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S1. Bootstrapping

We use bootstrapping to quantify uncertainty related to the finite record lengths of8

the data (e.g., Efron and Hastie, 2016). Given time-series data (e.g., hourly tide-gauge9

water-level observations), for each sample statistic (e.g., mean, standard deviation), we10

perform 1,000 iterations of randomly selecting (with replacement) a number of data11

values equal to the length of the original data record and computing the sample12

statistic. Since values can be repeated or omitted, statistics computed during any given13

iteration can differ from the value computed from the original data. Values in the main14

text are usually given in the form of averages or 95% confidence intervals from the15

resulting distributions.16

Note that, for quantities that depend on the covariance between time series (e.g.,17

variance explained, co-occurrence of HTFs and ARs), we randomly select the time18

points at each bootstrapping iteration and use those common time points for each data19

series involved in the calculation. For example, we compute regression coefficients using20

contemporaneous storm surge, wind stress, barometric pressure, and freshwater flux.21

A caveat of the bootstrapping method used here is that it is performed independently22

at each tide-gauge location. Thus, when computing spatial averages, we will tend to23

underestimate the true uncertainties, since the approach effectively assumes that errors24
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are uncorrelated across tide gauges. In reality, there are spatial dependencies in the25

processes under consideration that should be taken into account in a more complete26

future spatiotemporal statistical analysis.27

S2. Hypothesis testing

To evaluate whether relationships between quantities of interest in section 3 of the28

main text are statistically significant, we run Monte Carlo simulations of synthetic29

stochastic processes. For example, we compute the significance of the co-occurrence of30

(or correlation between) HTFs and ARs by comparing observed values (Figures 2, 3) to31

values expected from two independent stochastic daily Poisson processes with parameter32

values determined from the observed numbers of HTF days and AR days during the33

study period. The corresponding P -value is calculated as the fraction of the time that34

co-occurrences are more frequent (or that correlations are stronger) in the simulations35

than in the observations. Likewise, we quantify the significance of the correlation36

between interannual time series of HTFs and mean sea level (Figure 3b) by comparing37

to simulated correlations between a random Poisson process with parameter value based38

on the observed number of HTFs and a random zero-mean Gaussian process with39

variance parameter equal to the variance of the observed mean sea-level time series.40

S3. Ridge regression

Consider the linear model

y = Xβ + ε (S1)
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where y is the n× 1 known observational vector, X is the n× p known structure matrix,41

ε is the n× 1 noise vector, and β is the p× 1 vector of unknown parameters to be42

determined. With reference to Eq. (1) in the main text, the vector y in Eq. (S1)43

corresponds to the observed storm surge, matrix X corresponds to the local wind,44

pressure, and precipitation forcing, and vector β corresponds to the a and b terms.45

The ordinary least squares estimate of the parameter vector is

β̂OLS =
(
XTX

)−1
XTy. (S2)

If elements of the structure matrix are collinear, then the inner product matrix XTX46

can be poorly conditioned (or even singular), resulting in large uncertainties on β̂OLS.47

This is a concern in the present context, since the predictor variables can be correlated.48

As just one randomly selected example, the Pearson correlation coefficient between49

anomalous meridional wind stress and barometric pressure across all landfalling ARs at50

Port Chicago, California during 1980–2016 is −0.53 (P < 0.01).51

Ridge regression is a regularization technique that gives more accurate (but biased)

estimates relative to ordinary least squares in problems with correlated predictors. The

ridge-regression estimate of the parameter vector is (e.g., Efron and Hastie, 2016)

β̂RR =
(
XTX + λI

)−1
XTy. (S3)

where λ > 0 is a real constant and I is the identity matrix. See Efron and Hastie (2016)52

for a Bayesian interpretation of λ in terms of prior belief.53

We use Eq. (S3) with λ = 0.3 to solve for the a’s and b’s in Eq. (1) in the main text.54

Results are robust to the selection of λ, and similar regression coefficients are found for a55

wide range of λ values (Figure S4). Before evaluating Eq. (S3), we standardize the56
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predictors to have zero mean and unit sum of squares. We also remove the mean from57

the observational vector. After computing β̂RR, we rescale the regression coefficients58

back to their respective physical units (cf. Figures S4, S5).59

S4. Theoretical coefficients

To interpret regression coefficients determined empirically from the data (Figures S4,

S5), we build a model of the coastal sea-level response to surface wind, pressure, and

precipitation forcing. Imagine a straight coastline extending infinitely in the

meridional/alongshore (y) coordinate. The coast faces the ocean to the west, with the

origin in the zonal/onshore coordinate (x) at the coast. Offshore positions have values

x < 0. We consider the following form of shallow water equations

ηt +Hux = 0, (S4)

−fv = −g
[
η +

1

ρg
p+

∫ t

q(t′) dt′
]
x

+
1

ρH
π, (S5)

vt + fu =
1

ρH
τ − γv. (S6)

Here t is time, subscript is partial differentiation, p is barometric pressure, q is

precipitation, π and τ are onshore and alongshore wind stress, respectively, η is adjusted

sea level (Gill, 1982; Ponte, 2006)

η
.

= ζ −
∫ t

q(t′) dt′, (S7)

where ζ is sea level, u is onshore velocity, v is alongshore velocity, ρ is constant ocean60

density, g is gravitational acceleration, f is the Coriolis parameter, H is constant ocean61

depth, and γ
.

= r
/
H is an inverse timescale, where r is a linear friction coefficient.62
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The choice of the locally forced form of Eqs. (S4)–(S6) is partly motivated by the63

regression analysis, which suggests that observed storm surges can be largely understood64

in terms of local wind, pressure, and precipitation forcing (Figure 5). We have omitted65

terms involving the onshore velocity in the onshore momentum equation, and the effects66

of stratification, nonlinearities, and alongshore dependence in the governing equations.67

These omissions follow formally from the assumptions that Burger and Rossby numbers68

are small, alongshore scales are much larger than onshore scales, alongshore motions are69

much stronger than onshore motions, and frequencies are sub-inertial.70

We suppose that surface forcing by an AR is described by temporal plane waves that

decay spatially away from the coast

F (x, t) = F0 exp (kx− iσt) , F ∈ {p, q, π, τ} , (S8)

where i
.

=
√
−1, σ is angular frequency, and k and F0 are real constants. We demand

that the oceanic response is separable and described by plane waves in time

y (x, t) = ỹ (x) exp (−iσt) , y ∈ {η, u, v} , (S9)

where η̃, ũ, and ṽ are functions of the onshore coordinate to be determined.71

Inserting (S8) and (S9) into (S4)–(S6) and rearranging gives a second-order

inhomogeneous linear ordinary differential equation for onshore structure

η̃xx − κ2η̃ =

[
− k

ρg
p0 − i

k

σ
q0 +

1

ρgH
π0 +

f

ρgH

(
γ + iσ

γ2 + σ2

)
τ0

]
k exp (kx) (S10)

where κ
.

= s exp (iϕ)
/
LR is complex, with barotropic Rossby radius of deformation72

LR
.

=
√
gH
/
f , amplitude s

.
=
[
1 +

(
γ
/
σ
)2]−1/4

, and phase ϕ
.

= 1
2

arctan
(
−γ
/
σ
)
.73
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The boundary conditions are

η → 0 as x→ −∞, (S11)

η̃x = − k

ρg
p0 − i

k

σ
q0 +

1

ρgH
π0 +

f

ρgH

(
γ + iσ

γ2 + σ2

)
τ0 at x = 0. (S12)

The first boundary condition demands a shore-trapped solution, whereas the second74

boundary condition can be shown to be a form of no-normal flow through the boundary.75

The solution to Eq. (S10) subject to Eqs. (S11) and (S12) is

η̃ (x) =
k exp (kx) + κ exp (−κx)

k2 − κ2

[
− k

ρg
p0 − i

k

σ
q0 +

1

ρgH
π0 +

f

ρgH

(
γ + iσ

γ2 + σ2

)
τ0

]
.

(S13)

which, at the coast, simplifies to

η̃ (x = 0) =
1

k − κ

[
− k

ρg
p0 − i

k

σ
q0 +

1

ρgH
π0 +

f

ρgH

(
γ + iσ

γ2 + σ2

)
τ0

]
. (S14)

Adding iq0
/
σ to convert from effective sea level to sea level [cf. Eq. (S7)] and scaling by

exp (−iσt), we obtain the time-variable coastal sea-level solution

ζ (x = 0, t) =
1

k − κ

[
− k

ρg
p− iκ

σ
q +

1

ρgH
π +

f

ρgH

(
γ + iσ

γ2 + σ2

)
τ

]
, (S15)

where, on the right side, we understand the forcing terms to be evaluated at the coast.76

Recognizing that i exp (−iσt) = H [exp (−iσt)] by definition of the Hilbert transform

H, and in analogy with Eq. (1) in the main text, we can write Eq. (S15) equivalently as

ζ (x = 0, t) = aππ + bπH (π) + aττ + bτH (τ) + app+ bpH (p) + aqq + bqH (q) , (S16)

where

aπ
.

= <
[

1

k − κ

(
1

ρgH

)]
, bπ

.
= =

[
1

k − κ

(
1

ρgH

)]
, (S17)

aτ
.

= <
{

1

k − κ

[
f

ρgH

(
γ + iσ

γ2 + σ2

)]}
, bτ

.
= =

{
1

k − κ

[
f

ρgH

(
γ + iσ

γ2 + σ2

)]}
, (S18)
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ap
.

= <
[

1

k − κ

(
− k

ρg

)]
, bp

.
= =

[
1

k − κ

(
− k

ρg

)]
, (S19)

aq
.

= <
[

1

k − κ

(
−iκ
σ

)]
, bq

.
= =

[
1

k − κ

(
−iκ
σ

)]
, (S20)

and where < and = correspond to real and imaginary parts, respectively.77

To evaluate Eqs. (S17)–(S20), we use reasonable, representative numerical values or78

ranges for the various parameters (Table S2). We assume that σ is between 2π
/

(1 day)79

and 2π
/

(6 days). This range is selected because roughly two-thirds of the landfalling80

ARs considered here have lifetimes between 1 and 6 days (not shown).81

In Figure S4, we compare numerical values of the various a and b terms determined82

empirically from ridge regression applied to the data to those values expected83

theoretically from first principles as embodied in Eqs. (S17)–(S20) and evaluated as84

described in the previous paragraph. Empirical values are shown as a function of85

ridge-regression parameter λ and represent 95% confidence intervals across all tide86

gauges and bootstrap iterations. Theoretical values are shown as minima and maxima87

based on the parameter values in Table S2 and the target frequency range.88

Acknowledging that uncertainties are large, we find that empirical and theoretical89

coefficients are roughly consistent to order of magnitude, overlapping within their90

estimated uncertainties (Figure S4). This supports the hypothesis that statistical results91

in the main text are informative of causal relationships. Note that, in mentioning the92

rough consistency between empirical and theoretical results, we are not arguing that the93

analytical model represents all of the relevant physics underlying ζ during ARs. This94

model framework is highly simplified, and omits many factors that may be important in95

the real world (e.g., stratification, nonlinearities, alongshore dependence, topographic96

D R A F T January 5, 2022, 9:34am D R A F T



PIECUCH ET AL.: SUPPORTING INFORMATION X - 9

variation). Our goal here was to identify a simple model based on reasonable97

assumptions and amenable to analytical solution to show that statistical relationships98

between forcing and response obtained through regression analysis are not in gross99

conflict with expectations from basic physics. While we believe we have largely100

accomplished this goal, we recognize that our results identify open questions. For101

example, while the estimates feature overlapping uncertainties, empirical values of aπ are102

largely negative, whereas first principles predict a positive aπ value (Figure S4 top left).103

(Keep in mind that, according to regression analysis, π is not an important ζ driver.)104

We speculate that this discrepancy could reflect unphysical relationships inferred by the105

regression analysis or important physics not represented in the analytical model. Future106

studies based on more comprehensive causal frameworks (e.g., high-resolution general107

circulation models) could revisit these questions to identify more unambiguously the108

relative roles of different forcing mechanisms and the nature of the oceanic response.109

S5. Comparison to other AR catalogs

Our main analysis is based on the Gershunov et al. (2017) AR catalog. Results may110

thus be sensitive to choices made by those authors in designing their algorithm to detect111

AR events. As a preliminary uncertainty quantification to assess the robustness of our112

findings, we also considered 22 other AR catalogs for the US West Coast from ARTMIP113

(Table S3). These catalogs are based on different tracking algorithms applied to the114

Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA2)115

with 3-hourly time resolution and 5/8◦ × 1/2◦ horizontal resolution (Gelaro et al., 2017).116

D R A F T January 5, 2022, 9:34am D R A F T



X - 10 PIECUCH ET AL.: SUPPORTING INFORMATION

Data represent Tier 1 fields given as binary indicator maps of the presence or absence of117

an AR during 1980–2016.118

For each ARTMIP catalog, we recomputed the percentages of HTF days that are AR119

days and AR days that are HTF days (Figure S7). The spatial pattern of the percentage120

of AR days that are HTF days obtained from Gershunov et al. is very similar to the one121

determined from ARTMIP (Figure S7b). This means that this statistic is insensitive to122

choice of AR catalog. For the percentage of HTF days that are AR days, ARTMIP and123

Gershunov et al. give similar central values for southern and central California, but124

Gershunov furnishes slightly lower best estimates along northern California, Oregon, and125

Washington compared to ARTMIP on average (Figure S7a). The reason could be that126

the Gershunov et al. catalog returns fewer ARs: while the Gershunov et al. product127

recognizes only the landfalling location of an AR, the ARTMIP datasets identify all grid128

cells experiencing an AR. This interpretation is consistent with past studies reporting129

that AR tracking methods based on more selective criteria identify fewer AR events130

(Ralph et al., 2019). In any case, overall spatial patterns are broadly similar, and the131

Gershunov et al. estimates are everywhere enveloped by the 66% confidence intervals132

determined from ARTMIP. Thus, we conclude that statistics related to co-occurrences of133

HTFs and ARs are qualitatively robust in terms of lowest-order structure, and that134

results based on the Gershunov et al. dataset are broadly representative.135
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Station ID Latitude Longitude Completeness Threshold (cm) 99.5th Percentile (cm)
San Diego 9410170 32.7◦N 117.2◦W 99.2% 57.0 37.8
La Jolla 9410230 32.9◦N 117.3◦W 99.7% 56.5 36.3
Los Angeles 9410660 33.7◦N 118.3◦W 100.0% 56.7 36.0
Santa Monica 9410840 34◦N 118.5◦W 91.4% 56.6 37.0
Port San Luis 9412110 35.2◦N 120.8◦W 99.5% 56.5 32.4
Monterey 9413450 36.6◦N 121.9◦W 99.7% 56.5 31.7
Alameda 9414750 37.8◦N 122.3◦W 99.8% 58.0 27.4
San Francisco 9414290 37.8◦N 122.5◦W 99.8% 57.1 28.1
Point Reyes 9415020 38.0◦N 123.0◦W 98.9% 57.0 32.5
Port Chicago 9415144 38.1◦N 122.0◦W 98.5% 56.0 26.9
Arena Cove 9416841 38.9◦N 123.7◦W 78.8% 57.2 34.8
Humboldt Bay 9418767 40.8◦N 124.2◦W 98.4% 58.4 37.7
Crescent City 9419750 41.7◦N 124.2◦W 98.8% 58.4 36.0
Port Orford 9431647 42.7◦N 124.5◦W 87.2% 58.9 39.3
Charleston 9432780 43.3◦N 124.3◦W 98.5% 59.3 40.5
South Beach 9435380 44.6◦N 124.0◦W 99.3% 60.2 43.3
Astoria 9439040 46.2◦N 123.8◦W 99.3% 60.5 44.4
Toke Point 9440910 46.7◦N 124.0◦W 92.2% 60.9 51.1
Seattle 9447130 47.6◦N 122.3◦W 100.0% 63.8 34.9
Port Townsend 9444900 48.1◦N 122.8◦W 99.6% 60.4 36.3
Port Angeles 9444090 48.1◦N 123.4◦W 98.8% 58.6 41.5
Neah Bay 9443090 48.4◦N 124.6◦W 99.7% 59.7 46.0
Friday Harbor 9449880 48.5◦N 123.0◦W 99.9% 59.5 39.1
Cherry Point 9449424 48.9◦N 122.8◦W 98.5% 61.2 37.2

Table S1. Name, identification number, latitude, longitude, completeness, HTF threshold, and215

99.5th percentile of tide-gauge stations and their hourly still water level records during216

1980–2016. Identification numbers are as provided by NOAA. Completeness refers to the217

percentage of hours during the study period for which the tide gauge returned valid hourly still218

water level data. HTF threshold is a linear function of great diurnal range (difference between219

mean higher high water and mean lower low water) after Sweet et al. (2018). Values for HTF220

threshold and 99.5th percentile are relative to mean higher high water. Note that the221

Humboldt Bay tide gauge is also known as North Spit.222
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Parameter Description Value
ζ Sea Level —
η Effective Sea Level —
u Onshore Velocity —
v Alongshore Velocity —
τ Meridional Wind Stress —
π Zonal Wind Stress —
q Precipitation —
p Barometric Pressure —
t Time —
x Onshore Coordinate —
σ Angular Frequency —
ρ Ocean Density 1000 kg m−3

g Gravitational Acceleration 10 m s−2

k Offshore Decay Scale 50–200 km
H Shelf Depth 100–200 m
f Coriolis Parameter 0.6–1.1×10−4 s−1

r Friction Coefficient 1× 10−4–1× 10−2 m s−1

γ Inverse Frictional Timescale 5× 10−7–1× 10−4 s−1

Table S2. Analytical model variables and parameters. Reasonable parameter values and223

ranges are given where applicable.224
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No Dataset Reference
1 ar-connect Sellars et al. (2015); Shearer et al. (2020)
2 brands v1 Brands et al. (2017)
3 brands v2 Brands et al. (2017)
4 brands v3 Brands et al. (2017)
5 ClimateNet DL Prabhat et al. (2020)
6 goldenson v1-1 Goldenson et al. (2018)
7 goldenson v1 Goldenson et al. (2018)
8 IPART Xu et al. (2020)
9 lbnl ML TDA Muszynski et al. (2019)
10 lora v2 global Lora et al. (2017)
11 mundhenk v2 Mundhenk et al. (2016)
12 mundhenk v3 Mundhenk et al. (2016)
13 PanLu Pan and Lu (2019)
14 pnnl1 hagos Hagos et al. (2015)
15 pnnl2 lq Leung and Qian (2009)
16 reid250 Reid et al. (2020)
17 reid500 Reid et al. (2020)
18 rutz Rutz et al. (2014)
19 SAIL v1 Experimental
20 shields Shields and Kieh (2016a); Shields and Kiehl (2016b)
21 tempest t2cntrl McClenny et al. (2020); Ullrich and Zarzycki (2017); Rhoades et al. (2020)
22 walton Experimental

Table S3. ARTMIP catalogs used here. Dataset is the name given on the ARTMIP website225

(https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.artmip.tier1.html).226

Where “experimental” appears in the reference column, it means that no corresponding227

peer-reviewed publication is yet available.228

D R A F T January 5, 2022, 9:34am D R A F T



X - 18 PIECUCH ET AL.: SUPPORTING INFORMATION

Figure S1. As in Figure 4 in the main text but based on the ECMWF Reanalysis Interim229

(Dee et al., 2011).230
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Figure S2. As in Figure 5 in the main text but based on the ECMWF Reanalysis Interim231

(Dee et al., 2011).232
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Figure S3. Blue shading shows probability density functions of surges during ARs at example233

tide gauges (location names and number of AR events identified in the title of each panel). For234

reference, gray shading identifies the 56–64-cm range that encompasses the HTF thresholds235

(above mean higher high water) at the tide gauges (cf. Table S1).236
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Figure S4. Coefficients between atmospheric forcing and storm surge ζ found empirically from237

regression analysis (orange) and expected theoretically from the analytical model (blue). Left238

column shows coefficients between ζ and atmospheric forcing [a’s in Eqs. (1), (S16)–(S20)],239

whereas right column shows coefficients between ζ and the Hilbert transforms of atmospheric240

forcing [b’s in Eqs. (1), (S16)–(S20)]. First row shows results for zonal wind stress π, second241

row meridional wind stress τ , third row barometric pressure p, and fourth row precipitation q.242

Empirical values are 95% confidence intervals across all sites as a function of ridge-regression243

parameter λ (vertical black dashes identify λ = 0.3). Theoretical values are shown as min/max244

ranges based on Eqs. (S16)–(S20) evaluated using parameter values/ranges in Table S2 and an245

angular frequency σ range between 2π
/

(1 day) and 2π
/

(6 days) .246
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Figure S5. Coefficients between atmospheric forcing and storm surge ζ from regression247

analysis at each tide gauge. Blue shading identifies coefficients between ζ and atmospheric248

forcing [a’s in Eqs. (1)] while orange shading identifies coefficients between ζ and the Hilbert249

transforms of atmospheric forcing [b’s in Eqs. (1)]. First row shows results for zonal wind stress250

π, second row meridional wind stress τ , third row barometric pressure p, and fourth row251

precipitation q. Values are 95% confidence intervals and based on a ridge parameter λ = 0.3.252
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Figure S6. Blue dots compare magnitudes of high-pass-filtered anomalous daily zonal wind253

stress π (horizontal axes) and meridional wind stress τ (vertical axes) during ARs at example254

tide gauges (location names and percentages of ARs for which τ magnitudes are larger than π255

magnitudes identified in the title of each panel). For reference, grey dashes mark the 1:1 line.256
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Figure S7. (a) Blue, orange, yellow, and purple curves and shading identify medians and 95%257

confidence intervals, respectively, for percent HTF days that are AR days at each tide gauge258

from the Gershunov et al. (2017) AR dataset and reproduced from Figure 3a in the main text.259

Green curve and shading are, respectively, best estimates and 66% confidence intervals based260

on the 22 other ARTMIP catalogs. (b) As in (a) but for percent AR days that are HTF days.261
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