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Abstract Using 12 years of high-resolution global lightning stroke data from the World Wide Lightning
Location Network (WWLLN), we show that lightning density is enhanced by up to a factor of 2 directly
over shipping lanes in the northeastern Indian Ocean and the South China Sea as compared to adjacent areas
with similar climatological characteristics. The lightning enhancement is most prominent during the
convectively active season, November—April for the Indian Ocean and April-December in the South China
Sea, and has been detectable from at least 2005 to the present. We hypothesize that emissions of aerosol
particles and precursors by maritime vessel traffic lead to a microphysical enhancement of convection and
storm electrification in the region of the shipping lanes. These persistent localized anthropogenic
perturbations to otherwise clean regions are a unique opportunity to more thoroughly understand the
sensitivity of maritime deep convection and lightning to aerosol particles.

Plain Language Summary Lightning results from strong storms lifting cloud drops up to high
altitudes where freezing occurs and collisions between drops, graupel, and ice crystals lead to
electrification. Thus, lightning is an indicator of storm intensity and sensitive to the microphysics of cloud
drop formation, interactions, and freezing. We find that lightning is nearly twice as frequent directly over two
of the world’s busiest shipping lanes in the Indian Ocean and the South China Sea. The lightning
enhancement maximizes along the same angular paths ships take along these routes and cannot be
explained by meteorological factors, such as winds or the temperature structure of the atmosphere. We
conclude that the lightning enhancement stems from aerosol particles emitted in the engine exhaust of ships
traveling along these routes. These particles act as the nuclei on which cloud drops form and can change the
vertical development of storms, allowing more cloud water to be transported to high altitudes, where
electrification of the storm occurs to produce lightning. These shipping lanes are thus an ongoing experiment
on how human activities that lead to airborne particulate matter pollution can perturb storm intensity

and lightning.

1. Introduction

Lightning results from the electrification of cumulonimbus cloud systems formed during deep convective
storms and is measured globally by land-based networks and satellite sensors in part for its utility as an indi-
cator for storm intensity and vertical development [Williams, 2005]. Lightning directly alters atmospheric
composition through the formation of nitric oxide radicals in the high-temperature plasma [Price et al.,
19971. Nitrogen oxides regulate the oxidizing capacity of the atmosphere [Logan, 1983], influence the abun-
dance and lifetimes of trace gases important for the greenhouse effect [Mickley et al., 2001; Stevenson et al.,
2013], and are a major source of fixed nitrogen useful to the biosphere [Galloway et al., 2004]. Lightning
strikes cause loss of human life and property [Curran et al., 2000] and perturb ecosystems through wildfire
ignition [Flannigan and Wotton, 1991; Rorig and Ferguson, 1999]. As such, determining whether storm inten-
sity and lightning frequency have changed, or will change, due to human activities, remains an important
research objective for many disciplines [Seiler and Crutzen, 1980; Price et al., 1997; Mickley et al., 2001].

Cloud electrification, and thus lightning, requires ice formation to occur within the cloud [Reynolds et al.,
1957; Sherwood et al., 2006], which in turn requires deep convection of sufficient water mass to high altitudes
where temperatures are well below the freezing point of water. Fulfillment of these requirements depends
upon the thermodynamic structure of the troposphere as well as the microphysics of the cloud [Williams
et al., 2002; Mansell and Ziegler, 2013; Stolz et al., 2015]. Low concentrations of cloud condensation nuclei

THORNTON ET AL.

LIGHTNING OVER SHIPPING LANES 9102


http://orcid.org/0000-0002-5098-4867
http://orcid.org/0000-0002-8616-9557
http://orcid.org/0000-0002-8839-618X
http://orcid.org/0000-0001-9038-8325
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2017GL074982
http://dx.doi.org/10.1002/2017GL074982
http://dx.doi.org/10.1002/2017GL074982
http://dx.doi.org/10.1002/2017GL074982
http://dx.doi.org/10.1002/2017GL074982
mailto:thornton@atmos.uw.edu

@AG U Geophysical Research Letters 10.1002/2017GL074982

(CCN), suspended solid or liquid aerosol particles greater than about 50 nm in size, lead to clouds with larger
droplets more susceptible to coalescence into warm rain and dissipation before reaching glaciation condi-
tions [Rosenfeld et al., 2014]. Higher CCN concentrations lead to more numerous but smaller cloud drops
[Ramanathan et al., 2001], which leads to suppressed or delayed warm rain formation, and thus potentially
more water transported to the colder upper atmosphere if continued uplift is sustained by dynamics or ther-
modynamics [Rosenfeld and Woodley, 2000]. Ice formation can further enhance convection due to the release
of the latent heat of freezing, induce mixed-phase precipitation, and lead to charge separation [Mansell and
Ziegler, 2013].

The above microphysical effect, known as aerosol convective invigoration [Koren et al., 2005], results in a
potential sensitivity of lightning and storm vertical development to human activities, which have perturbed
CCN concentrations on regional and global scales [Boucher and Lohmann, 1995; Pierce et al., 2007; Merikanto
et al., 2009; Dunne et al., 2016]. Aerosol invigoration of storms is found using computer models of cloud sys-
tems [Fan et al., 2013; Mansell and Ziegler, 2013; Altaratz et al., 2014; Rosenfeld et al., 2014; Wang et al., 2014;
Zhao et al., 2014; Guo et al., 2016], and observations often show positive correlations between cloud top
height, and/or the lightning flash rate with aerosol optical depth (AOD), a proxy for CCN [Andreae, 2004],
or with below-cloud particle number concentrations [Andreae, 2004; Koren et al., 2005; Bell et al., 2008,
2009; Khain et al., 2008; Altaratz et al., 2010; Yuan et al., 2011; Li et al., 2011; Heiblum et al., 2012; Wall et al.,
2014; Storer et al., 2014; Stolz et al., 2015; Pattantyus and Businger, 2014].

Over wider geographical areas, a causal relationship between CCN and lightning or convection can be harder
to establish. CCN observations are rare and of limited spatial coverage, and CCN, AOD, and lightning flash
rates are low over remote ocean regions [Williams and Stanfill, 2002]. CCN or AOD and dynamical forcing
of convection are also often spatially correlated, such as between land and ocean regions [Williams and
Stanfill, 2002]. Moreover, the responses of convection, lightning, and precipitation to CCN are nonlinear,
saturating, or even being suppressed at very high CCN [Rosenfeld, 2000; Rosenfeld et al., 2008; Altaratz
et al., 2010; Stolz et al., 2015; Guo et al., 2016].

We present a statistical analysis of lightning frequency over two of the world’s busiest shipping lanes.
Lightning is persistently enhanced directly over these shipping lanes, situated in regions with some of the
highest climatological rainfall rates on Earth. Ship exhaust is known to be a major local perturbation to
CCN over the remote oceans, leading to “ship tracks,” low-level clouds formed or optically brightened by
CCN from the ships [Twohy et al., 1995; Durkee et al., 2000; Hobbs et al., 2000; Lauer et al., 2007; Peters et al.,
2011]. We discuss the connection to aerosol convective invigoration and conclude that these areas will be
useful to quantify the sensitivity of remote tropical marine convection and lightning to CCN.

2. Methods and Data

The World Wide Lightning Location Network (WWLLN; see http://wwlin.net) is the longest running global
lightning network, with coverage beginning in August 2004. Analysis in this paper is based on over
1.5 x 107 individual strokes detected during 2005-2016. WWLLN locates lightning using dozens of radio
receivers in the very low frequency range (VLF; 3-30 kHz) located throughout the world. Detected waveforms
from each lightning sferic are used to calculate the time of group arrival (TOGA) [Dowden et al., 2002], and a
minimum of five TOGAs, each from a separate WWLLN station, are used for time of arrival location determi-
nation. Timing accuracy is maintained by GPS receivers with 100 ns accuracy, and the lightning locations are
accurate to within about 5 km [Abarca et al., 2010; Hutchins et al., 2012]. WWLLN detects the majority of all
lightning-producing storms, even in regions with no stations within 2000 km [Jacobson et al., 2006; Rodger
et al., 2006]. While the number of thunderstorms detected by WWLLN has remained approximately level
[Hutchins et al., 2014], WWLLN'’s stroke detection efficiency has more than doubled as sensors were added
to the network. Because of this trend in the detection efficiency, we compare lightning statistics over the
shipping lanes with those for adjacent regions having comparable WWLLN coverage.

We use estimates of shipping emissions from version 4.3.1 Emissions Database for Global Atmospheric
Research (EDGAR, http://edgar.jrc.ec.europa.eu/overview.php?v=431 [Crippa et al, 2016]), available as
monthly averages for the year 2010 at 0.1° resolution. These emissions estimates use fuel usage statistics
based on real-time ship information (number, size/type, heading, speed, etc.) from the automatic identifica-
tion system (AIS) required on all marine vessels for collision avoidance, together with published ship emission
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Figure 1. (a) Observed annual-mean WWLLN lightning density for 2005-2016 in the eastern Indian Ocean and the South China Sea. (b) PM, 5 shipping emissions
estimates from EDGAR database for 2010, both at 0.1° resolution. See text and Sl for more details.

factors [e.g., Lack et al., 2009] to calculate mass emissions of aerosol particle types (PM, s, organic carbon,
black carbon, etc.) as well as gaseous precursors such as SO,. More information on the emissions inventory
and marine vessel traffic can be found in the supporting information (SI).

AOD over the ocean is obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS; collec-
tion 6, level 2 [Remer et al., 2008]). Aerosol backscatter vertical profiles (version 4, level 2 data) are measured
by the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the CALIPSO satellite [Winker et al.,
2007]. We also use radar reflectivity and lightning flash rates observed respectively by the precipitation radar
(PR; data set 2A25, version 7; [Iguchi et al., 2000]) and the Lightning Imaging Sensor (LIS; version 4; [Boccippio
et al., 2002]) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite, and 3-hourly gridded rain
rates estimated from TRMM and other microwave and infrared satellite sensors (data set 3B42, version 7
[Huffman et al., 2007]). Characteristics of the large-scale thunderstorm environment are taken from the
European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim), whose
assimilated variables include ship weather observations [Dee et al., 2011]. Daily sea surface temperatures
(SST) at 0.25° resolution are taken from the NOAA Optimal Interpolation (SST) data set (Ol SST, version 2
[Reynolds et al., 2007; Banzon and Reynolds, 20171), which includes both satellite and in situ ship observations.

3. Results and Discussion

WWLLN lightning density over southeastern Asia (Figure 1a, plotted on a 0.1° x 0.1° grid, or about 10 x 10 km)
shows lightning enhancements oriented along the narrow, heavily trafficked shipping lane around 6°N in the
northeastern Indian Ocean, as well as a somewhat broader enhancement running from Singapore northeast
into the South China Sea. For comparison, shipping emissions of aerosol particles less than 2.5 micrometers in
size (PM; s) from the EDGAR database are shown in Figure 1b on a 0.1° X 0.1° grid. Emissions are calculated
from global shipping activity and fuel consumption records together with emission factors measured per
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kilogram of fuel burned from various ship types. The shipping emissions data, and marine vessel automated
information system (AIS) data [Smith et al., 2014], indicate that most vessels traversing the northern Indian
Ocean follow a very narrow (<0.5° wide), nearly straight track around 6°N between the southern end of Sri
Lanka and the northern tip of Sumatra (see Sl). East of Sumatra, the shipping lane runs southeast through
the Strait of Malacca, rounding Singapore and extending northeast across the South China Sea, with a smaller
second branch splitting off near the southern coast of Vietnam. Aerosol particle emissions in these shipping
lanes are larger by an order of magnitude or more than in other shipping lanes in this region (as shown in
Figure 1b) and are among the largest globally.

The lightning enhancement over shipping lanes is most pronounced in a relative sense away from land areas,
where diurnal cycles in sea breezes and terrain-induced convergence can strongly modulate thunderstorm
development and thus lightning frequency [Virts et al., 2013]. Therefore, while lightning also occurs fre-
quently over the Strait of Malacca, e.g., we focus on the open ocean shipping lanes, and especially that over
the Indian Ocean, where the meteorological conditions are more homogeneous. We quantify the shipping
lane enhancement of lightning and temporal variability and then suggest mechanisms which may account
for the observations.

To quantify the lightning enhancement and its temporal variations, we analyze 12 years of lightning location
data and define reference regions adjacent and parallel to the main shipping lanes (Figure 2a). Two reference
regions in the Indian Ocean, one north and one south of the shipping lane, were averaged together for the
background comparison. For the narrower South China Sea, one parallel reference region was defined to the
east southeast. The relative detection efficiency of the WWLLN network is slowly varying in space [Hutchins
et al., 2013], with negligible differences across the region in Figure 1 [Hutchins et al., 2012], and the diurnal
occurrence of lightning is similar in both the shipping lanes and their parallel reference regions [Virts et al.,
2013]. Thus, temporal variations of lightning density over the shipping lanes can be directly compared to that
over the adjacent reference regions of the Indian Ocean and South China Sea.

Daily time series of WWLLN lightning density over each shipping lane and reference region are shown in
Figures 2b-2e after smoothing using 91 day and 731 day (2 year) running mean filters. WWLLN's increasing
detection efficiency over time produces upward trends in lightning density for each region. However, light-
ning occurrence over the shipping lanes is clearly and persistently enhanced compared to the background
rates in the adjacent reference regions, which would have the same trend in detection efficiency, even in
2005 when WWLLN's detection efficiency was lowest. The 91 day running means (Figures 2b and 2d) show
the normal annual variation of lightning activity in the regions due to the seasonal meridional migration of
the intertropical convergence zone [Waliser and Gautier, 1993]. During the broad annual peak of the thunder-
storm activity—November through April over the Indian Ocean and April through December over the South
China Sea—lightning over the shipping lanes is typically more than a factor of 2 higher than in the
reference regions.

In 2 year running means, the polluted shipping lanes exhibit elevated lightning counts by 20 to 100% com-
pared to the reference regions, with the separation growing somewhat larger over time, especially in the
South China Sea lane, suggesting an increasing perturbation to lightning frequency in the shipping lane.
Using port activity records, we show that the tonnage carried by marine vessels in and out of Singapore
nearly doubled over the same period (see SI).

To further determine the spatial parameters of the regions with enhanced lightning activity, we focus on the
more spatially isolated Indian Ocean shipping lane. Because this shipping lane is approximately zonal along
6°N, its variations can be evaluated using zonally averaged fields over the gray outlined box in Figure 2a.
Figure 3a shows integrated lightning density across the shipping lane for 2 year periods, with 0.1° resolution
in latitude and scaled by the maximum lightning density in each 2 year period. The enhancement at 6°N is
evident consistently throughout the 12 year record.

As shown in Figure 2b, lightning over the Indian Ocean shipping lane exhibits a strong seasonal cycle. Zonally
averaged lightning density in two seasons, November—April and May-October, are shown in Figure 3b. The
months November-April (blue line) encompass the most active regional lightning as the Intertropical
Convergence Zone (ITCZ) shifts southward. This season clearly shows a pronounced peak in lightning cen-
tered on the shipping lane at 6°N. During boreal summer, the ITCZ shifts northward in association with the
South Asian monsoon, and during this period lightning density increases to the north of the shipping lane,
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Figure 2. (a) As in Figure 1a, with polygons for the shipping lanes (black), the reference regions (blue), and the averaging region used in Figure 3 (gray). (b, c) The 91
and 731 day running mean time series of WWLLN lightning density averaged over the Indian Ocean shipping lane (black) and the northern and southern reference
regions (blue). (d, e) As in Figures 2b and 2c but for the South China Sea shipping lane and single reference region.

although a relative maximum still exists over the shipping lane. The integrated shipping emissions of PM2.5
from the EDGAR model over the same region are shown in Figure 3c. The shipping emissions, which do not
account for subsequent transport by the winds, are dominated by a prominent peak narrower than 0.5°
latitude that aligns spatially with the peak lightning enhancement and that varies in intensity by less than
10% over the year.

In Figure 3d, we show the zonal mean convective available potential energy (CAPE), a quantity related to the
potential thunderstorm updraft strength. While these CAPE values are uncertain due to a lack of observa-
tional constraints on upper tropospheric temperature profiles in the region, they do support the presence
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for the 2 year averages but including all years (2005-2016) is shown as the thick gray line. (b) As in Figure 3a but with data averaged seasonally for November-April
(NDJFMA) and May-October (MJJASO). (c) Zonal-mean EDGAR PM, 5 shipping emissions for NDJFMA (emissions change by only 10% across the year) during the
year 2010. (d) ERA-Interim convective available potential energy across the same region averaged seasonally for NDJFMA (when the lightning enhancement is

largest) from 2005 to 2016.

of numerous thunderstorms with no strong instability region coincident with the lightning enhancement.
When the lightning enhancement is largest, CAPE varies smoothly from 450 to 500 J kg~ between 5 and
7°N. The boreal summer CAPE values are similarly smoothly varying (<10% variations) across the shipping
lane but increase northward of the shipping lane following summer insolation (see SI). Typical
thunderstorms occur in environments with instability measured by CAPE higher than these values (i.e., >
1000 J kg") [Lucas et al., 1994]. In the SI, we show that zonal mean SST, an additional measure of
thermodynamic forcing, also smoothly varies across the lightning enhancement region. Moreover, we
analyzed the diurnal cycle of lightning (see SI), and the relative enhancement over the shipping lane is
similar regardless of local time of day. Vertical wind shear and low-level convergence in the region show
no detectable variations across the shipping lane. Thus, there is no persistent instability or forcing favoring
enhanced convection coincident with the Indian Ocean shipping lane which could account for the
lightning enhancement.

Ruling out natural enhancements to convection along the shipping lane, the remaining mechanisms leading
to enhanced lightning in the vicinity of large shipping lanes involve (1) ships in a convectively active region
serving as attachment points, such that electrical breakdown (lightning) during storms is more frequent, or
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S L . ) Figure 4 we show vertical profiles
shown in Figure 3. Mean reflectivity in the region at each height was calcu- 9 P

lated for NDJFMA over the full TRMM record (1998-2015), then subtracted of zonal mean radar reflectivity
from the mean reflectivity at each 0.2° latitude bin. Only TRMM profiles anomalies in precipitating storms
flagged as containing rain were included, and only points sampled by >1000 for the same region in Figure 3, as
profiles are shown. (b) Zonal-mean rain rate from the 3-hourly gridded TRMM measured by the TRMM satellite
3B42 data set for November-April across the same time period and region as

between November and April from
1998 to 2015. While noisy, upper
level reflectivity is enhanced with
0.5 dBZ anomalies extending to higher altitudes and approximately centered about 6°N, supporting more
convection and greater condensed phase water in the mixed-phase region over the Indian Ocean shipping
lane (Figure 4a). Rain rates measured by TRMM and other sensors decrease smoothly from the equatorial
region across the shipping lane to the north (Figure 4b). The limited sampling of the region by the TRMM
satellite compared to the WWLLN lightning data prevents a further comparison of the temporal variations,
though we note that flash rates from the TRMM Lightning Imaging Sensor show a lightning enhancement
coincident with the shipping lane (see Sl). The LIS enhancement is slightly broader spatially and larger in
magnitude than that from WWLLN, possibly because of LIS" ability to detect more numerous but weaker
intracloud flashes.

in Figure 4a.

Most previous studies of aerosol effects on lightning have utilized remote sensing techniques to correlate
aerosol optical depth (AOD) with lightning flash rate over specific regions [Koren et al., 2005; Jenkins and
Pratt, 2008; Khain et al., 2008; Abarca et al., 2010; Altaratz et al., 2010; Yuan et al., 2011; Heiblum et al., 2012;
Storer et al., 2014; Wall et al., 2014; Guo et al., 2016]. These studies have typically found positive correlations,
but weak or even negative correlations are also reported; in addition, the effects of CCN on cloud microphy-
sics, convection, and electrification are nonlinear and can saturate [Rosenfeld, 2000; Rosenfeld et al., 2008;
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Mansell and Ziegler, 2013; Zhao et al., 2014; Stolz et al., 2015; Guo et al., 2016]. AOD in the region of the Indian
Ocean shipping lane is typically less than 0.25, and no obvious AOD enhancement is detected over the ship-
ping lane (see SI), consistent with previous studies of shipping effects on aerosols and low-level clouds [Peters
et al., 2011]. Aerosols from ship exhaust are small and high rain rates in this specific region lead to efficient
CCN removal. Moreover, an enhanced CCN number concentration important for cloud microphysics may
be a nearly undetectable AOD enhancement, especially in relatively clean regions with low CCN. As such,
using AOD and/or orbiting lightning sensors with infrequent sampling of any one region may miss the effects
of aerosol particle enhancements in relatively clean environments [Peters et al., 2011], which are where the
sensitivity of the cloud microphysics, convection, and lightning to aerosol may in fact be highest
[Ramanathan et al., 2001; Williams et al., 2002; Rosenfeld et al., 2008; Stolz et al., 2015]. In this way, the
enhanced lightning we observe directly over the shipping lanes indicates a uniquely isolated and persistent
perturbation experiment of otherwise relatively clean marine convective systems.

We note that the two shipping lanes presented herein have the most obvious lightning enhancements
detectable with the long record of lightning strokes provided at high time and spatial resolution by
WWLLN. Other shipping lanes do not have the same intensity of emissions, so that the enhancement of aero-
sol particles and precursors is smaller, and some lanes are in regions where there is either little convection or
where the continental influence overwhelms the shipping-induced aerosol effects on convective invigora-
tion and electrification. That said, a thorough analysis of each of the world’s major shipping lanes is war-
ranted, as are in situ studies to better constrain the actual perturbation to CCN within the regions of the
most remote and busiest shipping lanes.

4. Summary and Conclusions

Storm intensification has obvious consequences for human life and the global economy through damages
from wind and hail, as well as from direct lightning strikes. We find lightning frequency to be enhanced by
a factor of about 2 on an annual basis centered over two of the world’s main shipping lanes.
Meteorological factors are unable to explain these enhancements, and we conclude that aerosol particles
resulting from shipping emissions perturb cloud microphysics, convection, and ice processes leading to
enhanced lightning. The localized and persistent nature of the enhancement provides a unique, albeit unin-
tentional, opportunity to better quantify the response of storm intensity and lightning to changes in aerosol
particles caused by human activities. Our findings suggest that even small absolute increases in remote mar-
ine aerosol particles due to human activities could have a substantial impact on storm intensity and lightning.
As such, there have likely been increases in storm vertical development and lightning in remote regions since
the preindustrial era, which has consequences not only for human life and property but also for atmospheric
composition and climate.
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