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Introduction

This supporting information document contains additional
information on how the two-state Gaussian Hidden Markov
Model was fit and validated using historic observations, and
on how irrigation time series were correlated with synthetic
streamflow time series. Six figures and two tables comple-
menting results in the main manuscript are also included.

Section S1: Synthetic Streamflow Model

Generation of Annual Flows at the Basin Outlet
Hydrologic variables often exhibit long-term persistence
caused by regime-shifting behavior in the climate, such as
the El Niño-Southern Oscillations (ENSO). One popular
way of modeling this long-term persistence is with hidden
Markov models (HMMs) (Thyer & Kuczera, 2003; Akin-
tug & Rasmussen, 2005; Bracken et al., 2014). In a hidden
Markov model, the climate “state” (e.g., wet or dry) at a
particular time step depends only on the state from the pre-
vious time step, but the state in this case is “hidden,” i.e.
not observable. All that is observed is a random variable
(discrete or continuous) that was generated under a partic-
ular (unknown) state.

HMMs are useful for describing hydrologic variables that
may exhibit great persistence in the state (e.g. wet or dry)
without being highly correlated themselves, making simple
auto-regressive models unfit (Bracken et al., 2014). Fur-
thermore, paleodata suggests that greater persistence (e.g.
megadroughts) in precipitation is often observed than would
be predicted by autoregressive models (Ault et al., 2013,
2016). HMMs are used in this study to capture the persis-
tence of wet and dry years known to exist in the Colorado
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River Basin, while also investigating how shortage and over-
year drought might be impacted by changes in the region’s
future climate regimes, as modeled through changing pa-
rameters of the HMM.

In this study we fit a two-state Gaussian HMM to the
log-space annual streamflow, Yt, observed in year t at the
Colorado-Utah state line, the last node in the StateMod
model. The distribution of Yt depends on the state at time
t, Xt (in this case, wet or dry). We find that the log-
space annual flows in each state Xt at the Colorado-Utah
state line can be modeled by Gaussian distributions, i.e.
f(Yt|Xt = 0) ∼ N(µ0, σ

2
0) and f(Yt|Xt = 1) ∼ N(µ1, σ

2
1).

The state at time t, Xt, depends on the state at the pre-
vious time step, Xt−1. The probability of switching be-
tween states is represented by the state transition matrix P,
where each element pi,j represents the probability of tran-
sitioning from state i at time t to state j at time t + 1, i.e.
pi,j = P (Xt+1 = j|Xt = i). P is a n × n matrix where n is
the number of states, here 2 for wet and dry. In all Markov
models, the unconditional probability of being in each state,
π can be modeled by the equation πP, where π is a 1 × n
vector in which each element πi represents the unconditional
probability of being in state i, i.e. πi = P (Xt = i). π is also
called the stationary distribution and its elements can be
calculated from πi =

ei,1∑n
j=1 ej,1

where ej,1 is the j-th element

of the eigenvector of PT corresponding to an eigenvalue of
1. Since we have no prior information on which to condition
the first set of observations, we assume the initial probability
of being in each state is the stationary distribution.

In fitting a two-state Gaussian HMM to the log-space an-
nual flows at the CO-UT state line, we need to estimate the
following vector of parameters: θ = [µ0, σ0, µ1, σ1, p0,0, p1,1].
Note p0,1 = 1 − p0,0 and p1,0 = 1 − p1,1. We do this with
Python’s hmmlearn package, which uses the Baum-Welch al-
gorithm, an application of Expectation-Maximization built
off of the forward-backward algorithm. The first step of
this process is to set initial estimates for each of the pa-
rameters, which was done using hmmlearn default methods.
The means of the Gaussian distributions are initiated at the
means of k = n clusters found by k-means clustering of the
data (i.e. clustering the log-space annual flows into as many
clusters as there are states). The variances of these distribu-
tions are each initiated at the sample variance of the data.
Finally, the transition probabilities in P and the probabili-
ties of being in each state at time t = 0 are all initiated at
1/n.

After setting initial parameter estimates, the forward-
backward algorithm is implemented. The forward step com-
putes the joint probability of observing the first t observa-
tions and ending up in state i at time t, given the initial
parameter estimates: P (Xt = i, Y1 = y1, Y2 = y2, ..., Yt =
yt, θ). This is computed for all t ∈ {1, ..., T}. Then in
the backward step, the conditional probability of observing
the remaining observations after time t given the state at
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time t is computed: P (Yt+1 = yt+1, ..., YT = yT |Xt, θ). Us-
ing Bayes’ theorem, it can shown that the product of the
forward and backward probabilities is proportional to the
probability of ending up in state i at time t given all of
the observations, i.e. P (Xt = i|Y1 = y1, ..., YT = yT , θ)
(see Equations 1-4 at the end of the text). In fitting the
HMM, we find the set of parameters, θ, that maximize this
probability, i.e. the likelihood function of the state trajecto-
ries given our observations. As shown in equation 4, this is
equivalent to maximizing the product of the probability esti-
mates from the forward-backward algorithm, which is done
using Expectation-Maximization.

Expectation-Maximization is a two-step process for maxi-
mum likelihood estimation when the likelihood function can-
not be computed directly, for example, because its observa-
tions are hidden as in an HMM. The first step is to calculate
the expected value of the log likelihood function with respect
to the conditional distribution of X given Y and θ (the left
hand side of equation 1, or proportionally, the numerator of
the right hand side). The second step is to find the parame-
ters that maximize this function. These parameter estimates
are then used to re-implement the forward-backward algo-
rithm and the process repeats iteratively until convergence
or some specified number of iterations.

We also predict which states the observations were likely
to have come from given the estimated parameters using
the Viterbi algorithm. The Viterbi algorithm employs dy-
namic programming (DP) to find the most likely state tra-
jectory. In this case, the “decision variables” of the DP
problem are the states at each time step, Xt, and the
“future value function” being optimized is the probability
of observing the true trajectory, (Y1, ..., YT ), given those
alternative possible state trajectories. For example, let
the probability that the first state was k be V1,k. Then
V1,k = P (X1 = k) = P (Y1 = y1|X1 = k)πk. For future time
steps, Vt,k = P (Yt = yt|Xt = k)πkVt−1,i where i is the state
in the previous time step. Thus, the Viterbi algorithm finds
the state trajectory (X1, ..., XT ) maximizing VT,k.

The goodness of fit of the two-state Gaussian HMM to
log-space annual flows at the CO-UT state line is shown
in Figure S1. Panel a shows a quantile-quantile plot of
the mixed Gaussian distribution across both states, while
panel b shows a quantile-quantile plot of the fitted wet-state
and dry-state distributions using the years identified by the
Viterbi algorithm to fall under each state. Panels c and d
show the same fits using histograms and overlaid PDFs. The
state identification of the historical years is shown in Figure
S2(a). For the Markov property to hold, the auto-correlation
of the states should decay exponentially, as is confirmed in
Figure S2(b). The partial auto-correlation should be signifi-
cant at one lag, as the state at time t+1 depends on the state
at time t, but for no other lags, as all dependency is cap-
tured by the first lag, i.e. P (Xt+1 = xt+1|Xt = xt, ..., X1 =
x1) = P (Xt+1 = xt+1|Xt = xt). This is confirmed in Figure
S2(c).

Finally, the parameters of the two-state Gaussian HMM
are modified across a range of values in our scenario discov-
ery experiment. An illustration of the real-space effect of
the upper and lower bound of these changes on the annual
flow distribution at the CO-UT state line is shown in Figure
S3.

Disaggregation of Annual Flows in Time and Space
After generating log-space annual flows at the CO-UT state
line from the HMM, these flows were then converted to real
space and temporally downscaled to monthly flows using
a modification of the proportional scaling method used by
Nowak et al. (2010). First, a historical year was probabilis-
tically selected based on its “nearness” to the synthetic flow
at the last node in terms of annual total. The daily hydro-
graph observed at that site in the selected year was then
altered to model earlier, dissipated peaks. This shift was

applied to the observed daily flows at the CO-UT state line
by re-computing monthly sums over moving windows of the
historical record shifted by 1-60 days. While this will sim-
ply shift, not reshape the hydrograph at the daily time step,
when re-computed to monthly values, it captures the earlier
rise, lower peak and protracted decline expected from earlier
snowmelt (see Fig. S4(b)).

After shifting the observed monthly hydrograph at the
last node, the flows were then converted to the natural flows
that would have been observed without human influences
from diversions and reservoir operations. This conversion
was performed by first computing the difference between
the cumulative flow observed each month at the gauge and
the cumulative natural flow each month in the model, then
applying that same difference to the shifted observed flows
(see Fig. S4(a) for an example). We used these estimates of
natural monthly flows under shifts of 1-60 days to tempo-
rally downscale our annual synthetic flows by applying the
same proportion of flows each month in the shifted historical
time series to the synthetic time series. Finally, the monthly
flows at all upstream nodes were spatially downscaled using
the same approach in which the selected historical year’s
ratios of monthly flows at each upstream node to monthly
flows at the last node were also used for the synthetic year.
The ability of this method to reproduce the spatial correla-
tion structure of monthly flows in the basin is shown in Fig.
S5.

Section S2: Generation of Total Annual Irrigation
Anomalies

Since irrigation demands are higher when precipitation is
low, while streamflow is lower when precipitation is low,
there is a strong negative correlation between irrigation de-
mands and streamflows in the UCRB. To make sure our
synthetic streamflow and irrigation time series reproduce
this historical correlation, we used the historical record to
build a regression model of the anomalies of total irrigation
demands across irrigation users in the basin as a function of
annual flow anomalies at the CO-UT state line. This model
is shown in Figure S6(a). The residuals from this model are
independent in time (Figure S6(b)), normally distributed
(Figure S6(c)) and homoscedastic (Figure S6(d)). As such,
we use this model to estimate the total irrigation demand
anomaly each synthetic year as a function of the annual
flow anomaly in that synthetic year. We then randomly
sample a residual from the fitted Gaussian distribution in
Figure S6(c) to add to the prediction from the regression
model. This ensures we preserve the variance in total irriga-
tion demand anomalies. We add this time series of irrigation
demand anomalies to the mean irrigation demand for that
state of the world. These total irrigation demands are then
downscaled to all of the irrigation structures using their av-
erage historical proportions of the total demand.

The code for the synthetic streamflow generator and irri-
gation model are available at https://github.com/antonia
-had/cdss-app-statemod-fortran/tree/2063d13/UCRB analysis/
Qgen

References

Akintug, B., & Rasmussen, P. (2005). A markov
switching model for annual hydrologic time series.
Water resources research, 41 (9).

Ault, T. R., Cole, J. E., Overpeck, J. T., Pederson,
G. T., St. George, S., Otto-Bliesner, B., . . . Deser,
C. (2013). The continuum of hydroclimate variability
in western north america during the last millennium.
Journal of Climate, 26 (16), 5863–5878.

https://github.com/antonia-had/cdss-app-statemod-fortran/tree/2063d13/UCRB_analysis/Qgen
https://github.com/antonia-had/cdss-app-statemod-fortran/tree/2063d13/UCRB_analysis/Qgen
https://github.com/antonia-had/cdss-app-statemod-fortran/tree/2063d13/UCRB_analysis/Qgen


HADJIMICHAEL ET AL.: X - 3

Ault, T. R., Mankin, J. S., Cook, B. I., & Smerdon,
J. E. (2016). Relative impacts of mitigation, tempera-
ture, and precipitation on 21st-century megadrought
risk in the american southwest. Science Advances,
2 (10), e1600873.

Bracken, C., Rajagopalan, B., & Zagona, E. (2014).
A hidden Markov model combined with climate in-
dices for multidecadal streamflow simulation. Water
Resources Research, 50 (10), 7836–7846. Retrieved
2019-03-26, from https://agupubs.onlinelibrary

.wiley.com/doi/abs/10.1002/2014WR015567 doi:

10.1002/2014WR015567

Nowak, K., Prairie, J., Rajagopalan, B., & Lall, U.
(2010). A nonparametric stochastic approach for mul-
tisite disaggregation of annual to daily streamflow.
Water Resources Research, 46 (8).

Thyer, M., & Kuczera, G. (2003). A hidden markov
model for modelling long-term persistence in multi-
site rainfall time series 1. model calibration using a
bayesian approach. Journal of Hydrology , 275 (1-2),
12–26.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014WR015567
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014WR015567


X - 4 HADJIMICHAEL ET AL.:

P (Xt = i|Y1 = y1, ..., YT = yT , θ) =
P (Y1 = y1, ..., YT = yT |Xt = i, θ)P (Xt = i|θ)

P (Y1 = y1, ..., YT = yt|θ)
(1)

=
P (Xt = i, Y1 = y1, ..., Yt = yt|θ)P (Yt+1 = yt+1, ..., YT = yT |Xt = i, θ)

P (Y1 = y1, ..., YT = yt|θ)
(2)

=
P (Xt = i, Y1 = y1, ..., Yt = yt|θ)P (Yt+1 = yt+1, ..., YT = yT |Xt = i, θ)

P (Y1 = y1, ..., YT = yt|θ)
(3)

∝ P (Xt = i, Y1 = y1, ..., Yt = yt|θ)P (Yt+1 = yt+1, ..., YT = yT |Xt = i, θ) (4)

Equations 1-4 (1) Bayes’ Theorem. (2) conditional independence of the observations up to time t (Y1, Y2, ..., Yt)
and the observations after time t (t+1, Yt+2, ..., YT ), given the state at time t (Xt). (3) definition of conditional
probability. (4) recognizing denominator as a normalizing constant.

b)a)

d)c)

Figure S1. Goodness of Fit Assessment: Gaus-
sian distributions. (a) QQ-plot of fitted mixed Gaus-
sian distribution of log-space annual flows. (b) QQ-plot
of Gaussian distribution from estimated wet state (blue)
and dry state (red) log-space annual flows. (c) Same as
a, but displayed as a histogram. (d) Same as b, but dis-
played as a histogram.
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a) b)

c)

Figure S2. Goodness of Fit Assessment: State
identification and Markov property. (a) Classifica-
tion of last 70 historical annual flows as being generated
from a wet or dry state according to the Viterbi algo-
rithm. (b) Auto-correlation of identified states illustrate
exponential decay. (c) Partial auto-correlation of identi-
fied states is only significant for one lag, confirming the
Markov property.

Table S1. Two-State Gaussian HMM Parameter
Estimates. Using Maximum Likelihood Estimation with
Expectation-Maximization, a two-state Gaussian HMM is fit
to log-space annual flows at the last node of the basin.

Two-state Gaussian HMM Parameter Maximum Likelihood Estimate

Log-space dry flow mean (m3), µ0 22.38
Log-space dry flow standard deviation (m3), σ0 0.26
Log-space wet flow mean (m3), µ1 22.78
Log-space wet flow standard deviation (m3), σ1 0.25
Dry-to-dry transition probability, p0,0 0.68
Wet-to-wet transition probability, p1,1 0.65
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a) b)

c) d)

e) f )

Figure S3. Illustration of Parameter Changes. (a)
Changes in µ0. (b) Changes in σ0. (c) Changes in µ1. (d)
Changes in σ1. (e) Changes in µ0 and µ1. (f) Changes in
σ0 and σ1. Base-case distributions shown in solid lines,
increases and decreases in dashed lines. Dry state distri-
bution shown in red, wet state distribution in blue, and
combined distribution in black.
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WY 1985

b)a)

Figure S4. Illustration of seasonal shift model.
(a) Example CDF correction to convert gauged flows to
natural flows using a 60-day shift for water year 1973.
(b) Effect of peak runoff shift for water year 1973.

a) b)

Figure S5. Validation of the spatial correlation
of synthetic monthly flows at the 208 streamflows
nodes in StateMod. (a) Historical spatial correlation.
(b) Synthetic spatial correlation.
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a) b)

c) d)

Figure S6. Irrigation anomaly model (a) Total an-
nual irrigation anomalies as a function of annual stream-
flow anomalies. (b) Autocorrelation function of residu-
als shows they are independent. (c) Normal QQ-plot of
residuals shows they are normally distributed. (d) Resid-
uals vs. fitted plot shows residuals are homoscedastic.
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Table S2. McFadden Pseudo R2 values for predictor
variables For each user and performance threshold in Fig. 7,
we iteratively build regression models by using one paramater
at a time. The two with the highest McFadden Pseudo R2

values in each case are used to build the factor maps. Each
table column corresponds to a panel in Fig. 7: (a) Robust
if 10% shortage occurs no more than 80% of the time (b)
Robust if 80% shortage occurs no more than 20% of the time
(c) Robust if 10% shortage occurs no more than 80% of the
time (d) Robust if 40% shortage occurs no more than 10% of
the time (e) Robust if 70% shortage occurs no more than 30%
of the time (f) Robust if 80% shortage occurs no more than
20% of the time

McFadden Pseudo R2 values
Median-right user Junior-right user Transbasin diversion

Parameter (a) (b) (c) (d) (e) (f)

Change in evaporation (cm/month) 0.00 0.00 0.00 0.00 0.00 0.00
Shift in timing of snowmelt (days earlier) 0.20 0.16 0.02 0.01 0.03 0.06
Log-space dry flow mean (m3) multiplier 0.02 0.20 0.12 0.31 0.02 0.07
Log-space dry flow standard deviation (m3) multiplier 0.00 0.00 0.00 0.01 0.00 0.00
Log-space wet flow mean (m3) multiplier 0.16 0.02 0.16 0.02 0.01 0.01
Log-space wet flow standard deviation (m3) multiplier 0.00 0.00 0.00 0.00 0.00 0.00
Change in dry-to-dry transition probability 0.02 0.02 0.04 0.03 0.00 0.00
Change in wet-to-wet transition probability 0.01 0.01 0.02 0.01 0.01 0.01
Irrigation demand multiplier 0.04 0.02 0.00 0.07 0.00 0.00
Transbasin demand multiplier 0.00 0.00 0.00 0.00 0.52 0.33
Municipal and industrial demand multiplier 0.00 0.00 0.00 0.00 0.00 0.00
Reservoir storage 0.00 0.00 0.00 0.00 0.00 0.00
Operation of Shoshone Power Plant 0.00 0.00 0.00 0.00 0.00 0.01
Seniority of environmental flows 0.00 0.00 0.00 0.00 0.00 0.00


