by the need to use surrogate models in order 

to accommodate the extensive validation aspects that will be investigated here. This omission, nevertheless, 

needs to be acknowledged as a limitation in our work. Although tides are a deterministic process, that is 

not directly influenced by the forecast errors, there is a secondary effect related to the timing of the peak 

storm surge and how the latter is coupled with the tidal phases to produce the resultant peak water elevation 

(tides + storm surge). Therefore, the influence of the forecast error of the along track variation on the storm 

forward speed and consequently on the temporal variation of the storm surge (affecting ultimately the 

coupling with the tidal phases), is expected to be impacted by an additional consideration of tides. As such, 

results regarding the forecast errors for the along track variability presented in the case studies should be 

treated as a lower bound for the sensitivity analysis if tidal effects were to be considered. Of course the 

degree that the inclusion of tides will impact the sensitivity to the along track variability forecast errors is 

dependent upon the tide magnitude, something that exhibits both geographical and seasonal variability. 

Author Personal Copy (DOI: 10.1007/s11069-022-05598-z) 
18 



 

 

  
      

   
   

   

  

    

    

        

 
 

    

   

- - 

- - 

Sandy (2012) 
Irene     (2011) 
Arthur  (2014) 
Katrina (2005) 
Gustav  (2008) 

Color pattern 

Line pattern 
solid line: NHC nominal forecast 
dashed line: Scenario U1 

(a) Advisory A North Atlantic 1 (b) Advisory A Gulf of Mexico 1 

(c) Advisory A North Atlantic 2 (d) Advisory A Gulf of Mexico 2 

Figure 3. Storm tracks for the case study storms in the North Atlantic [left column], corresponding to hurricanes 
Irene (2011), Sandy (2012) and Arthur (2014), and the Gulf [right column], corresponding to hurricanes Katrina 
(2005) and Gustav (2008), for two different advisories in each case [A1: top row, A2: bottom row].  NHC nominal 

forecast (solid line) as well as the track corresponding to one standard deviation for the cross track variability based 
on the forecast errors of the year of the storm (uncertainty characterization scenario U1 in dashed line). 

4.2 GSA implementation computational details  

For the PCA-PSA implementation the number of storm simulations is chosen as k=500 with samples 

obtained directly from p(x). This number corresponds to a typical number of storm simulations currently 

employed in probabilistic surge forecasting (Kyprioti et al. 2021a). The threshold ro for selection of PCA 

components is chosen as 99.9% in order to minimize the PCA truncation error, leading to np in the range of 

Author Personal Copy (DOI: 10.1007/s11069-022-05598-z) 
19 



 

20-50 across the different storms and advisories. Therefore, the PCA offers a  substantial reduction with 

respect to the dimension of the output, and significant computational benefits for the GSA implementation. 

The GMM fit is performed using the Expectation-Maximization algorithm  (Bishop 2006) with  an adaptive 

selection of the number of mixture components based on  the minimization of the Bayesian Information  

Criterion (BIC) (McNicholas and Murphy  2008). The  number of samples for the MCI is chosen large, equal 

to N=5000.   

To establish validation of the PCA-PSA for some of the case studies, the estimation of the first-order 

and total-effect indices using an efficient numerical implementation of the double-loop MCI is  considered  

(Homma and Saltelli 1996; Sobol 2001). As a validation metric, the average accuracy  across the output 

(Sobol’ index  at different locations) is quantified using the normalized root mean squared error, denoted as 

nrmse herein. If S j denotes the  reference results for the Sobol’ index of interest for output zj  obtained 

through the double-loop  MCI and S j  the approximation of the same index using PCA-PSA, the  nrmse is  

given by:  

1 
nz 

 (S j  S j ) 2
n 

 nrmse  j
 z 1

j  (  
x j 19) 

ma  (S )  min (S )
j1,...,nz j 1,...,nz 

5  Illustrative  case studies: results and discussion 
The output sensitivity  to each of the four forecast errors  is calculated for each of the case study  examples  

using the PCA-PSA algorithm.  To simplify the discussions, all results will be presented with respect to the 

variation of  the underlying  storm  feature, ΔRmw, Δscross, Δsalong and  Δvw, instead of the respective variable xi  

which, as discussed in Section 2, represents the equivalent variable input in the storm  simulations.    

5.1  PCA-PSA validation for probabilistic surge estimation GSA  

Validation of  PCA-PSA is established  first for all storms  looking at advisory  A1  and uncertainty 

characterization scenario U1. Validation results averaged across the entire output domain are presented for 

the first-order and total-effect indices in Table 1 for each of  the four inputs.  Results demonstrate that for  

probabilistic  surge estimation applications, very  high-accuracy  is established by  the PCA-PSA 

implementation for the first-order indices, but this accuracy  is reduced for the total-effect indices. This  

agrees with the trends identified in (Jung and Taflanidis 2022) and should be attributed, as also mentioned  

earlier, to the higher dimensionality  of the PDF fit that is required for these indices (Hu and Mahadevan  

2019). In  the application examined here, with a  4-dimensional input, first-order indices entail a GMM fit 

for a 2-dimensional PDF, while total-effect indices for a 4-dimensional PDF. The accuracy  for total-effect 

indices can be improved if a  larger value is utilized for k  (storm  surge simulations), but as discussed earlier 
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this would be impractical since the intention here is to integrate a data-driven GSA within the existing 

computational workflows for probabilistic surge estimation, and the typical value used by these workflows 

(Kyprioti et al. 2021a) is in the range of 500 total numerical simulations. 

Figure 4. Comparison of GSA estimates over the spatial domain of interest for hurricane Gustav (2008) for advisory 
A1 and uncertainty characterization U1. The first two rows present the first-order indices, comparing the reference 

estimates [first row] to the PCA-PSA estimates [second row], while the last two rows present the total-effect indices 
establishing similar comparisons. The red line in all subplots corresponds to the forecasted storm track. 
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Figure 5. Comparison of GSA estimates over the spatial domain of interest for super storm Sandy (2012) for 
advisory A1 and uncertainty characterization U1. The first two rows present the first-order indices, comparing the 
reference estimates [first row] to the PCA-PSA estimates [second row] while the last two rows present the total-
effect indices establishing similar comparisons. The red line in all subplots corresponds to the forecasted storm 

track. 
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Table 1. Validation of PCA-PSA results, expressed through the normalized root mean squared error, for all 
storms for advisory A1 and uncertainty characterization U1. 

Storm 
First-order indices Total-effect indices 

ΔRmw Δscross Δsalong Δvw ΔRmw Δscross Δsalong Δvw 

Katrina 0.029 0.093 0.128 0.036 0.175 0.057 0.183 0.203 

Gustav 0.040 0.033 0.069 0.012 0.134 0.214 0.124 0.247 

Irene 0.043 0.033 0.030 0.028 0.168 0.176 0.208 0.189 

Sandy 0.042 0.048 0.040 0.032 0.220 0.203 0.256 0.254 

Arthur 0.085 0.048 0.104 0.012 0.244 0.255 0.249 0.256 

The bigger question related to the reduced accuracy for the total-effect index estimates, is how this 

reduced accuracy might impact GSA insights. Figures 4 and 5 present the spatial distribution of the first-

order and total-effect indices over the domain of interest, for hurricane Gustav (Figure 4) and super storm 

Sandy (Figure 5). In all subplots, a red line corresponds to the forecasted storm track. Results for the other 

storm case studies are similar and not presented due to space constraints. The reference estimates are 

compared to the estimates obtained through PCA-PSA in both figures.  Results clearly show that the spatial 

distribution for both the first-order and total-effect indices is practically identical for both approaches, 

meaning that GSA insights will not be impacted by any (in this case small) loss of accuracy when the 

corresponding sensitivity indices are estimated through PCA-PSA. Validation that will be presented later, 

in section 5.3, with respect to the aggregated indices will similarly show very good agreement between the 

reference and the PCA-PSA estimates. Overall these comparisons showcase that the proposed PCA-PSA 

implementation can support an accurate and highly efficient estimation of global sensitivity indices for 

probabilistic storm surge estimation applications.      

5.2 GSA results for different storms and advisories 

The validated PCA-PSA computational framework is now applied to all the storm case studies for both 

advisories and uncertainty characterizations. This section focuses on the spatial distribution of the 

sensitivity indices, with the following section (Section 5.3) discussing the aggregated importance 

indicators. Also, the discussion focuses on first-order and total-effect indices, representing as discussed 

earlier the two most important and commonly used GSA measures, though some results will be also briefly 

presented for higher-order interaction indices.   
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Figure 6. Distribution of the storm surge variance over the spatial domain of interest, for storms in the Gulf, 
corresponding to hurricanes Katrina (2005) [top row] and Gustav (2008) [bottom row]. Each column presents a 

different combination of advisory and uncertainty characterization cases.  

To better frame the discussions, Figures 6 and 7 present the distribution of the surge variance over the 

domains of interest, separately for the storms in the Gulf (Figure 6) and the storms in the North Atlantic 

(Figure 7). In all subplots, herein, the forecasted storm track is depicted with a red line. The variance shown 

in these figures quantifies the relative importance of the different regions within the domain of interest; 

regions with larger variance represent the parts of the domain that the probabilistic surge estimates will 

exhibit larger degree of variability and will be ultimately impacted substantially more by the relative 

sensitivity to the different storm features. It also represents the weights that will be used for the estimation 

of the aggregated importance indicators according to the discussions in Section 3.3. Results are presented 

for both advisories for uncertainty characterization U1, and for advisory A1 for uncertainty characterization 

U2. The variance distribution is impacted, as expected, by the interaction between the storm evolution and 

local coastal features. Larger variability is observed when the size of the storm forecast errors, and therefore 

the variability in the probabilistic description of the storm features, increases. This is evident when 

comparing the results corresponding to uncertainty characterizations U1 to U2, while it can be also observed 

in the comparisons between advisories A1 and A2, since the former, representing a time further from landfall, 

will be typically characterized by larger forecast errors at the time peak surge is manifested across the bigger 

parts of the domain the storm impacts. Note that the change of the nominal storm features also greatly 
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influences results between advisories, so any differences observed between them cannot be solely attributed 

to the impact of the forecast error size. For example, this dependence contributes to larger variability for 

superstorm Sandy in substantial parts of the domain of interest when advisory A2 is compared to advisory 

A1. 

Figure 7. Distribution of the storm surge variance over the spatial domain of interest, for storms in the North 
Atlantic, corresponding to hurricanes Irene (2011) [top row], Sandy (2012) [middle row] and Arthur (2014) [bottom 

row]. Each column presents a different combination of advisory and uncertainty characterization cases.  
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Figure 8. Distribution of the first-order sensitivity indices over the spatial domain of interest for hurricane Katrina 
(2005) for advisories A1 [top row] and A2 [bottom row] with uncertainty characterization U1. 

Figure 9. Distribution of the total-effect sensitivity indices over the spatial domain of interest for hurricane Katrina 
(2005) for advisories A1 [top row] and A2 [bottom row] with uncertainty characterization U1. 
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Figure 10. Distribution of the first-order sensitivity indices over the spatial domain of interest for hurricane Gustav  
(2008)  for a combination of advisory  and uncertainty characterization cases, corresponding to U1A1 [top row],  U1A2  

[middle row] and  U2A1 [bottom  row]. 

Figures 8-17 present the distribution of first-order and total-effect indices within the geographical  

domain of interest for all storm  case studies, with each pair of figures presenting, respectively,  the first-

order and total-effect indices for a specific storm; Figures 8-9 for hurricane Katrina, Figures 10-11 for  

hurricane Gustav, Figures 12-13  for hurricane Irene, Figures 14-15 for  super storm  Sandy  and  Figures 16-

17 for hurricane Arthur. For all storms, results are presented for  both advisories for uncertainty  

characterization U1, while  for selected storms (Gustav, Irene, Sandy)  results are also presented for  

uncertainty  characterization U2  for advisory  A1.  Trends for the omitted storms  in the latter  case  are identical 

to the ones presented (and not explicitly  reported here due to space limitations). In each figure, columns  

correspond to  different storm features, and rows to different advisory  or uncertainty  characterization cases.  

Note that in all figures the same  scale is used for each storm  feature (across the different rows) to allow 

easier comparisons, but different scale might be used for the different storm  features (across the different 
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columns) for clarity of illustration, and this difference should be considered when comparing sensitivity 

indices across the storm features. 

Results reveal significant differences in the spatial distribution of the sensitivity indices, indicating that 

the different forecast errors impact differently the probabilistic surge estimates within the different sub-

regions of the geographical domain of impact for each storm. The trends change across storms, and even 

across the different advisories or uncertainty characterization cases, though some similar characteristics can 

be observed. The overall behavior regarding the spatial distribution of the indices appears to be more 

complex in the Gulf storms (Figures 8-11), owing to the more complicated coastal morphology and, for the 

storms examined here, to the flood protection systems close to the New Orleans. For the North Atlantic 

storms (Figures 12-17) trends are more consistent, with first-order indices for features Δsalong and Δvw, 

impacting the speed and the intensity of storm, being larger in regions close to the nominal track (red line 

in the plots), and first-order indices for features Δscross and ΔRmw, impacting the track and the size of the 

storm, respectively, being typically larger for subdomains away from the nominal track. The latter behavior 

intuitively makes sense: characteristics that dictate the deviation of the storm from the nominal advisory, 

as well as its size, defining, therefore, the geographical domain the storm can impact, are more influential 

for areas that are away from the nominal path. For the Gulf storms, similar underlying trends can be 

observed, though they are not as clear, owing to the aforementioned more complex distribution of the 

sensitivity indices in this geographical region. Total-effect indices across both regions of the North Atlantic 

and the Gulf demonstrate more complicated trends, since in this case the interaction of each storm feature 

with the remaining ones is included. For some subdomains for which the first-order indices are relatively 

large, the total-effect indices seem to follow the same underlying trends, since a strong trend has been 

established by the first-order indices that drives the trends for the total-effect indices (substantial 

contribution to the total-effect indices comes from the large first-order indices). For other subdomains, 

though, the accumulated contribution of higher-order interactions can be significant (and constitute a 

substantial portion of the total-effect indices), and has the potential to change some of the trends established 

by the first-order indices when examining the spatial distribution of the total-effect indices.  
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Figure 11. Distribution of the total-effect sensitivity indices over the spatial domain of interest for hurricane Gustav 
(2008)  for a combination of advisory  and uncertainty characterization cases, corresponding to U1A1 [top row],  U1A2  

[middle row] and  U2A1 [bottom  row]. 

Comparisons between the first-order and the total-effect indices (compare the subplots in each pair of 

figures corresponding to the same storm) show that total-effect indices are consistently large for all storm 

features for the landfilling storms (Katrina, Gustav, Sandy), even for those storm features (Δsalong in most 

cases) that some first-order indices are small. This indicates that higher-order interactions are impactful for 

the latter type of storm features. The same observation can be made for all the storm features for bypassing 

storms (Irene, Arthur) apart from Δsalong, for which even the total-effect indices remain moderately low. 

This indicates that for bypassing storms some uncertainty reduction can be potentially accomplished by 

ignoring the variability along the storm track (removing Δsalong from the uncertainty description in the 

problem formulation). Of course, as discussed earlier, the identified sensitivity with respect to Δsalong should 

be considered as a lower bound due to the potential complex coupling with tides for the peak surge 

manifestation, which is ignored in this study. Therefore, additional investigations are warranted before such 

a recommendation is made with respect to any uncertainty reduction. The results from the extensive case 
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studies indicate that all types of forecast errors are important for landfalling storms, and it seems that all 

these forecast errors might also be important for bypassing storms, depending on the actual importance of 

Δsalong if tides are explicitly considered; no uncertainty reduction seems to be possible. Comparisons of the 

first-order indices across the different storm features indicate that Δscross is consistently the forecast error 

with the relative larger importance across all storms and advisories examined. This trend will be further 

showcased in the next section, when the aggregated importance indicators across the entire geographic 

domain (instead the geographic distribution) are examined, but it agrees with the sensitivity trends identified 

by the NWS across the years, and the fact that the factorial sampling in P-Surge uses a substantially larger 

number of representative values for Δscross compared to the other forecast errors (Taylor and Glahn 2008), 

recognizing its bigger influence in the storm surge variation. The proposed GSA can support this important 

insight with a complete data-driven implementation for each advisory, instead of the use of parametric 

studies across multiple storm cases (which is the source of the NWS insights that guided the aforementioned 

choices in the P-Surge implementation), demonstrating this way the significant benefits GSA can 

accommodate for probabilistic surge estimation. 

Overall, these discussions additionally showcase the different insights obtained from each type of 

sensitivity index. First-order indices provide insights for the individual importance of each examined storm 

feature, offering an understanding of how deviations of that feature from the nominal advisory impact the 

predicted surge. On the other hand, total-effect indices reveal the overall importance of that feature 

considering any interactions with the remaining ones, providing also guidance for potential uncertainty 

reduction, if the total-effect index is globally small for a certain storm feature. 
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Figure 12. Distribution of the first-order sensitivity indices over the spatial domain of interest for hurricane Irene 
(2011)  for a combination of advisory  and uncertainty characterization cases, corresponding to U1A1 [top row],  U1A2  

[middle row] and  U2A1 [bottom  row]. 

Moving now to comparisons across the different advisories, i.e. across the first two rows in each of the 

figures, we can observe that although some general similarities exist, differences in the magnitude and 

spatial distribution characteristics of the indices are also very common. The patterns change across the 

storms and between the different types of indices (first-order or total-effect), showcasing that consistent 

trends cannot be predicted. The similarities indicate that partial sensitivity information can be shared across 

the advisories, with foundational insights about the relative importance of forecast errors remaining 

consistent. This also means that information from one advisory can be used to guide decisions that will be 

made for the uncertainty propagation step in future advisories. On the other hand, the differences showcase 

the need of repeating the GSA across the various advisories as the storm evolves. This stresses the 

importance of an efficient and versatile computational framework for the GSA implementation, a 

requirement satisfied by the established data-driven PCA-PSA approach that can be seamlessly integrated 
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within existing computational workflows for probabilistic surge estimation without adding any significant 

computational cost.  

Figure 13. Distribution of the total-effect sensitivity indices  over the spatial domain of interest for hurricane Irene 
(2011)  for a combination of advisory  and uncertainty characterization cases, corresponding to U1A1 [top row],  U1A2  

[middle row] and  U2A1 [bottom  row]. 

Comparison between the two uncertainty characterization cases for advisory A1 for hurricanes Gustav 

(Figures 10 and 11), Irene (Figures 12 and 13) and Sandy (Figures 14 and 15) show a potential influence 

by the magnitude of the forecast errors (source of differences between the two uncertainty characterization 

scenarios). This influence is case-dependent, with differences being larger for hurricane Irene. The 

possibility of the sensitivity trends changing when the uncertainty description for the forecast errors changes 

is of course expected, but also stresses the importance of repeating the GSA when the magnitude of the 

forecast errors is updated, instead of relying on insights and trends established while using older error 

estimates. The efficiency of the proposed PCA-PSA framework readily accommodates this need.  
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Figure 14. Distribution of the first-order sensitivity indices over the spatial  domain of interest for super storm  Sandy  
(2012)  for a combination of advisory  and uncertainty characterization cases, corresponding to U1A1 [top row],  U1A2  

[middle row] and  U2A1 [bottom  row]. 

Finally Figures 18 and 19 present some results for selected higher-order indices, Figure 18 for storms 

in the Gulf region and Figure 19 for storms in the North Atlantic region. Results are presented only for 

advisory A1 and uncertainty characterization U1, and for only four combinations of storm features (i.e. four 

different higher-order GSA indices) in each figure. The combinations presented are the ones exhibiting 

larger values for the higher-order interactions for at least one of the storms examined. The intention here is 

not to establish an exhaustive investigation to obtain in depth insights into the interaction across storm 

features for different type of storms (as performed earlier for the first-order and total-effect indices), rather 

simply to demonstrate the potential of GSA to accommodate insights for storm-specific interaction for the 

forecast errors. Results demonstrate that such interactions between the forecast errors can be important 

(non-negligible values for the sensitivity indices reported), and exhibit significant spatial variability. Trends 

are not necessarily consistent across different storms even within the same geographic region. Therefore, 

any insights about the sensitivity interactions of the storm features should focus on each separate storm and 
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advisory. Since the number of such interactions, corresponding to the combination of different storm 

features, is large, the efficiency of the proposed PCA-GSA formulation is key in performing the analyses 

to accommodate the desired insights. It should be noted, though, that GSA formulations typically focus on 

first-order and total-effect indices, since identifying trends for the higher-order interactions is always more 

challenging. Still, the proposed GSA formulation provides the ability to efficiently estimate higher-order 

interaction effects. 

Figure 15. Distribution of the total-effect sensitivity indices over the spatial domain of interest for super storm  
Sandy  (2012) for a combination of advisory  and uncertainty characterization cases, corresponding to  U1A1 [top row], 

U1A2 [middle row] and U2A1 [bottom  row]. 
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Figure 16. Distribution of the first-order sensitivity indices over the spatial domain of interest for hurricane Arthur 
(2014) for advisories A1 [top row] and A2 [bottom  row] with uncertainty characterization U1. 

Figure 17. Distribution of the total-effect sensitivity indices  over the spatial domain of interest for hurricane Arthur 
(2014) for advisories A1 [top row] and A2 [bottom  row] with uncertainty characterization U1. 
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Figure 18: Distribution of some higher-order sensitivity indices over the spatial domain of interest for storms in the  
Gulf, corresponding to hurricanes Katrina (2005) [top  row] and  Gustav (2008)  [bottom  row] for advisory A1 and 

uncertainty characterization U1. 
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Figure 19: Distribution of some higher-order sensitivity indices over the spatial domain of interest for storms in the  
North Atlantic, corresponding to hurricanes Irene (2011) [top row], Sandy (2012) [middle row] and Arthur (2014)  

[bottom  row] for advisory A1 and uncertainty characterization U1. 

5.3 Aggregated importance indicators  

Discussions in the previous section focused on the spatial distribution of the sensitivity indices. This 

section examines the aggregated sensitivity indices introduced in Section 3.3, which quantify the aggregated 

importance of each of the storm features across the entire geographic domain that the storm impacts, using 

the variance (presented in Figures 6 and 7) as a weighting factor of the individual (for each location) 

sensitivity indices.  
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Figure 20: Comparison of the aggregated  first-order  [top  row]  and total-effect [bottom  row] sensitivity indices 
estimated by the different approaches for selected storm case studies for advisory  A1 and uncertainty characterization 
U1. Approaches examined are: reference and PCA-PSA estimates for indices corresponding to the original output  Si 

, as well as PCA-based estimates Si  obtained in the latent space. 

First, the accuracy  of the different methods for calculating the aggregated importance indicators is  

investigated in Figure 20. Specifically, the aggregated first-order and total-effect indices are presented using 

three different estimation approaches: using the original output based on either the  double-loop Monte Carlo  

reference estimates or the PCA-PSA estimates, or using the latent output  leveraging partial PCA-PSA 

results. Results are presented only  for  advisory  A1  and uncertainty  characterization scenario U1, though any 

established trends below are identical for all other cases. Looking first at the results for the sensitivity  

indices estimated for the original output, it is evident  that the PCA-PSA implementation provides a very  

good  match to the reference estimates for the first-order aggregated indices. For the total-effect indices, a  

small loss of  accuracy  is observed, with PCA-PSA overestimating  the aggregated indices, though the 

relative importance trends are consistent across both approaches. These comparisons offer an additional  

validation of the PCA-PSA GSA estimates, in this case with respect to the identification of the aggregated 

importance of each of the storm  features. Moreover, the comparison of  the PCA-PSA estimates based on 

the original and the latent output  (comparing red and  yellow bars), demonstrates good agreement for both 

the first-order  and total-effect  indices across all examined cases. This is a  very  important result, showing 

that if the aggregated importance of the storm  features  is the only  required information, without the explicit 

need to calculate the spatial distribution of  the sensitivity  indices, then the estimation can be performed  

using the principal component conditional variance statistics. This accommodates significant computational 
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savings as the transformation back to the original output or the estimation of  conditional covariance 

statistics for the latent outputs is not warranted.

Figure 21: Aggregated first-order [top row] and total-effect [bottom  row] sensitivity indices for selected case study 
storms for  different combinations of advisory and uncertainty characterization: U1A1, U1A2 and U2A1. 

Finally,  Figure 21 compares the aggregated importance indicators (first-order and total-effect)  for the 

different advisories and uncertainty  characterizations. The comparisons between the aggregated sensitivity 

indices verify  the trends identified when similar comparisons across advisories and uncertainty 

characterization cases were established based on the spatial distribution of the  indices. Although basic 

trends remain  relatively  consistent across the different advisories, demonstrating how GSA insights from  

one advisory  can be potentially  leveraged to understand the importance of the forecast errors  for future 

advisories, some differences also exist. The magnitude of  these  differences is case-dependent  and  can be  

potentially  significant, as evident, for example by  the significant increase of importance for Δsalong  for  

Gustav between advisories A1  and A2. The comparison of importance for individual storm  features shows 

that Δscross  always holds a  dominant importance, while on the other hand, Δsalong  appears insignificant for 

bypassing storms. Both these trends agree with the ones identified in  Section 5.2  when examining  the spatial  

distribution of the sensitivity  indices. This agreement showcases how the proposed aggregated sensitivity 

indices can help quantify  the global importance of each of the forecast errors across the geographic domain  

of interest, with no need to establish and examine any  spatial distribution maps. 
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6 Conclusions 
The application of a variance-based global sensitivity analysis (GSA), quantified through the estimation 

of Sobol’ indices, was investigated in this paper to explore the importance of storm forecast errors in 

probabilistic peak surge predictions. The formulation of the probabilistic surge estimates adopted the 

framework currently employed by the National Weather Service (NWS), considering the variability in four 

different storm features: size, intensity, along- and cross-track position of the storm eye. The GSA was 

formulated through the estimation of first- and higher-order sensitivity indices and of total-effect indices. 

Each type of index offers different insights with respect to the relative importance of each of the storm 

features individually or through the inclusion of the correlation with other storm features, and can provide 

valuable insights regarding the anticipated surge variability. A computationally efficient and versatile GSA 

framework was presented, termed PCA-PSA, established by combining Principal Component Analysis 

(PCA) and a probability-based estimation of the variance of conditional expectations. Principal component 

Analysis (PCA) is leveraged as a dimensionality reduction technique, to address the requirement of 

estimating the sensitivity indices for multiple locations within the geographic domain of interest, while the 

probability-based variance estimation accommodates the constraint of establishing the GSA using only a 

small number of hydrodynamic numerical simulations, since the associated computational burden of such 

simulations is significant. The established PCA-PSA framework is completely data-driven, and can utilize 

any given set of hydrodynamic simulations, and therefore can be seamlessly integrated within any 

computational workflow for probabilistic surge estimation, without requiring additional specialized 

simulations to accommodate the GSA implementation. Beyond the estimation of individual sensitivity 

indices for each location within the geographic domain of interest, aggregated importance indicators were 

also estimated, quantifying the overall importance of each storm feature. This was established through an 

averaging of the individual indices using variance-based weighting. A computational efficient formulation 

of the aggregated indicators was also proposed, using characteristics available for the principal components, 

and was shown to provide consistent results with the aggregated indices based on the original high-

dimensional output. 

An illustrative case study was considered, examining the GSA for different advisories and magnitude 

of forecast errors for five different storms in the North Atlantic and the Gulf regions. The influence of tides 

was ignored across the case studies, something that should be recognized as limitation of the work, 

impacting in particular the sensitivity with respect to the along-tract forecast errors. The validation of the 

proposed PCA-PSA implementation was first examined showing good overall accuracy for the problem 

considered here; excellent agreement was observed for the first-order indices, and while the overall 

accuracy was reduced for the total-effect indices, the correct sensitivity trends were identified. Comparisons 

of individual GSA results offered the following insights:  
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 The spatial distribution of the sensitivity indices shows significant variability, indicating that the 

different forecast errors affect differently the surge estimates within sub-regions of storm impact.  

 The spatial distribution of the indices appears to be more complex in the Gulf region, or, generalizing, 

across coasts with more complex geomorphologies.  

 Storm characteristics that dictate the deviation of the storm from the nominal advisory and/or its size, 

are more influential for areas that are away from the nominal storm path. 

 Total-effect indices demonstrate more complex trends compared to first-order indices, indicating 

important higher-order interactions among the forecast errors. 

 All types of forecast errors are important for landfalling storms, and it seems that all these forecast 

errors might also be important for bypassing storms, depending on the (increased) importance of 

along-track errors if tides are explicitly considered. 

 The cross-track error has been consistently identified as the forecast error with the relative largest 

importance.  

 For a specific storm, similarities across advisories indicate that partial sensitivity information can be 

shared across them. Still, the reported differences showcase the need of repeating the GSA across the 

various advisories as the storm evolves. 

 GSA trends depend on the magnitude of the forecast errors. This means that the sensitivity analysis 

needs to be repeated when such errors are updated, instead of relying on insights and trends 

established while using older error estimates. 

Overall, the study stresses the insights GSA can offer and the importance of a computationally efficient 

GSA framework, like the data-driven PCA-PSA proposed here, that can be repeated fast and accurately for 

each specific storm advisory, or forecast error quantification. 
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Appendix A: Review of PCA implementation

 Define central normalized output z j
h  zh

j  μz j 
for the hth storm simulation, where the mean surge over 

the database is estimated as:  

1 k
hμz  z (A.1)

j  jk h1 

Tand consider the eigenvalue problem for the covariance matrix Z Z  associated with the normalized 

observation matrix Z , whose hth column corresponds to the normalized output z h  (with elements z j
h ). 

The solution of the eigenvalue problem provides the vector of latent outputs (principal components) with 

the jth latent output denoted as yj. The corresponding eigenvalue λj represents the portion of the total 

zvariance of the original data Z that can be explained by yj, while the respective eigenvector Pj 
n 

facilitates the mapping from z to yj. To accommodate a larger dimensionality reduction only the principal 

components corresponding to the np largest eigenvalues are retained, with np chosen such that the ratio  

Author Personal Copy (DOI: 10.1007/s11069-022-05598-z) 
42 

https://rammb-data.cira.colostate.edu
https://chs.erdc.dren.mil/default.aspx


 

  

 

     

 

  

       

   

    

 

 

  

 

n 


p

λ j
 r  j1

min(n k, 1)   (A.2)


z 

 λ j 
j1 

is greater than some  threshold  ro (for example 99%). The vector with the retained principal components is  

denoted by  y,  while the relationship between y and z  is z P y  μ
n n  z p

z  τ  where P   is the projection 

matrix with the jth   n  column corresponding to the eigenvectors P z
j  , μ z  is the vector with elements μz j 

, and τ corresponds to the approximation error.  

PCA maximizes the variance in the original data that has been preserved when  considering only  np  

components, while it also minimizes the total squared reconstruction error between z  and Py  μ y  over the 

database. The latter corresponds to  the truncation error over the database, stemming from  the fact that not 

all principal components are retained.   

Appendix B: Details for estimation of Σc
y using Gaussian Mixture Model (GMM) 

As discussed in Section 3.2, the efficient estimation of Σc
y  starts with establishing a GMM fit for the 

X Y  ]nc+1 dimensional PDF of xc and yj utilizing subset [ ,c j  of the original data. The GMM parameters can 

be estimated using the Expectation Maximization (EM) algorithm (Moon 1996), whereas for selecting the 

number of mixture components, techniques relying on the Bayesian Information Criterion (BIC) can be 

utilized to avoid overfitting the available data (McNicholas and Murphy 2008). The probability-weights of 

the original samples for xc [if they do not directly correspond to samples from p(x)] should be explicitly 

used when performing the GMM fit.  

This GMM approximation of the joint PDF of xc and yj is written as: 

Q 
( j)  ( )j ( )jp( ,  y ) w N(x , y | μ ,  (B.1)  xc j q c j q Σq ) 

q1 

( )j ( )j ( )jwhere Q is the number of mixture components, wq , μq , and Σq are the weight, mean vector and 

covariance matrix of the qth GMM component, respectively, and N(v|μ, Σ) denotes a Gaussian PDF with 

mean μ and covariance Σ evaluated at v. Superscript (j) is used for all relevant GMM parameters to 

distinguish that the GMM fit pertains to xc and yj combination (stresses dependence on each specific output 

j). The mean and covariance of each component can be partitioned as: 
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μ  

μ ( )  
q,x
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q 
μ

( )j


 , j
 q y  

   (B.2)
 Σ( )j Σ ( )j

Σ  
q,xc q,xc y

 
 ( )j
q  j 

Σ( )j ( )j

 q y, jxc 
Σq y, j 

 

where subscript xc  or yj (or combined) is used to denote  the specific random  variable of the joint PDF that  

the statistic pertains to. Note that Σ( )j 
q y,    j   

j 
is a scalar (the variance of y  for the GMM fit) but for notational 

consistency  it is denoted as a covariance matrix.   

Based on this  fitted GMM, the conditional expectation E y~c [ |j xc  ]  can be expressed in a  closed form  

solution leveraging the conditional distribution of the fitted Gaussian mixture probability  model as (Hu and 

Mahadevan 2019):  

Q 

 E y~c [ |j xc  ]    w( )j 
q (xc  )  μ

( )j
q, y j |xc 

 
q1 

where the equations of the conditional statistics w( )j
q ( )xc  and  μ( )j

q y, |j xc
 are obtained for each component of  

the GMM through the conditional statistics of the respective Gaussian as: 

w N( )j ( |x μ( )j  , Σ ( )j )
w( )j ( )x  q c q ,xc q ,xc

q c Q 

w N( )j ( |x μ( )j ,Σ( )j )  q ' c q ',x    
c q ',x c   (B.4)

q '1 

μ
1( )j ( )j 

q y  ( )j ( )j ( )j
, |  

j xc 
μq y, j 

Σq y, jxc 
Σq ,x c 

 (xc  μq ,xc 
)

Finally  Monte Carlo Integration (MCI) is used to estimate the elements of Σc
y  . Using N total samples  

of xc , generated from  density  p( )x x ( )g
c , with c  denoting the gth  sample, the MCI expression for the 

diagonal (variance) elements of Σc
y  is: 

1 N   1 N 
2 

 Varc [E~c [y j | x ( )g 
c ]]  E~c [y j | x c ]  E [y ( )g 

 
N N ~c j | x c ]  (B.5) 

g1   g1  

whereas the expression for the off-diagonal elements is:  

Covc [ E ~c [y j | x c ],  E~c  [yl | x c ]]  

1   
        

N    1 N   1 N  E y~c [ j | x ( )g ]  
g g 

 E y~ [ ( )

N c  ( )g ( )  
c j | x c ]E y~c [ l | x c ]    E y~c [ l | x c ]  (B.6)

g1   N g1    N g1 

1 N 
( )g 

 ( g )   1 N  1 N  
       E y~c [ j | x c ]E y~c [ l | x c ]  

( )g 
  E y~c [ j | x c ]  E y[ | x ( )g 

~c l c ] 
N g1  N g1  N g1   

(B.3)  

 

  

    
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