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Abstract

A semi-automated vertical feature terrain extraction algorithm is de-

scribed and applied to a two-dimensional, depth-integrated, shallow water

equation inundation model. The extracted features describe what are com-

monly sub-mesh scale elevation details (ridge and valleys), which may be

ignored in standard practice because adequate mesh resolution cannot be

afforded. The extraction algorithm is semi-automated, requires minimal

human intervention, and is reproducible. A lidar-derived Digital Elevation

Model (DEM) of coastal Mississippi and Alabama serves as the source data

for the vertical feature extraction. Unstructured mesh nodes and element

edges are aligned to the vertical features and an interpolation algorithm

aimed at minimizing topographic elevation error assigns elevations to mesh

nodes via the DEM. The end result is a mesh that accurately represents the
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bare earth surface as derived from lidar with element resolution in the flood-

plain ranging from 15 m to 200 m. To examine the influence of the inclusion of

vertical features on overland flooding, two additional meshes were developed,

one without crest elevations of the features and another with vertical features

withheld. All three meshes were incorporated into a SWAN+ADCIRC model

simulation of Hurricane Katrina. Each of the three models resulted in simi-

lar validation statistics when compared to observed time-series water levels

at gages and post-storm collected high water marks. Simulated water level

peaks yielded an R2 of 0.97 and upper and lower 95% confidence interval of

∼ ± 0.60 m. From the validation at the gages and HWM locations, it was not

clear which of the three model experiments performed best in terms of accu-

racy. Examination of inundation extent among the three model results were

compared to debris lines derived from NOAA post-event aerial imagery, and

the mesh including vertical features showed higher accuracy. The compari-

son of model results to debris lines demonstrates that additional validation

techniques are necessary for state-of-the-art flood inundation models. In ad-

dition, the semi-automated, unstructured mesh generation process presented

herein increases the overall accuracy of simulated storm surge across the

floodplain without reliance on hand digitization or sacrificing computational

cost.

Keywords: Vertical Features, Shallow Water Equations, Unstructured

Mesh, Hurricane Katrina, Storm Surge, Hydrodynamics, Validation
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1. Introduction1

Physics-based, two-dimensional, unstructured mesh flood inundation mod-2

els governed by forms of the Navier-Stokes equations are used to study his-3

toric flooding events and assess future flooding scenarios. Enhanced knowl-4

edge of overland flow physics, improved data collection methods, and superior5

scientific computing technology have resulted in a transition from structured6

grids to unstructured mesh models [1–6]. An unstructured triangular mesh7

is the medium for which a continuous domain (e.g., Earth’s surface) can be8

discretized, and is composed of non-overlapping elements (or cells) connected9

by mesh nodes (element vertices). Unstructured elements are attractive due10

to their ability to conform and adapt to local geometry. The capacity to11

increase resolution in regions of large topographic variability, high solution12

gradients, and areas of interest also enhance the appeal of unstructured ele-13

ments [7–9].14

FEMA (Federal Emergency Management Agency) has adopted an un-15

structured mesh framework for the development of digital flood insurance16

rate maps (DFIRM) along the U.S. coastline [10, 11]. These models are17

used as a basis to evaluate restoration and protection strategies for coastal18

Louisiana [12] and provide real-time forecasts of hurricane waves and storm19

surge for the U.S. east coast and northwestern Gulf of Mexico that aid evac-20

uation management and planning [13]. Additionally, variations of these un-21

structured mesh models are now being used to estimate potential flood risk22

under future global climate change scenarios and sea level rise (SLR) [14–18]23

as well as biological assessments of inter-tidal salt marshes [19].24

The overarching goal when designing an unstructured mesh is to accu-25
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rately represent the natural system while maintaining a given computational1

cost [7]. The density and topology of computational points (mesh nodes) and2

the alignment of element faces across the floodplain must be critically exam-3

ined. To reduce computer run times and increase the usability of the models,4

unstructured meshes are restricted to a minimum element size. This element5

size limitation induces numerous discretization errors such as the variances of6

the planar triangular elements from the true surface (mesh elevation error).7

If mesh node density is too coarse or nodes are not appropriately placed,8

important hydraulic terrain features may be smoothed-out, particularly in9

the floodplain, and lead to inaccurate model results [20]. The floodplain10

introduces a high order of non-linearity due to higher spatial variability in11

both topography and drag forces. This results in steeper solution gradi-12

ents than those found in consistently wetted areas (i.e., ocean basins, rivers,13

lakes, etc.). Additionally, the floodplain may contain anthropogenic features14

that do not belong to the bare earth surface from which inundation model15

elevations are derived. However, these man-made features are included as16

part of the Earth’s surface as they are (relatively) impervious with respect17

to inundation [20, 21].18

Increasing model resolution within the floodplain may permit an en-19

hanced representation of the bare earth topography; however, sub-mesh scale20

features (referred to as vertical features herein) exist that are not properly21

described by unstructured elements without additional treatment. Some of22

these features are obvious (e.g., levees and raised roadbeds) and are included23

in standard digitization practices. However, other features may escape visual24

recognition or are not included because they are too narrow to be discretized25
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with adequate resolution (e.g., natural ridges, valleys, creeks, etc.). All such1

features can impact the path, pattern, duration, and magnitude of overland2

flooding, as well as modify flooding frequency [21, 22].3

It is crucial that vertical features be appropriately and accurately in-4

cluded in inundation models, especially in urban regions where flood risk can5

drastically change with minor differences in inundation extent [20]. Bates et6

al. [23] employed an 18 m lidar-derived digital elevation model (DEM) to7

simulate flooding in the River Severn using the LISFLOOD-FP raster-based8

two-dimensional inundation model. Key topographic features such as em-9

bankments and flood walls were found to be smoothed by the coarse DEM.10

These key features were identified from the UK Ordnance Survey Landline11

vector data and their elevation was sustained at the model scale. Purvis et12

al. [24] hand digitized significant terrain features from UK Ordnance Survey13

maps and their crest elevations obtained from lidar data were added back14

into a 50 m DEM for use in a LISFLOOD-FP inundation model along the15

UK coast in Somerset, South-West England. Schubert et al. [20] developed16

a semi-automated method to use MasterMap R© geospatial data to guide un-17

structured mesh generation to model flooding in Glasgow, Scotland using the18

BreZo shallow-water flow model. The mesh generation software Triangle [25]19

was used to align mesh vertices and element edges to terrain features, keep-20

ing hydraulic connectivity within the mesh. Gallien et al. [26] aligned mesh21

nodes to topographic features prone to overtopping. Polylines of the terrain22

features that were used in mesh generation were obtained from real time kine-23

matic (RTK) surveys and orthoimagery. Experiments were performed using24

the BreZo model for four different meshes with vertex elevations derived from25

5



the lidar DEM, RTK surveyed elevations in addition to the uncertainty in1

RTK and lidar elevations. It was shown that accurate flooding depths can2

be obtained if hydraulic features are accurately surveyed and included in the3

inundation model. Hurricane storm surge models of southeastern Louisiana4

using ADCIRC [27] have included levee systems, interstate and state high-5

ways, and railroads that are raised above the neighboring topography and are6

defined as weirs by their respective crown heights. However, the weir bound-7

ary condition in ADCIRC does not allow for wave overtopping and indirectly8

increases node count as each weir mesh node must have a neighboring pair9

[28, 29].10

These studies highlight the necessity of including hydraulic connectivity11

in inundation models and methods for which to do so. However, the scales12

at which some state-of-the-art river reach and coastal inundation models13

are constructed, often spanning large geographic regions, discourage manual14

digitization of vertical features for inclusion in these models. Additionally,15

public or private data containing man-made hydraulic features are not always16

available, are outdated and require manual digitization, or require traditional17

land surveying [30]. This creates an opportunity for the development and18

application of an automated feature extraction algorithm to guide floodplain19

unstructured mesh generation, which is a major objective of this paper.20

Methods for extracting geomorphic features from DEMs is not a new21

problem (see Table 1 for a general summary). However, establishing auto-22

mated methods is not straightforward [30]. Low-relief landscapes are particu-23

larly challenging due to their low topographic gradient and anthropogenically24

influenced landscape and channel networks [31]. There have been a number25
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of attempts to extract river and channel networks from DEMs and high1

resolution lidar data, including flow direction and curvature based methods2

[31–37]. Passalacqua et al. [31] extended the ability of GeoNet to automate3

the extraction of channel heads and networks using dense lidar data in a flat4

and human-impacted region. Mason et al. [36] developed a semi-automated5

method to extract tidal channel networks from lidar data in Venice Lagoon6

that was superior to standard methods of river network extraction when7

applied to tidal channels.8

Similarly, several methods have been proposed to extract ridge features9

from DEMs, and in general are concentrated on extracting breaklines and10

watershed boundaries. Early work in ridge feature extraction was done by11

comparing a point’s elevation relative to its surrounding points or neighbors12

[32, 38–40]. Briese [41] and Brzank [42] used shape fitting methods to ex-13

tract breaklines from lidar data by using geometric objects with shapes that14

roughly match the desired terrain elements. Contour line methods mimic15

human methods of feature extraction by locating points of maximum curva-16

ture and connecting them as ridges or ravines [43]. However, these methods17

pose several issues when using contour lines derived from lidar. For example,18

they may miss features such as highways with flat tops or slight grade [44].19

Watershed delineation techniques [45–47] are promising for ridge feature ex-20

traction because a watershed boundary satisfies the intuitive definition of a21

ridge; water on the ridge will fall downhill in opposite directions.22

Automated techniques for detecting anthropogenic ridge features from23

lidar have been proposed, particularly for levee systems, dikes, and roadways24

[22, 48, 49]. Several studies have applied image analysis techniques for feature25
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extraction that mainly focus on edge detection [50, 51, 44, 52]. However,1

these methods generally do not precisely detect ridges in a geomorphologic2

sense (i.e., declare ridges based on water flowing down-gradient).3

These approaches are not focused on terrain extraction with respect to4

generating a well conforming unstructured finite element mesh to model shal-5

low water hydrodynamics. Therefore, this work addresses a significant lack6

in published literature dealing with unstructured mesh generation across low-7

gradient landscapes. Since the primary concern is an accurate computation8

of inundation area, the overland portion of the mesh must accurately cap-9

ture raised features such as road beds, topographic ridge lines and valleys10

that serve to limit and route overland flow. Additionally, the geographic11

placement of computational points must be accompanied by an accurate to-12

pographic elevation.13

In this paper, we present a reproducible and novel semi-automated method14

to extract vertical features (ridges and valleys) from a lidar DEM for use in15

the development of flood inundation models. The semi-automated methods16

presented are not fully standalone and require data processing steps coupled17

with manual intervention. These enhancements improve the description of18

sub-grid scale features (horizontal and vertical alignment) and the overall ac-19

curacy of floodplain elevations in the model. We employ methods to describe20

the overland terrain as accurately as possible, with mesh building criteria21

based on local element size that aim to quantify and minimize topographic22

elevation error. The goal is to present a semi-automated mesh generation23

method that can be employed to generate topographically accurate unstruc-24

tured meshes for shallow water hydrodynamics across any geographic region.25

8



We begin with a description of the methods used to generate a lidar-1

derived DEM for the coastal Mississippi and Alabama floodplains (Figure 1)2

and continue with the presentation of the semi-automated vertical feature3

extraction algorithm. Next, the generation of three unstructured finite el-4

ement meshes are discussed and each are employed in a Hurricane Katrina5

storm surge simulation. Results of each simulation are compared against6

time-series water levels and high water marks in addition to debris lines in7

post-storm aerial photography.8

2. Materials and Methods9

2.1. Inundation Model10

Hydrodynamics are simulated using the SWAN+ADCIRC model frame-11

work. ADCIRC solves the 2D shallow-water equations for water levels and12

depth-integrated currents [29, 27, 53]. SWAN, a third-generation wave model,13

solves for relative frequency and wave direction using the action balance equa-14

tion for wave-current interactions [54, 55]. The SWAN and ADCIRC models15

are coupled to run on the same unstructured mesh, removing the need for16

interpolation between model grids [56, 57]. The ADCIRC timestep is 1 s17

and the SWAN timestep is 600 s. Every 600 s (in alignment with the SWAN18

timestep), ADCIRC passes water levels and currents to SWAN and SWAN19

passes wave radiation stress gradients back to ADCIRC. Wave frequencies in20

SWAN are discretized into 40 bins (log scale) spanning the frequency range21

of 0.031384 to 1.420416 Hz and wave directions are discretized into 36 equal22

interval bins of 10◦ [1]. Parameters employed in SWAN include wave growth23

due to wind based on Komen et al. [58] and Cavaleri et al. [59] and the24
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modified whitecapping formulation of Rogers et al. [60]. Depth-induced1

wave breaking in shallow water is computed via Battjes et al. [61] with the2

maximum wave height over depth (wave breaking index) γ = 0.73. Bot-3

tom friction is tightly coupled with ADCIRC, where Manning’s n is applied4

via Madsen et al. [62] to compute roughness length at each mesh node for5

each time step. Convergence must be met at 95% of the grid points and the6

maximum number of iterations per SWAN time step is limited to 20. Also7

note that SWAN limits the spectral propagation velocities to deter false wave8

refraction in regions of inadequate mesh resolution [63]. These parameters9

are similar to those employed in recent SWAN+ADCIRC models of similar10

geographic scale and mesh resolution in Louisiana and Texas [1, 64].11

2.2. Unstructured mesh generation12

Generation of an unstructured finite element mesh includes several phases,13

beginning with a representation of the bare earth land elevation, the most14

important factor in gravity-driven hydrodynamics [65] (Figure 2). The lidar-15

derived digital elevation model (DEM) is the source dataset by which local16

node density is determined (mesh size distribution function) and drives the17

semi-automated vertical feature extraction. The outer model boundary cou-18

pled with internal constraints (vertical features) guide the unstructured mesh19

triangulation in the interior of the domain. Elevations for each mesh node are20

then interpolated from the original lidar-derived DEM. A detailed description21

of these methods are discussed in the following sections.22
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2.3. Digital elevation model1

A lidar-derived DEM for Baldwin and Mobile Counties, Alabama, and2

Jackson, Harrison, and Hancock Counties, Mississippi from the shoreline (0 m3

elevation contour, NAVD88 [North American Vertical Datum of 1988]) to the4

15 m (NAVD88) contour was developed to represent present-day conditions.5

In all, two DEMs were constructed (overland and water) and merged to create6

a seamless topographic/bathymetric (topobathy) DEM.7

The Terrain Data Set (TDS) framework within ArcGIS 10.0 was uti-8

lized to generate the topographic DEM [66]. A TDS was created for each9

county using the most recent and available source data: lidar, hydrographic10

breaklines, and hand-digitized shorelines based on satellite aerial imagery.11

Specifics about the lidar sources can be found in Bilskie et al. [67, 3]. A 5 m12

DEM from each county’s TDS was created using natural neighbor interpola-13

tion and then combined (mosaic). A 5 m DEM is sufficient when modeling14

the terrain in coastal Mississippi for hurricane storm surge applications [67].15

A similar TDS framework was utilized for creating a bathymetric DEM.16

Sources of bathymetry are NOS (National Ocean Service) hydrographic sur-17

veys, USACE (U.S. Army Corps of Engineers) channel surveys, NOAA (Na-18

tional Oceanographic and Atmospheric Administration) nautical charts, and19

previous finite element meshes. The topographic and bathymetric DEMs20

were merged at the shoreline to create a seamless source elevation dataset.21

2.4. Vertical feature extraction22

Including significant terrain features in the mesh involves two main steps:23

locating the features and mapping the features to the finite element mesh24

in a manner that preserves element quality. The method described here25
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for locating ridge or valley lines (ridges and valleys herein refer to natural1

or man-made features) begins by extracting watershed boundary lines in a2

manner that preserves element quality. Points along the watershed boundary3

lines are then examined relative to the surrounding terrain to determine what4

portions of the watershed lines represent significant features. Features chosen5

for inclusion are converted from high-resolution feature lines extracted at the6

DEM resolution to edges suitable for assembly in the mesh by redistributing7

vertices in the feature lines. The redistribution of vertices conforms to the8

element size available from a two-dimensional size function that provides9

desired element size as a function of geographic position. Once included in10

the mesh, the crest of each feature is represented by one or more element11

edges whose nodes are assigned the crest elevations.12

For a natural or man-made feature to merit purposeful inclusion in the13

model, it must possess three traits: (1) be long enough and (2) high enough to14

form a significant barrier to local surge propagation; (3) be narrow enough so15

that careless placement of triangular mesh elements would cause a significant16

elevation error. The final criterion is needed because of the inability of a17

discretized mesh to represent features with length scales smaller than the18

local element size. Such features are often described as sub-grid scale; a19

common example of a feature that in general meets these three metrics is a20

raised road bed. Road beds are often long enough and high enough to affect21

surge propagation, and, depending on the local element size, they are often22

narrow enough to permit a triangular finite element to overlay the feature23

with nodes positioned only on the surrounding lower terrain.24

The methods for detecting and including raised features in an unstruc-25
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tured mesh generally follow and expand upon the procedures originally de-1

scribed in Coggin for the Tampa Bay region [68] and ideas from Roberts2

[69].The pseudo-code for the main vertical feature extraction algorithm is3

presented in Figure 3 and the minimum extraction parameters are shown in4

Table 2. The algorithm and parameters used rely upon past experience em-5

ploying the methods in large overland meshes. They have been well tested6

and adopted by FEMA along the entire Florida Panhandle and Alabama7

coasts for the development of digital flood insurance rate maps [68, 11, 70].8

The feature extraction process is initialized by extracting boundary lines9

for very small area watersheds. The assumption is that significant barriers10

to surge propagation will be captured as watershed boundaries. A param-11

eter driven examination of the watershed boundary lines and DEM is then12

completed, relating the elevation at each point in the boundary lines to the13

surrounding area in the DEM. The objective is to extract portions of the14

watershed boundaries that define vertical feature crests meeting the length15

(long enough), relative elevation (high enough), and steepness or vertical16

curvature (narrow enough) criteria discussed above. The subjective length,17

relative elevation, and vertical curvature criteria are converted to objective18

metrics by defining several measurable parameters and setting required mini-19

mum values. The process for evaluating each criterion will be discussed in the20

order in which they are considered during the extraction process: elevation,21

vertical curvature, and length.22

2.4.1. Elevation parameters23

Watershed boundaries were extracted from the DEM as discrete lines24

formed by the vertices in the DEM cells. Each watershed boundary line ver-25
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tex was initially assigned a significant, continue, or insignificant attribute by1

comparing the elevation at its DEM location to elevations at locations gen-2

erally perpendicular to the direction of the watershed line (Figure 3). The3

important parameters in this case were the perpendicular distances evalu-4

ated and the elevation differences required. Two perpendicular distances5

were used, an inner and outer range. The inner range was related to the6

local element size by the size function and will be discussed in the vertical7

curvature parameters section. The minimum elevation difference required at8

the inner range was 0.3 m. The outer range was fixed at 200 m throughout9

the mesh (Table 2). If a point on the watershed boundary line was at least10

0.3 m above the terrain perpendicular at the variable inner range on both11

sides of the watershed line, and at least 0.5 m above the terrain perpendic-12

ular at a distance of 200 m on at least one side of the watershed line, it13

was declared significant (Figure 4a). If a vertex was not declared significant,14

it was further evaluated to determine if its elevation was more than 0.1 m15

below the surrounding 20,000 square meters of terrain (a square region with16

side lengths of approximately 141 m) (Table 2). When the vertex met this17

criterion, it was declared insignificant. This evaluation generally prevents a18

feature line from being constructed across a flow path in a manner to block19

flow. Vertices that met neither of the criteria above were declared “continue”20

with the exception that the maximum length of consecutive continue points21

was not allowed to exceed 200 m (Figure 3). Further in the process, the ratio22

of “significant” vertices to total vertices in a line was considered and lines23

with a value lower than 0.35 were eliminated.24
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2.4.2. Vertical curvature parameters1

The objective of the vertical curvature evaluation is to limit the maxi-2

mum error due to sub-grid scale raised features by placing an upper bound3

on their elevation error. The curvature evaluation calculates the elevation4

difference between each point on the extracted feature line and points per-5

pendicular on either side of the feature at a distance equal to half of the6

planned element size as determined by the mesh size function. This eval-7

uation is similar to calculating the maximum elevation error between the8

feature and the surrounding element’s node elevations if the element were9

placed in the worst possible configuration (Figure 4b and c). The elevation10

limit for this evaluation was 0.3 m (Table 2). As described in the previous11

section, if the elevation difference between the point on the feature line and12

both perpendicular points exceeded 0.3 m, the vertical curvature criterion13

was met.14

2.4.3. Length parameters15

The length parameters are included to limit features to those long enough16

to influence flow. However, the practical purpose of the length parameters17

is to limit the number of disconnected line features that are included in the18

overall set. As the number of discrete features in a given area is increased,19

the quality of the mesh in the area decreases since adding a great number of20

features as element edges results in poorly shaped elements.21

In the simplest form, an extracted line can be compared to a minimum22

line length parameter to decide if it should be included in the final line set.23

However, in practice the decision is more complicated because the initial24

extraction considering only the parameters listed in the above two sections25
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generally results in a network of lines that intersect at several junctions.1

Each line is weighted by a normalized value of the average elevation difference2

between the ridge crest and the perpendicular elevation comparison locations.3

This weighting factor multiplied by the line length is used to determine the4

priority for joining lines. A graph search routine is employed to connect the5

features with the largest weighting factor to retain the highest features, which6

promotes appropriate triangulation during the meshing procedure (Figure7

3). For joining lines at junctions, lines are joined first with the maximum8

possible weighting. These trunk lines were required to exceed 1,000 meters9

to be included in the feature set (Figure 3). Additional lines that intersect10

trunk lines were retained if they exceeded 500 m (Table 2).11

2.4.4. Vertex redistribution12

The next step in preparing the lines for inclusion in the mesh is to redis-13

tribute the line vertices to approximate the desired local element size, as the14

lines will form the edges of elements when imported to the mesh. The process15

again uses the initial finite element mesh as the size function for determining16

the desired local element size.17

2.4.5. Manual assessment18

The final step in preparing the lines for inclusion in the mesh is a manual19

assessment. Although the process is generally automated, visual inspec-20

tion of the features is necessary before they are included in the mesh. The21

vertical feature lines are scanned for distances between separate lines, du-22

plicate lines, small line segment angles, and disconnects between upstream23

and downstream valley lines. If two vertical feature line segments are within24
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1.5 times the local element size, then they are trimmed. For example, if a1

vertical feature line follows a road that passes over a creek, then the line2

segments are trimmed to allow proper flow distribution through the creek.3

Downstream and upstream valley lines are connected if they are considerably4

close, and ends of line segments are trimmed if the angle is too sharp for the5

local element size to appropriately follow.6

The final number of vertical features for the three coastal counties in7

Mississippi and Baldwin and Mobile Counties in Alabama exceeded 7,1008

features lines including 3,786 ridge and 3,407 valley lines (Figure 5). Each9

of the vertical features is an exact representation of the DEM at the vertices10

along the feature line. The next step is to incorporate the vertical features11

into an unstructured mesh.12

2.5. Mesh generation13

Herein, mesh development is specific to the nearshore and floodplain re-14

gions of Mississippi and Alabama (Figure 1) and consists of two major steps;15

1) node placement (i.e. meshing) and 2) interpolation of the elevation dataset16

to the mesh nodes. Offshore in the deep waters of the Gulf of Mexico and17

Atlantic Ocean, the mesh was based on recent models including the SL16,18

SL15, and earlier EC2001 tidal models [1, 29, 71]. The Louisiana flood-19

plain, east of the Mississippi River is as described in the SL15/16 ADCIRC20

models and are included to allow the attenuation of storm surge that affects21

hydrodynamics along the Mississippi and Alabama coast.22

During the mesh generation process, three variations of unstructured23

meshes were developed for the Mississippi and Alabama floodplains; MSAL,24

MSAL noVF z, and MSAL noVF. The MSAL mesh contains vertical fea-25
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tures along with their crest elevation; MSAL noVF z contains the same node1

placement as MSAL barring the crest elevation of the vertical features. The2

MSAL noVF mesh does not include vertical features, but is similar in node3

density as the MSAL and MSAL noVF z meshes.4

2.5.1. Unstructured mesh node placement5

Two unstructured meshes were generated using vertical features as inte-6

rior constraints, MSAL and MSAL noVF z, and were constructed as follows.7

The final set of vertical features (ridges and valleys), along with the shore-8

line and domain boundary, serve as the template, or conceptual model, for9

the placement of mesh nodes and the orientation of element edges across the10

floodplain. As stated prior, the final form of the vertical feature lines are a11

suite of lines that have their vertices redistributed according to a size function12

mesh. The minimum node spacing (15 m) is determined based on a target13

time step (here, 1 second) and the maximum node spacing (here, 200 m) is14

estimated based on the maximum vertical elevation error. In regions of small15

meandering channels, large variation in topography or surface roughness, or16

areas of interest, element sizes are closer to the minimum, whereas regions17

near the inland boundary or areas outside the area of focus receive coarser18

node spacing. Additionally, spatially varying mesh resolution was determined19

from a rigorous topographic elevation error assessment presented in Bilskie et20

al. [3]. Since the vertices of the vertical feature lines have been appropriately21

redistributed along their length to match the local, spatially-varying mesh22

resolution, the lines can serve as the basis for the mesh generation.23

Aquaveo SMS (Surface Water Modeling System) version 11.0 [72] was24

used to generate the unstructured mesh. SMS utilizes a scalar paving algo-25
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rithm to place nodes and elements within a boundary. Element size within1

a polygon is based on the node vertex spacing of the boundary polygon, a2

size function dataset (scalar paving density), or both. The floodplain do-3

main was decomposed and the mesh was generated from west to east, with4

internal mesh boundaries constructed from vertical feature lines. Once all5

of the internal meshes were complete, they were merged to form a single6

floodplain unstructured mesh. The third mesh, MSAL noVF, was generated7

in a similar fashion; however, vertical features were not included. The outer8

floodplain and interior river and bay boundaries, as used for the MSAL and9

MSAL noVF z meshes, were the only constraints applied in mesh generation.10

This resulted in a mesh of similar nodal density across the floodplain, but11

mesh nodes and element faces were not aligned to vertical features.12

Mesh resolution is appropriately 24 km in the deep Atlantic Ocean, 413

km in the Gulf of Mexico, and 500 m along the Mississippi/Alabama shelf.14

As shown in Figure 6a, mesh resolution along the barrier islands and within15

Mississippi Sound is as low as 60 m along the dredged shipping channels16

to a maximum of 200 m elsewhere. Resolution at the shoreline is generally17

consistent at 100 m, but is as low as 15 m within narrow tidal creeks and18

canals. Overland mesh resolution ranges from 20 m to 100 m in the expected19

inundation zone, and coarsens to 200 m towards the mesh boundary along20

the highest elevations. The high resolution within Mississippi Sound and21

along the shoreline is necessary in order to capture the momentum transfer22

due to breaking waves.23
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2.5.2. Assignment (interpolation) of elevation1

Mesh nodes are assigned elevations using two types of criteria. A node is2

deemed a vertical feature node if it lies along a vertical feature line; otherwise3

it is attributed as a normal floodplain node. Vertical feature nodes are as-4

signed elevations, via the DEM, based on direct lookup. That is, the value of5

the DEM grid cell the node resides in is assigned to that node, regardless of6

where it falls within the grid cell. This is done to ensure that the highest high7

or lowest low elevation is included in the mesh, according to the feature type8

of ridge or valley. All nodes are treated as normal floodplain nodes in the9

MSAL noVF z and MSAL noVF mesh. Normal floodplain mesh nodes ob-10

tain their elevations from the cell-area averaging (CAA) interpolation method11

[3]:12

N =
∆M

4 ∗∆DEM

(1)

CA =

 1 for N < 1

[2(N) + 1]2 for N ≥ 1

 (2)

The CAA interpolation scheme aims to minimize the vertical elevation13

error at a mesh node by averaging CA number of DEM grid cell elevations14

about a given radius (N), measured in the number of DEM cells. The radius15

varies from node to node and is based on the local element size (∆M) and16

DEM grid cell size (∆DEM). In regions of high element resolution (dense17

node spacing) the radius is small and in regions of coarse elements the radius18

is large. Figure 7 shows an example of the meshing and interpolation process19

for a site in Pascagoula, MS. For coastal Mississippi, errors between the20
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unstructured mesh and source lidar range from about 11 cm to 70 cm with1

mesh elements ranging from 20 m to 160 m, respectively [3].2

The final MSAL and MSAL noVF z mesh contains 3,674,458 nodes and3

7,318,668 elements; MSAL noVF contains 3,743,067 nodes and 7,455,886 el-4

ements. Therefore, the computational cost among the three meshes are sim-5

ilar. Figure 6b presents the MSAL ADCIRC model elevations (bathymetry6

and topography) for Mississippi and Alabama. Details in the elevations are7

evident in the shipping channels in Mississippi Sound, the variations of depths8

along the barrier islands, and rivers, including the Pascagoula and Mobile-9

Tensaw among the numerous regions of low-lying salt marsh and narrow tidal10

creeks.11

2.6. Surface roughness parameters12

ADCIRC includes three spatially variable measures of surface roughness:13

bottom friction (Mannings n coefficient), vertical shielding of wind due to14

dense canopies (surface canopy coefficient), and directional reduction of the15

wind (effective roughness length) based on the local landscape characteristics16

(i.e., skyscrapers, dense forest, or open water) [73]. In the floodplain, Man-17

ning’s n is spatially varying and assigned based on LULC. In this study, we18

utilize the Coastal Change Analysis Program (C-CAP) post-Katrina LULC19

dataset (http://www.csc.noaa.gov/digitalcoast/data/ccapregional/), other datasets20

such as the Mississippi Gap Analysis Program (MS-GAP) (http://www.basic.ncsu.edu/segap/index.html)21

or the National Land Cover Database (NLCD) (http://www.mrlc.gov/). The22

advantage of C-CAP is it spans multiple states, therefore providing consis-23

tent coverage and classification types within the study domain. In addition,24

C-CAP is well suited for classification of inter-tidal zones, the areas that are25
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more likely to be flooded during a hurricane event. Mannings n values for1

C-CAP LULC classifications are taken from Dietrich et al. [1] and listed2

in Table 3. For water bodies, bottom friction on the continental shelf is3

based on the composition of bottom sediments, sand (0.022) or mud (0.012)4

[74]. In areas with depths less than 5 m, Mannings n is set to 0.025 along5

the shoreline and is interpolated based on depth to the local shelf value. In6

depths between 200 m and 5 m, Mannings n is set to the local shelf value,7

and depths greater than 200 m, Mannings n is set to 0.012. Narrow, shallow,8

meandering channels are assigned values of 0.03 to 0.035 [75, 76].9

The surface (or wind) canopy adjustment accounts for the ability of the10

wind to penetrate the canopy and transfer momentum to the water column.11

In densely forested canopies, there is negligible transfer of momentum due to12

the forest canopy shielding the water surface from the wind stress, ultimately13

creating a stratified two layer system [73, 77]. Canopy is interpolated onto14

the mesh nodes in a similar fashion as Mannings n. The C-CAP grid cell15

that lies on the ADCIRC mesh node is determined and the canopy value for16

the given land cover class is assigned to the node. The LULC classes are17

mapped and converted to their respective canopy coefficient, 1 (no canopy)18

or 0 (canopy) (Table 3).19

The anisotropic z0 value reduces wind speed at a location based on up-20

wind conditions. This is especially important in the nearshore region where21

there are drastic discrepancies between the wind reduction potential of vege-22

tated land and open water. This evolution of wind direction throughout the23

duration of the storm event alters wind speed from marine based winds to24

wind reduced by dense obstructions (buildings, forest, etc) located upwind25
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of a point. ADCIRC employs twelve z0 values at each mesh node (i.e., every1

30 compass degrees). Assignment of z0 values at each mesh node involves2

assembling LULC classes in a wedge-shaped region upwind of the node for 33

km. Table 3 shows z0 values for C-CAP LULC classes. ADCIRC determines4

the correct z0 value to apply based on the instantaneous local wind direction5

at runtime [73].6

2.7. Vertical datum offset7

The MSAL mesh elevations are referenced to NAVD88 (North American8

Vertical Datum of 1988), but the SWAN+ADCIRC model should be initiated9

with water surface elevations at zero mean sea level (MSL). To account for10

local differences between MSL and NAVD88, a vertical datum offset was11

established. To adjust the vertical datum from NAVD88 to MSL, an offset12

of 0.13 m is added to the model [29]. An additional offset must be added13

to account for the seasonal variation in the Gulf of Mexico due to thermal14

expansion of the upper stratum of the water column; the offset was 0.10 m,15

based on analysis of local NOAA tide gage stations. Therefore, the initial16

water level in the model was set to 0.23 m (0.13 m + 0.10 m).17

2.8. Meteorological and tidal forcing18

The simulated flood event is Hurricane Katrina as it has been exten-19

sively studied and well validated in terms of its wind field and flooding20

[29, 78, 79, 18, 80]. Additionally, Katrina generated unprecedented water21

levels and inundation extent in coastal Mississippi, thereby putting sufficient22

stress on the developed overland meshing techniques for testing. Therefore,23
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each mesh is included in a SWAN+ADCIRC simulation for Hurricane Ka-1

trina. The simulation begins from a cold start on 08/15/2005 12:00 UTC2

and forced with astronomic tides for 10 days, beginning with a 7 day hy-3

perbolic ramp to establish a dynamic steady state. The astronomic tides4

(O1, K1, P1, Q1,M2, S2, N2, and K2), derived from Oregon State’s TPXO7.25

tidal atlas [81, 82], are forced along the open ocean boundary (60◦W merid-6

ian), in deep water, where tidal amplitudes and phases are well known. Wind7

forcing and wave radiation stresses are added on 08/25/2005 12:00 UTC for8

5 days, yielding a total simulation length of 15 days. Simulated wind speed9

and direction, significant wave height, wave direction, mean and peak wave10

period, and water surface elevations will be compared to recorded data.11

Wind and pressure fields for Katrina were developed using a blend of12

objectively analyzed measurements and modeled winds and pressures as de-13

scribed in Bunya et al. [29]. This study applies the same Katrina inputs as14

Bunya et al. [29] and Bilskie et al. [14], which used H*Wind [79] analysis in15

the core of the system. The approach in developing the tropical wind and16

pressure fields has been documented and verified in numerous ocean response17

studies including Hope et al. [64] (Ike 2008), Dietrich et al. [1] (Gustav 2008),18

Bacopoulos et al. [83] (Jeanne 2004), and Bunya et al. [29] (Katrina and19

Rita 2005).20

2.9. Design of experiment21

Three experiments were performed to examine the influence of vertical22

features on mesh elevations and water levels due to hurricane storm surge.23

Each of the three meshes were included in a hydrodynamic simulation repre-24

sentation of Hurricane Katrina and model results were compared to measured25
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time-series water levels, HWMs, and post-storm aerial images of debris lines.1

3. Results and discussion2

3.1. Time-series water levels comparison3

Each of the unstructured meshes (MSAL, MSAL noVF z, MSAL noVF )

were included in an hydrodynamic simulation representative of Hurricane Ka-

trina using the SWAN+ADCIRC code and model setup described above. For

each simulation, simulated time-series of water surface elevations were com-

pared to observed data. The observed water surface elevations were obtained

from NOAA, USACE, and USGS gage stations throughout Mississippi and

Alabama (Figure 8). Figure 9 presents the time-series water levels for the ob-

served and modeled data at a select number of stations within the nearshore

region. At all locations, the simulated water surface elevations among the

three simulations are similar; no substantial differences are observed. The

modeled water levels match the amplitude and phase of the astronomic tide

signal leading up to the main surge event, and the models match the rising

water surface elevation, peak surge (if recorded in the observed data), and

falling limb of the hydrograph. To quantify errors between simulated and

observed time-series water levels, Scatter Index (SI) and bias metrics were

computed [84, 64]:

SI =

√
1
N

N∑
i=1

(Ei − Ē)2

1
N

N∑
i=1

|Oi|
(3)
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bias =

1
N

N∑
i=1

Ei

1
N

N∑
i=1

|Oi|
(4)

where N is the number of data points, E is the error between the model1

(Mi) and observed (Oi) value (Ei = Mi − Oi), and Ē is the mean error.2

Since the computed error metrics were similar among the three experimental3

simulations, only the MSAL model result error metrics are shown and are4

translatable to the other simulations. SI and bias for stations that included5

reliable water surface elevation time-series for the entirety of the storm event6

were computed. The NOAA stations yielded an SI of 0.12 and a bias of -0.01.7

The USACE and USGS stations yielded an SI of 0.25 and -0.26, and a bias8

of -0.01 and -0.05, respectively (Table 4). All 22 stations for which statistics9

were computed yielded a weighted average SI of 0.22 and bias of -0.02 (with10

respect to the number of stations).11

Using the traditional, point-based, time-series water surface elevation val-12

idation technique, all three model simulations produced accurate results.13

There was no discernible difference in the statistics among the simulated14

MSAL, MSAL noVF z, and MSAL noVF water surface elevations when com-15

pared to the observed data at the gages. This is caused by the fact that the16

gages are located in open water, and the results are not sensitive to dif-17

ferences in inundation across the floodplain. The methods by which the18

floodplain is included in the unstructured mesh did not alter the results at19

the gages, as long as the floodplain is included to allow storm surge attenua-20

tion [85]. With this, focus is turned to the assessment of each of the models21

performance within the floodplain and begins with a comparison of observed22
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HWMs.1

3.2. High water mark comparison2

There are a total of 340 HWMs recorded by FEMA and the USACE

throughout Mississippi and Alabama in the wake of Hurricane Katrina. A

HWM model performance analysis was conducted in which all available mea-

sured HWMs were compared to the simulated maximum water level for each

of the three simulations. The HWMs were plotted and the 95% confidence

interval (CI) was computed:

CI95 = Ē ± 1.96 ∗ σ (5)

where Ē is the mean error and σ the standard deviation of the errors. CI953

was used to determine outliers in the HWMs for closer inspection of error4

in the measurements or errors within the SWAN+ADCIRC model. HWMs5

were removed if they met one of the following conditions: 1) The HWM was6

suspected to be the result of surface runoff or flooding due to precipitation7

and not storm surge, 2) the field HWM was suspected to have errors, or 3) the8

HWM resided outside the computed 95% confidence interval. To determine if9

a HWM was caused by precipitation and not storm surge, the location of the10

point was considered along with peak surge values from neighbouring HWMs.11

If the point was located near a stream and significantly upstream, and nearby12

HWMs included lower measurements, then the point was removed. In some13

instances, these HWMs were obtained from storm tide sensors which made14

it easy to determine if the peak was caused by surface runoff. Additionally,15

a HWM was removed if it was found on the upstream side of a culvert;16

this introduces numerous sources of error such as a clogged culvert pipe or17
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backwater effects. For the second criteria, we examined field notes for the1

HWMs and removed them if key words in the field report such as ”poor2

debris line” or ”clogged culvert” were found. For the third criteria, HWMs3

that included error that lie outside the CI95 were removed.4

The upper and lower CI95 for the full 340 Katrina HWMs were ∼ ±5

1 m, for each simulation. A majority of the HWMs that were removed6

resided along Little Lagoon, west of Fort Morgan Peninsula. ADCIRC under-7

predicted maximum water levels along this region which appeared to be8

caused by high water levels within the lagoon itself. Hurricanes Katrina and9

Ivan (2004) triggered the formation of an inlet west of the original, which10

would lead to an increase in flooding of the lagoon and across the peninsula11

[86]. In addition, since the MSAL model was constructed from the most12

recent lidar data available, per FEMA guidance, this region contained post-13

Katrina lidar. The current dune heights represented by the MSAL model14

are about 1 m higher than pre-Katrina dune heights, which prevented over-15

topping of the peninsula in the simulation, and therefore lower water levels16

within the lagoon.17

After the error analysis from the first two conditions, 19 HWMs were18

eliminated, and 321 remained for the comparison to simulated maximum19

water levels and analysis of the 95% confidence interval (Table 4). The MSAL20

resulted in further elimination of 19 HWMs based on the confidence interval21

analysis. Of the 302 HWMs, 274 (90.7%) were within ± 0.5 m. Similarly, the22

CI analysis for the MSAL noVF z and MSAL noVF resulted in elimination23

of 19 and 20 HWMs, and 273 (90.4%) and 270 (89.1%) were within ± 0.524

m, respectively. The slope of the line of best-fit, for all experiments, is 1.025
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with an R2 of 0.97 (Figure 10). The mean absolute error (MAE), standard1

deviation (SD) and upper and lower 95% CI were similar (5).2

Results did not improve or diminish among the three experiments with3

respect to the HWM analysis, which was an unanticipated result of this work.4

Numerous HWMs were located in regions where vertical features influenced5

inundation extent; however, the simulated water surface elevation at the6

HWM locations were not altered by the vertical features, only the flooding7

extent. This is addressed in the following section, and it is shown that8

the inclusion of vertical features increases model accuracy with respect to9

inundation extent.10

3.3. Post-Katrina aerial imagery comparison11

Post-Katrina aerial photographs captured by NOAA revealed the wide12

spread damage caused by Hurricane Katrina (http://ngs.woc.noaa.gov/storms/katrina/).13

The imagery enables a qualitative model validation of inundation extent, par-14

ticularly along local high elevation gradients, such as near vertical features.15

Turning focus to coastal Mississippi, specifically near Gulfport, similar flood-16

ing extent is observed between the MSAL and MSAL noVF z simulations,17

although there were some minor increases in inundation extent. On the other18

hand, the MSAL noVF model estimated flooding further inland. Here, sim-19

ulated inundation between the MSAL and MSAL noVF z were compared to20

the debris line found in the NOAA post-Katrina aerial imagery. The first21

image is located just west of Gulfport Harbor and between E. Beach Blvd.22

and E. Railroad St. Figure 11a shows that inundation was blocked by E.23

Railroad St. in the MSAL model, but is not the case in the MSAL noVF24

model result (Figure 11b). E. Railroad St. is included in the MSAL model25
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as a vertical feature. In other words, surge propagated past E. Railroad St.1

as if it were not there (or had similar elevation to the surrounding land).2

Close inspection of the aerial image depicts a debris line between and along3

E. Railroad St. and 2nd St. From the image, there is no discernible debris4

north of Railroad St. caused by storm surge; however, some debris may be5

present, but was likely caused by wind than surge. Although there is debris6

along E. Railroad St., and it is likely that surge piled up along the roadway,7

the MSAL model is not able to inundate up to the roadway due to the limi-8

tation of the local element size ( 60-100 m in this location) and the wetting9

and drying algorithm. In order to simulate inundation closer to the road-10

way, without removing the vertical feature, would be to decrease the local11

element size sub-20 m. Additionally, the SWAN+ADCIRC model simulation12

does not include wave-induced runup. Regardless, the MSAL model appro-13

priately simulates the inundation front and inhibits surge from incorrectly14

overtoping E. Railroad St. at this location.15

The HWM at this location has a value of 7.59 m (NAVD88) and a simu-16

lated error of -0.25 m. The location of the HWM demonstrates the cause for17

the similar HWM errors among the three models. Since the models without18

correct vertical feature representation generally increased flooding extent, the19

location of the HWM were inundated in all three model simulations. The20

simulated maximum water surface elevation at this HWM location would not21

be expected to vary due to the overtopping of the ridge feature. The only22

plausible scenario in which the maximum water surface elevations were ex-23

pected to be different is if the ridge feature had a drastically higher elevation24

than the surrounding terrain and surge accumulated, but never overtopped25
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the roadway, yielding a large maximum water surface elevation. This water1

surface elevation would be higher than if the roadway was not described and2

surge was not able to pile up and inundate the region north of the roadway.3

Moving east along the coast, Figure 11c and 11d depict a similar story.4

There is a tremendous amount of debris between E. Railroad St. and the5

shoreline, but not north. The MSAL correctly represents the storm surge6

inundation. However, the MSAL noVF z model result yields overtopping of7

E. Railroad St. This is incorrect when examining the debris line. The mea-8

sured HWM in this region is 7.25 m (NAVD88), with a simulated error of9

-0.09 m. As previously described, the maximum storm surge is not expected10

to vary drastically as because both models simulated flooding this region.11

Similar findings would be obtained regardless of the number of HWMs col-12

lected. This indicates that state-of-the-art flood inundation models, and13

storm surge models in particular, are now becoming accurate enough that14

traditional point-based validation methods (e.g. gage based time-series and15

HWM comparison), which are acceptable in comparing total water levels, are16

limited in their ability to validate inundation extent ([87]).17

The comparison of storm surge inundation extent against post-event im-18

agery allows a semi-empirical validation beyond point-based methods of max-19

imum water levels. This enables a more rigorous validation and exhibits the20

necessity for having accurate terrain data in the flood inundation model,21

specifically vertical features. From this analysis, it is evident that the MSAL22

model better represents the extent of inundation and is therefore a more23

accurate surge model than the other two models, without reliance on hand24

digitization or sacrificing computational cost.25
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3.4. Flooding extent comparison1

In order to determine the impact of the additional flooding extent from2

the MSAL noVF z and MSAL noVF models, each were categorized into3

inundated regions with and without urban infrastructure. The 2006 post-4

Katrina CCAP LULC was sorted and binned into two land classifications,5

urban and rural within Mississippi and Alabama (open water was left out of6

this reclassification). For each of the two classes, the additional inundated7

area was computed from the MSAL noVF z and MSAL noVF simulations.8

MSAL noVF z inundated an additional 1.5 km2 and 9 km2 for urban and9

rural area, and MSAL noVF inundated an additional 10.3 km2 and 44.8 km2,10

respectively. To expand these results further, the urban space is related to11

population density. The city of Gulfport, MS has a population density of12

730.61 people per square km and contains 340.60 housing units per square13

km (http://www.gulfport-ms.gov/census.shtml). Extrapolating this popu-14

lation density across the Mississippi-Alabama coast may result in an addi-15

tional 1,096 people and 511 housing units affected in using the MSAL noVF z16

model and 7525 people and 3508 housing units with the MSAL noVF model17

results. This result may be of critical importance when designing and oper-18

ating a real time forecasting flood inundation model, especially when used19

to guide evacuation planning and the deployment of first responders.20

In addition to modifying inundation extent, the inclusion of vertical fea-21

tures also altered the timing of the flood and recession wave. In using the22

MSAL noVF model, some regions flooded several hours earlier than the23

MSAL model, especially along highways that are overtopped. Furthermore,24

not only did the inclusion of raised features limit overtopping during the in-25
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coming flood, but also inhibits the recession of the flood as it flows back to1

the ocean.2

4. Summary and conclusions3

To accurately represent overland flooding due to hurricane storm surge,4

it is imperative that the numerical model includes an accurate representation5

of the overland terrain. We employed a novel and largely reproducible frame-6

work to guide semi-automatic unstructured mesh generation across a coastal7

floodplain via the inclusion of vertical terrain features and accurate assign-8

ment of mesh nodes using a bare earth lidar-derived DEM. These methods9

administered the density and location of mesh nodes and alignment of ele-10

ment edges as guided by the landscape. Therefore, it is recommend that the11

DEM be developed before mesh generation begins so as to to link the natu-12

ral terrain to the unstructured mesh and ultimately to the flood inundation13

model. These semi-automated approaches were scaled and applied for the14

generation of a wind-wave hurricane storm surge model for the Mississippi15

and Alabama coast. The influence of vertical features on the model’s por-16

trayal of the floodplain elevations were examined in addition to the response17

of water levels and inundation extent among three unstructured meshes rep-18

resentative of the Mississippi-Alabama coastal floodplain. The MSAL mesh19

included vertical features, MSAL noVF z contained vertical features in the20

mesh topology, but crown elevations were withheld, and the MSAL noVF21

mesh included similar mesh resolution as the other meshes, although no ver-22

tical features were included.23

The three unstructured meshes were employed to simulate shallow water24
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hydrodynamics for Hurricane Katrina (2005) using the coupled SWAN+ADCIRC1

model framework. The model was parameterized to represent natural geo-2

physical conditions across the floodplain, thereby removing the need for3

model calibration. Simply put, the model was setup with the best known and4

scientifically defensible conditions and no calibration/tuning was performed5

herein. The methods presented are not limited to storm surge models, but6

can be utilized in river flood routing models that require spatial domain7

discretization.8

It was shown that the state at which flood inundation models are currently9

being developed require additional validation techniques beyond point-based10

methods, and in particular, the validation of inundation extent. Each model11

was compared to time-series water surface elevations, post-event measured12

HWMs, and post-event aerial imagery. For each model, the time-series water13

levels matched the observed data well and captured the tides before landfall14

and the rising limb of the storm surge hydrograph. Katrina simulated water15

level peaks also compared well with an R2 of 0.97 and upper and lower 95%16

confidence interval of ∼ ± 0.60 m. From the point-based validation, it was17

not readily clear which of the three model experiments performed best in18

terms of accuracy. Examination of inundation extent among the three model19

results was compared to debris lines derived from post-event aerial imagery.20

From the aerial imagery comparison, the MSAL model produced the more21

accurate simulated inundation extent, followed by the MSAL noVF z, and22

MSAL noVF model. This result was obtained without reliance on hand23

digitization or sacrificing computational cost as the mesh node count was24

similar among the three models.25
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Comparison of differences in total flooding area and inundation extent1

resulted in the MSAL model having the lesser amount of flooded area than2

the other two models. Relating the additional differences in inundation ex-3

tent to population density along coastal Mississippi resulted in a possible4

affected population of 1,096 people and 7,525 people when using inundation5

results from the MSAL noVF z and MSAL noVF model. Model results also6

indicated that vertical features have a role in the timing of the initial flood7

wave as well as the surge recession, which may be critical when using inunda-8

tion models in a real time forecasting framework. Additionally, the methods9

presented herein may have an impact on transport models (including debris10

transport).11

Accurate results were computed in the MSAL due to the methods em-12

ployed in generating the unstructured mesh, which describes the varying13

types of topography across the landscape. Areas that exhibited substandard14

model results are found in regions with coarse mesh resolution, unsatisfac-15

tory elevation or bathymetric data, narrow rivers and canals, and regions16

dominated by surface runoff and local flooding. Additionally, inclusion of17

event-scale coastal erosion, surface runoff generating mechanisms and over-18

land flow, flow description through narrow channels and tidal creeks, better19

descriptions of salt marsh table elevations, and improved surface roughness20

characteristics can increase the accuracy of the model through the inclusion21

of these additional physical processes.22

Although narrowing, there remains a gap in the knowledge of relating23

the physics with numerical discretization of a continuous and natural sur-24

face. As this work is a step towards fully-automated mesh generation for25
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shallow water hydrodynamics, future research should include an evaluation1

of the extraction algorithm parameters across difference landscapes, in addi-2

tion to mesh resolution sensitivity coupled with vertical feature integration.3

The guidance and constraints presented here may promote coarser model res-4

olution without sacrificing model accuracy, and in term will lead to a more5

ideal mesh.6
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Figure 1: Location map of coastal Mississippi and Alabama with coastal features labeled

and the track of Hurricane Katrina. The ADCIRC model boundary is in black.
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Figure 2: Flow chart outlining the mesh generation procedure. The process begins with

the lidar DEM and mesh boundary.
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Figure 3: Pseudo-code for the main vertical feature extraction algorithm.
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Figure 4: a) Elevation and perpendicular distance requirements for vertical feature ex-

tractions. b) Elevation error due to triangular element placement.c) Planar view showing

triangular element in worst possible position relative to a road bed.
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Figure 6: ADCIRC a) mesh resolution (m) and b) model topography and bathymetry of

the MSAL mesh in Mississippi and Alabama.
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Figure 7: a) Aerial imagery and derived vertical features (green = ridge and white =

valley); b) 5 m DEM and vertical features; c) 5 m DEM, vertical features, and unstructured

finite element mesh with element edges aligned to the vertical feature lines (approximate

element resolution is 60-80 m).

60



Figure 8: Location of the USACE storm tide elevation sensors (gray), USGS streamgages

(black), and NOAA tide gages (red) with measured Hurricane Katrina time-series water

levels along the Mississippi-Alabama coast. Hydrographs are shown of stations with labels.

The ADCIRC model boundary is in black.
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Figure 9: Water surface elevation (m, NAVD88) time-series (UTC) at a selected 4 gage

stations during Hurricane Katrina. The measured data are the gray circles, MSAL result

is shown as the black line, MSAL noVF z is in blue, and MSAL noVF z in dark green.

The vertical neon green line is the landfall date and time. The three model simulation

lines lie on top of one another.
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Figure 11: a) MSAL and b)MSAL noVF inundation extent on top of the NOAA post-

Katrina aerial imagery just west of Gulfport Harbor. The HWM (purple cross) value and

error at this location (a-b) is 7.59 m and -0.25 m. c)MSAL and d)MSAL noVF inundation

extent on top of the NOAA post-Katrina aerial imagery 5 km west of Gulfport Harbor.

The HWM (purple cross) value and error at this location (c-d) is 7.25 m and -0.09 m. The

green lines are vertical feature ridge lines. Model resolution in this region is 60-100 m.
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Table 2: List of parameters and respective values used in the vertical feature extraction

algorithm

Variable Value Note

Elevation Parameters

dIR
les
2

Inner Range Distance

les - Local Element Size

dOR 200 m Outer Range Distance

∆ZIR 0.3 m Inner Range Outer Distance

∆ZOR 0.5 m Outer Range Outer Distance

∆I 0.1 m Insignificant Elevation Difference

IA 2,000 m2 Insignificant Area

LC 200 m2 Continue Length

rs 0.35 Significant line ratio

Vertical Curvature

∆V C 0.3 m2 Vertical Curvature Elevation Difference

Length Parameters

P - Priority Weighting Factor

LT 1,000 m Trunk Length

LIT 500 m Intersect Trunk Length
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Table 3: Mannings n, surface canopy and surface directional effective roughness length

(Z0) values for CCAP Land Use Land Cover classifications.

CCAP Class Description Manning’s n Canopy Value Z0

2 High Intensity Developed 0.12 1 0.5

3 Medium Intensity Developed 0.12 1 0.39

4 Low Intensity Developed 0.12 1 0.5

5 Developed Open Space 0.035 1 0.33

6 Cultivated Land 0.1 1 0.06

7 Pasture/Hay 0.05 1 0.06

8 Grassland 0.035 1 0.04

9 Deciduous Forest 0.16 0 0.65

10 Evergreen Forest 0.18 0 0.72

11 Mixed Forest 0.17 0 0.71

12 Scrub/Shrub 0.08 1 0.12

13 Palustrine Forested Wetland 0.15 0 0.55

14 Palustrine Scrub/Shrub Wetland 0.075 0 0.11

15 Palustrine Emergent Wetland 0.06 1 0.11

16 Estuarine Forested Wetland 0.15 0 0.55

17 Estuarine Scrub/Schrub Wetland 0.07 1 0.12

18 Estuarine Emergent Wetland 0.05 1 0.11

19 Unconsolidated Shore 0.03 1 0.09

20 Bare Land 0.03 1 0.09

21 Open Water 0.025 1 0

22 Palustrine Aquatic Bed 0.035 1 0.04

23 Estuarine Aquatic Bed 0.03 1 0.04
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Table 4: Error summary for MSAL computed water levels for each of the measured water

level datasets.

Data Agency No. Stations SI Bias

NOAA 7 0.12 -0.01

USACE 8 0.25 -0.01

USGS 7 0.26 -0.05

All 22 0.21 -0.02
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