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1 Derivation of the probability hypothesis den-

sity (PHD) filter equations based on sepa-

rate update of persistent and newborn tar-

gets and amplitude information

A PHD filter is a frequently used filter within the random finite set framework

[4, 6] and has been used for a variety of multi-target tracking applications.

It has been shown that improved tracking performance can be achieved with

the PHD filter by incorporating the amplitude information to the measure-

ments [2, 3]. However, the formulation presented in Refs.[2, 3] performs a

joint update step for both newly appearing and persistent targets, which can

bias the number of estimated targets [1]. In the formulation proposed in
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Ref. [1], the newborn and persistent targets are updated separately, but it

does not incorporate amplitude information. In this supplementary material,

we derive a PHD filter formulation that incorporates the amplitude informa-

tion for more informative measurements and improved tracking, and updates

persistent and newborn targets separately for reduced bias in the number of

estimated targets.

Sections 1.1 and 1.2 discuss works by Ref. [1] and Refs. [2, 3], respectively.

In Section 1.3 we derive the extended filter equations that incorporate both

the amplitude information as well as the separate update.

Note, we do not provide a full background to the PHD filter, but refer

the reader to references that discuss PHD filter and its implementations in

detail [4, 5, 6, 7]. Also note, that the PHD filter discussed here ignores the

target-spawning model.

1.1 Extended PHD filter with separate prediction and

update for persistent and newborn targets

This section summarizes findings of Ref. [1], concerning the separate PHD

filter recursion for persistent and newborn targets. The standard formula-

tion of the PHD filter assumes that the target birth PHD is known a priori.

However, when the birth PHD is unknown, it can be based on the received

measurements [1]. When initiating the birth PHD based on the measure-

ments, the prediction and update steps need to be carried out separately for

the persistent and the newborn targets in order to avoid biasing the number

of estimated targets [1].

The PHD, vk|k(x), can thus be expressed as two PHDs, one for persisting

targets, vk|k,p(x), and one for newborn targets, vk|k,b(x). Throughout this

document the subscripts k|k − 1 and k|k are used to indicate the predicted

and the updated elements, respectively. The subscripts p and b are used to

denote the persistent and newborn targets, respectively.

The following assumptions are made [1, 7]:

2



1. Probability of target survival - is state independent and is the same for

persistent and new targets, pS,p(x) = pS,b(x) = pS.

2. Target birth PHD and transition density - a newborn target becomes

a persistent target in the next time step, but persistent targets cannot

become newborn targets.

The prediction step of the PHD filter then becomes [1]:

vk|k−1,p(x) = pS

∫
fk|k−1(x|x′)

(
vk−1|k−1,p(x

′) + vk−1|k−1,b(x)
)
dx′ , (1)

vk|k−1,b(x) = γk(x) , (2)

where vk|k−1(·) denotes the predicted PHD, fk|k−1(·) denotes the single target

state transition function, and γk(·) denotes birth PHD.

The update step of the PHD filter, for persistent targets is [1]:

vk|k,p(x) = [1− pD(x)]vk|k−1,p(x) +
∑
z∈Zk

pD(x)gk(z|x)vk|k−1,p(x)

L(z)
, (3)

where

L(z) = κk(z)+

∫
gk(z|x)vk|k−1,b(x)dx+

∫
pD(x)gk(z|x)vk|k−1,p(x)dx , (4)

where vk|k(·) denotes the updated PHD, pD(·) denotes the probability of

detection, gk(·) denotes the single target measurement likelihood function,

and κk(·) denotes clutter PHD.

The update step for the newborn targets is [1]:

vk|k,b(x) = [1− pD(x)]vk|k−1,b(x) +
∑
z∈Zk

pD(x)gk(z|x)vk|k−1,b(x)

L(z)
. (5)
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Note that, since the newborn targets are initiated based on the measure-

ments, it is often assumed that newborn targets are always detected, i.e.

pD(x) = 1 for newborn [1], and thus Eq.(5) reduces to:

vk|k,b(x) =
∑
z∈Zk

gk(z|x)vk|k−1,b(x)

L(z)
. (6)

1.2 Extended measurement model- adding amplitude

feature to the measurements

This section summarizes findings of Refs. [2, 3]. We consider an extended

measurement model, where measurements include amplitude information, a,

in addition to a standard position measurement z, such that the measure-

ment vector z̃ = [z, a]T . In the present study, the position measurement

z is the time difference of arrival (TDOA) information and the amplitude

measurement a is the amplitude of the cross-correlation function. Moreover,

the state vector is expanded to include the expected SNR of a target, d, such

that x̃ = [xT , d]T .

The measurements are obtained by thresholding the amplitudes of the

cross-correlogram with a threshold λ. It is assumed that the probability of

target detection given a threshold λ is only dependent on the SNR d, and

not on position x [2]:

p̃λD(x̃) = pλD(d) . (7)

Further, we assume that amplitude of the cross-correlation measurement

a is independent of the TDOA measurement z. Given a threshold λ, used

to obtain these measurements, the likelihood functions for targets, g̃k(z̃|x̃),

and clutter, c̃k(z̃) can be written as [2, 3]:

4



g̃k(z̃|x̃) = gk(z|x)gλa (a|d) , (8)

c̃k(z̃) = ck(z)cλa(a) , (9)

where gk(z|x) and ck(z) are the target and clutter likelihoods based on z;

and where gλa (a|d) and cλa(a) are the amplitude probability density functions

for target and clutter given a threshold λ, respectively. Moreover we define

[2]:

ga(a|d) = gλa (a|d)pλD(d) . (10)

The clutter PHD for the extended measurement can be written as [2]:

κ̃k(z̃) = c̃k(z̃)rk , (11)

where rk denotes the clutter rate.

In practice, the expected SNR d is rarely known, and hence it is useful

to marginalize out the parameter d over the range of possible values to find

a likelihood ga and a probability of detection pD that are not dependent on

d [2].

Let p(d) be the the expected probability distribution of SNR values. The

amplitude likelihood ga, and the probability of detection pD, where d has

been marignalized out, are defined as [2]:

ga(a) =

∫
ga(a|δ)p(δ)dδ , (12)

pλD =

∫
pλD(δ)p(δ)dδ . (13)

Further, using Rayeigh distribution to describe ga(a|d), and defining p(d)
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to be normalised for the region [d1, d2] and proportional to 1/(1 + d), Eqs.

(12) and (13) can be written as [2]:

ga(a) =
2
(

exp
(
−a2

2(1+d2)

)
− exp

(
−a2

2(1+d1)

))
a(ln(1 + d2)− ln(1 + d1))

, (14)

pλD =

∫ d2

d1

1

1 + δ
exp

(
−λ2

2(1 + δ)

)
dδ . (15)

1.3 Derivation of the filter that incorporates separate

update and the amplitude information

This Section shows the derivation of the PHD filter equations using separate

update for persistent and newborn targets and an extended measurement

model.

Prediction step of the PHD filter

The predicted PHDs for persistent and newborn targets accounting for

the extended states x̃ can be written as [2]:

ṽk|k−1,p(x̃) = vk|k−1,p(x)p(d) , (16)

ṽk|k−1,b(x̃) = vk|k−1,b(x)p(d) , (17)

where p(d), is the expected probability distribution of SNR values, as dis-

cussed in the previous section.

Update step of the PHD filter

With the extended states x̃ and measurements z̃, the PHD update for
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persistent targets in Eq.(3) can be written as:

ṽk|k,p(x̃) = [1− p̃D(x̃)]ṽk|k−1,p(x̃)+

∑
z̃∈Z̃k

p̃D(x̃)g̃k(z̃|x̃)ṽk|k−1,p(x̃)

κ̃k(z̃) +
∫
p̃D(x̃)g̃k(z̃|x̃)ṽk|k−1,b(x̃)dx̃ +

∫
p̃D(x̃)g̃k(z̃|x̃)ṽk|k−1,p(x̃)dx̃

.

(18)

Substituting Eqs. (7), (8), (9), (11), (16), and (17) into Eq. (18) and

assuming the threshold λ was applied, then gives:

vk|k,p(x)p(d) = [1− pλD(d)]vk|k−1,p(x)p(d)+

∑
z̃∈Z̃λk

pλD(d)gk(z|x)gλa (a|d)vk|k−1,p(x)p(d)

L(z̃)
, (19)

where

L(z̃) = rkck(z)cλa(a) +

∫
pλD(δ)gk(z|x)gλa (a|δ)vk|k−1,b(x)p(δ)dxdδ

+

∫
pλD(δ)gk(z|x)gλa (a|δ)vk|k−1,p(x)p(δ)dxdδ . (20)

Further, considering Eqs. (10) and (12), Eqs. (19) and (20) become:
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vk|k,p(x) = [1− pλD(d)]vk|k−1,p(x) +
∑
z̃∈Z̃λk

gk(z|x)ga(a|d)vk|k−1,p(x)

L(z̃)
, (21)

L(z̃) = rkck(z)cλa(a) + ga(a)

∫
gk(z|x)vk|k−1,b(x)dx

+ ga(a)

∫
gk(z|x)vk|k−1,p(x)dx . (22)

Similarly, the PHD update for newborn targets in Eq.(5), with extended

states and measurements can be written as:

ṽk|k,b(x̃) = [1− p̃D(x̃)]ṽk|k−1,b(x̃)+

∑
z̃∈Z̃k

p̃D(x̃)g̃k(z̃|x̃)ṽk|k−1,b(x̃)

κ̃k(z̃) +
∫
p̃D(x̃)g̃k(z̃|x̃)ṽk|k−1,b(x̃)dx̃ +

∫
p̃D(x̃)g̃k(z̃|x̃)ṽk|k−1,p(x̃)dx̃

.

(23)

Following the same steps as for the derivation for the persistent target

update, the update for the neborn targets can be written as:

vk|k,b(x) = [1− pλD(d)]vk|k−1,b(x) +
∑
z̃∈Z̃λk

gk(z|x)ga(a|d)vk|k−1,b(x)

L(z̃)
. (24)

Further, since newborn targets are initiated from the measurements, it is

assumed that they are always detected, hence pλD(d) = 1 for newborn targets

and Eq.(24) reduces to:

vk|k,b(x) =
∑
z̃∈Z̃λk

gk(z|x)ga(a|d)vk|k−1,b(x)

L(z̃)
. (25)
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It should be noted that the update equations for both persistent targets,

Eq.(21), and newborn, Eq.(25), still contain terms dependent on the expected

SNR d. We use the marginalization across the expected SNR and replace

ga(a|d) and pλD(d) with ga(a) and pλD defined in Eqs. (14) and (15), to obtain

the final PHD update equations for persistent and newborn targets:

vk|k,p(x) = [1− pλD]vk|k−1,p(x) +
∑
z̃∈Z̃λk

gk(z|x)ga(a)vk|k−1,p(x)

L(z̃)
, (26)

vk|k,b(x) =
∑
z̃∈Z̃λk

gk(z|x)ga(a)vk|k−1,b(x)

L(z̃)
. (27)
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