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ABSTRACT

An eye-tracking experiment was conducted to examine whether differences in forecasters’ eye movements

provide further insight into how radar update speed impacts their warning decision process. In doing so, this

study also demonstrates the applications of a new research method for observing how National Weather

Service forecasters distribute their attention across a radar display and warning interface. In addition to

observing forecasters’ eye movements during this experiment, video data and retrospective recalls were

collected. These qualitative data were used to provide an explanation for differences observed in forecasters’

eye movements. Eye movement differences were analyzed with respect to fixation measures (i.e., count and

duration) and scanpath dimensions (i.e., vector, direction, length, position, and duration). These analyses

were completed for four stages of the warning decision process: the first 5min of the case, 2min prior to

warning decisions, the warning issuance process, and warning updates. While radar update speed did not

impact forecasters’ fixation measures during these four stages, comparisons of scanpath dimensions revealed

differences in their eye movements. Video footage and retrospective recall data illustrated how forecasters’

interactions with the radar display and warning interface, encounters with technological challenges, and

varying approaches to similar tasks resulted in statistically significantly (p value , 0.05) lower scanpath

similarity scores. The findings of this study support the combined use of eye-tracking and qualitative research

methods for detecting and understanding individual differences in forecasters’ eye movements. Future ap-

plications of these methods in operational meteorology research have potential to aid usability studies and

improve human–computer interactions for forecasters.

1. Introduction

Understanding the forecaster warning decision pro-

cess is a complex task that has been at the forefront of

the Phased Array Radar Innovative Sensing Experi-

ment (PARISE) since 2010. Learning about the poten-

tial impacts of rapidly updating phased-array radar

(PAR) data on forecasters’ warning decision processes

requires not only an assessment of performance, but an

in-depth analysis of how forecasters acquire, make sense

of, and use information to provide the best possible

warnings (Heinselman et al. 2012, 2015; Bowden et al.

2015; Bowden and Heinselman 2016). Other studies

within the NOAA Hazardous Weather Testbed have

evaluated forecasters’ use of new data and displays using

qualitative methods including observations, surveys,

discussion, interviews, and blog posts (e.g., Goodman

et al. 2012; Calhoun et al. 2014; Smith et al. 2014;

Karstens et al. 2015; Smith et al. 2016). Furthermore, in

PARISE, cognitive task analysis methods have been

applied to obtain detailed insight into what forecasters

see, think, and do when presented with radar data of

different update speeds (e.g., Heinselman et al. 2015;

Bowden and Heinselman 2016). Referred to as the re-

cent case walkthrough (Ericsson and Simon 1993;

Hoffman 2005), this method required forecasters to

retrospectively recall their thought processes as they

watched a playback video of their onscreen activity thatCorresponding author: Katie Wilson, katie.wilson@noaa.gov
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was recorded during simulated warning operations. As

forecasters recalled their thought processes step by step,

they were also asked probing questions that focused on

times when warning decisions were made.

Much has been learned from retrospective recall data

about how faster radar updates can impact forecasters’

warning decision processes during different types of

severe weather scenarios. However, these data have also

brought to light how complex forecasters’ warning de-

cision processes can be and that the use of qualitative

methods alone may not always accurately capture the

intricate activity occurring within a forecaster’s mind.

Therefore, a method that could provide additional

measures of forecasters’ cognition was sought, where

together, this additional data would be analyzed with the

recent case walkthrough to inform the interpretation of

one another.

Given that studies have shown that what we are

looking at can be informative of what we are attending

to (Just and Carpenter 1976; 1980), eye-tracking re-

search methods were explored as a means to better trace

forecasters’ cognition when they are viewing radar data.

The use of eye-tracking methods was first applied in

reading studies to learn about language processing, and

fixations and saccades were identified as two types of eye

movements (Huey 1908; Rayner 1998; Duchowski 2002;

Henderson and Ferreira 2004). Fixations describe times

when the eye is relatively still, and saccades describe the

very fast eye movements that occur between fixations.

Applications of eye tracking to study other human

cognition were also demonstrated in free-viewing tasks

to prove that the location of fixations was not random.

Rather, fixations occurred more frequently in the most

semantically and visually rich regions of an image (e.g.,

Buswell 1935; Yarbus 1967). This observation was im-

portant because it provided evidence that eye move-

ments are an important representation of attention.

More recently, eye tracking has been used in a variety

of visual search tasks. For example, studies that have

focused on web design and marketing have learned

much about how the general population attend to and

gather information from computer displays, advertise-

ments, and package designs (e.g., Djamasbi et al. 2010;

Hervet et al. 2011; Clement et al. 2013; Gidlöf et al. 2013;
Romano Bergstrom et al. 2013; Wang et al. 2014). Ad-

ditionally, eye tracking has been used to better un-

derstand the cognitive processes of professionals who

make life-saving decisions. Within the medical field,

many studies have examined the visual search behavior

of radiologists tasked with detecting abnormalities and

diagnosing medical conditions (e.g., Wood et al. 2013;

Manning et al. 2004; Giovinco et al. 2015; Bertram et al.

2016; Al-Moteri et al. 2017). In aviation research, eye

tracking has been used to study the eye movements of

pilots in the cockpit and air traffic controllers on the

ground (e.g., Hauland 2008; Sullivan et al. 2011; Van de

Merwe et al. 2012; Kang and Landry 2014, 2015; Yu et al.

2016). A common interest in these medical and aviation

studies is how visual scanning patterns compare between

professionals with different degrees of experience and

whether observed differences can inform training to

improve performance. Like professionals working in

aviation and medicine, meteorologists are also pre-

sented with imagery to analyze. They must distribute

their attention according to the task at hand, assess how

targets (i.e., storm features) are evolving in time

and space, and perceive and extract information con-

sidered important to their decision-making. Eye-

tracking studies from the aviation and medical com-

munities are therefore highly relevant to our quest to

better understand meteorologists as expert decision-

makers.

Despite the growing popularity of eye-tracking

methods in other research domains, it has been applied

in only a handful of meteorology studies. For example,

eye movement data have been used to analyze what

impact aweathercaster’s gesturingwould have on viewers

during a televised weather forecast (Drost et al. 2015), to

assess the impact of legend color and content on partici-

pants’ abilities to correctly interpret hurricane storm

surge graphics (Sherman-Morris et al. 2015), and to study

how U.S. Naval and Marine Corps weather forecasters

extract information from meteorological visualizations

(Trafton et al. 2002). In an exploratory sense,Wilson et al.

(2016) assessed the feasibility of eye-tracking research

methods for building on the current understanding of

forecasters’ warning decision processes. Without pre-

vious examples of NWS forecasters’ eye movement

data, a simple question was whether a forecaster’s eye

movement data would make sense and be representative

of their experienced cognition. In this short study,Wilson

et al. (2016) collected a single NWS forecaster’s eye

movement data as he interrogated radar data during

simulated warning operations. This participant’s retro-

spective recall was also collected following the simulated

event. Comparing trends in these eye movement data to

the participant’s retrospective recall, this study concluded

that the eye movement data were representative of that

forecaster’s warning decision process and his reporting of

important events during the simulation (e.g., a change in

the expected weather threat and his subsequent re-

distribution of attention) (Wilson et al. 2016). We there-

fore anticipated that other forecasters’ eye movements

would also be representative of their own warning de-

cision processes, as verified through an analysis of their

retrospective recall narratives.
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The findings from Wilson et al.’s (2016) study sup-

ported the use of eye tracking as a method for observing

the visual attention of a forecaster. These findings

motivated a larger-scale experiment that we present in

this paper. Of particular interest was how forecasters’

eye movements compare during use of different radar

update speeds. Given that previous studies have shown

radar update speed to affect forecasters’ performance

and overall situational awareness (e.g., Heinselman

et al. 2015; Bowden and Heinselman 2016; Wilson et al.

2017b), we were specifically interested in whether dif-

ferences in forecasters’ related warning decision pro-

cesses would be evident in their eye movements. This

study explored what, if any, differences existed between

forecasters’ eye movements while they worked a single

weather event with either 1- or 5-min radar updates.

Forecasters’ corresponding retrospective recalls and

computer video data were then used to make sense of

their eye movements within the broader context of the

warning decision process. As is apparent in the results

section below, we did not find differences in forecasters’

eye movements during this weather event to be tied to

the independent variable of radar update speed, but

rather due to a variety of other factors. Therefore, al-

though the discussions in this paper do not focus on

forecasters’ eye movements as a result of radar update

speed as initially intended, the shared findings contrib-

ute to our current limited knowledge of how eye track-

ing can be used alongside qualitative research methods

to learn more about the human component of weather

forecasting.

2. Method

a. Experiment design

Over six weeks in the summer of 2015, 30 NWS

forecasters from 25Weather Forecast Offices visited the

NOAA Hazardous Weather Testbed in Norman,

Oklahoma, to participate in the 2015 PARISE. The

largest of its kind, this most recent PARISE comprised

three studies: the traditional experiment (Wilson et al.

2017b), the eye-tracking experiment, and the focus

group (Wilson et al. 2017a). This paper presents results

related to the eye-tracking experiment only. In this eye-

tracking experiment, forecasters worked a 1-h-long

event independently in simulated real time. Forecasters

were randomly assigned to either a control (5-min radar

updates) or an experimental (1-min radar updates)

group. The control group’s radar update speed was

chosen to correspond approximately to the temporal

resolution of radar data that NWS forecasters currently

have available during warning operations. Both groups

had 15 participants, all of whom were qualified to issue

weather warnings. During the case, forecasters were

provided with reflectivity and velocity base products

only and were able to display these data using all tilts in

the Warning Decision Support System–Integrated In-

formation (WDSS-II) software (Lakshmanan et al.

2007). Given that forecasters were not familiar with

WDSS-II, training on how to setup and navigate

through the radar data and issue warning products was

provided. Awarning generation (WarnGen) tool similar

to what forecasters use in operations was developed for

WDSS-II, and all issued warning products were re-

corded in an electronic database. As in previous PA-

RISE studies, a prebriefing video lasting several minutes

was provided prior to working the case to allow fore-

casters to form expectations for how the weather event

may unfold. This video described the environmental

conditions associated with the upcoming weather event

and showed prior radar and satellite data leading up to

the case start time. Once forecasters had watched the

prebriefing video, they were asked to work the weather

event with their normal approach to data interrogation

and to make warning decisions if considered necessary.

b. Weather scenario

The chosen weather scenario included a multicell se-

vere hail and wind event that occurred during 2230–2330

UTC 8 July 2014. In addition to meeting a suitability

criteria for experimental testing (i.e., uninterrupted ra-

dar observations for a sufficient duration), discussions

with the NWS forecaster who worked the event in real

time influenced the case selection. After viewing 1-min

PARupdates of this event, the forecaster reported being

able to better track cycling trends in rapid core devel-

opment aloft compared to when he had used the 5.1-min

WSR-88D volume updates (C. Kuster 2017, personal

communication).We therefore anticipated that this case

would present forecasters with an opportunity to dem-

onstrate differences in their warning decision processes

when using 1- or 5-min PAR volumetric updates.

In this scenario, the 908 PAR sector scanned toward

the southeast and encompassed two areas of storms

(Fig. 1). The storm in the western portion of the sector is

referred to as the McClain storm, and the storm in the

eastern portion of the sector is referred to as the Pon-

totoc storm. The discreet nature of these storms further

encouraged the selection of this case, since it allowed

for a clear-cut analysis of how attention was distributed

between the storms. According to the official NWS

Storm Data records (https://verification.nws.noaa.gov),

only the McClain storm was associated with severe hail

(at 2304 and 2328 UTC) and wind (at 2325 UTC) re-

ports. Although the Pontotoc storm was not associated
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with severe weather reports in Storm Data, this storm

presented more impressive characteristics in radar data

and had higher values of maximum estimated size of hail

(Witt et al. 1998) than the McClain storm. Therefore, it

is possible that the Pontotoc storm also produced severe

weather but that it was not observed nor reported.

c. Equipment and data collection

Both head-mounted and remote-based eye-tracking

systems are available for research use (Goldberg and

Wichansky 2003). Head-mounted systems are worn, and

while some devices are bulky and obstruct a person’s

view, others have simpler designs that resemble a pair of

glasses. While these systems allow for large head

movements during data collection and provide a way for

observing eye movements in natural settings, they can

be uncomfortable and do not allow participants to en-

gage in tasks without being fully aware that their eyes

are being observed. Remote-based systems are typically

positioned beneath or within a computer monitor that

display the task at hand. Advancements in this tech-

nology now allow for some head movement, which

makes this method less invasive because the use of chin

rests to stabilize participants during observation is not

necessary. An additional advantage to remote-based

eye-tracking systems is that the observed visual scene

stays within the same boundaries for the duration of

an experiment, making data analysis much more

straightforward.

Given the stationary nature of this experiment, the

Tobii TX300 eye-tracking system was used to collect

forecasters’ eye gaze data. This remote video-based

system uses infrared illumination to track pupil and

corneal reflection. More specifically, dark-pupil eye-

tracking methods were used, such that the infrared il-

lumination was positioned away from the optical axis,

causing the pupil to appear darker than the iris. The

video camera in the eye-tracking system acquired an

image of the eye at a sampling rate of 300Hz. Through

the use of image processing algorithms, the dark pupil

and corneal reflection were identified, and geometrical

calculations, as well as information from each fore-

caster’s calibration, were used to map the point of vision

to x and y coordinates on the computer screen. The gaze

accuracy, referring to the possible angular distance error

from the actual to the observed point of gaze, is 0.48
(Tobii Technology 2014). This accuracy corresponds

to a 4.4-mm possible error in gaze location on the

computer screen. The gaze precision of this system, re-

ferring to the spatial angular variation between gaze

samples, is 0.078 (Tobii Technology 2014).

The calibration procedure each forecaster completed

prior to beginning the case required them to watch the

computer screen and follow a series of dots as they

appeared. To ensure calibration was completed suc-

cessfully, we also asked each forecaster to spend a short

time browsing a web page. We used this sample of eye

gaze data to ensure that the eye tracker captured the

FIG. 1. Snapshot of the 0.58 reflectivity data for the (left) McClain and (right) Pontotoc storms

at 2314 UTC 8 Jul 2014.
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point of vision accurately. Once calibration was com-

pleted, the Tobii TX300 was used to collect each fore-

caster’s eye gaze data for the full duration of the weather

scenario. The remote eye-tracking system was posi-

tioned beneath the computer screen, and although

forecasters had to remain relatively still while working

the case, some gentle head movements were allowed.

At the end of the case, the collected eye gaze dataset

was checked to ensure that the gaze sample was suffi-

cient. The gaze sample is a measure that indicates the

proportion of samples that were collected successfully, is

given as a percentage, and is considered acceptable for

values of at least 75% (Hvelplund 2014). Data loss re-

sulting in gaze samples below this value can occur be-

cause of difficulty in detecting the pupil and corneal

reflection, possibly as a result of a person’s eye color, eye

shape, use of eyewear, or use of makeup. Furthermore,

visual inspection of the overlaid eye gaze data on the

screen recording was important for ensuring sufficient

accuracy and precision of forecasters’ eye gaze data.

Based on these data quality checks, six datasets were

removed from the analysis, and the results presented in

this paper are therefore based on eye gaze data be-

longing to 12 participants in each group. The control

group participants’ experience ranged from 1 to 25 years

(mean 5 9.1, standard deviation 5 7.1), and the exper-

imental group participants’ experience ranged from 2 to

27 years (mean 5 11.8, standard deviation 5 7.3).

Each forecaster also provided a retrospective recall of

their warning decision process using the recent case

walkthrough method (Hoffman 2005). As described in

the introduction, this methodwas used extensively in the

2012 and 2013 PARISE studies (Heinselman et al. 2015;

Bowden andHeinselman 2016).We asked forecasters to

verbalize their thought processes while watching a

playback video of their onscreen activity. The following

instructions were provided as follows: We will now re-

cord key aspects of your warning decision process. Key

aspects include what you were: seeing (e.g., Noticing

reflectivity values of 60 dBZ up to 20kft), thinking (e.g.,

The strong BWER suggests to me that there is a strong

updraft), and doing (e.g., I am going up and down in time

to see how deep the mesocyclone is). Concurrently, the

assisting researcher typed the forecasters’ verbalizations

into a timeline. Probing questions were asked to gather

further insight into why forecasters made warning de-

cisions, including the following: 1) What was your

warning decision? 2) Why did you make this warning

decision? 3) How did the temporal resolution of the

radar data impact this warning decision? Once fore-

casters had completed this retrospective recall for the

weather event, they self-checked the timeline to ensure

that their verbalizations were recorded accurately.

d. Data analysis

1) FIXATION IDENTIFICATION

Eye fixations and gaze patterns are of interest because

they can be informative of a person’s reasoning

(Henderson and Ferreira 2004). To identify fixation

events, the raw eye gaze data were parsed through a

velocity-threshold identification (I-VT) algorithm using

the Tobii Studio 3.3.0 software (Komogortsev et al.

2010; Olsen 2012). This algorithm’s output lists the

timestamp, duration, and x and y positions for each

fixation. The x and y positions are based on a pixel grid

system of the computer screen (19203 1080 pixels). Eye

gaze velocity is described in terms of visual angle (8 s21)

and is calculated as the angle between two samples di-

vided by their separation in time. To reduce measure-

ment noise effects, angular velocity is calculated for a

20-ms window that is centered on the sample of interest

(Olsen 2012). The timestamp and position information

of the first and last samples of the window determine the

angular velocity of the center sample. Samples having an

angular velocity below the default velocity threshold

parameter (308 s21) are classified as fixations (Olsen

2012; Bojko 2013). Adjacent fixations may either remain

separate or be merged into a single longer fixation de-

pending on the time and visual angle between them. The

‘‘max time between fixations’’ parameter is given

as 75ms (allowing for blink events), and the ‘‘max

angle between fixations’’ parameter is set at 0.58
(Komogortsev et al. 2010). Two adjacent fixations be-

come merged if the time and angle between them is less

than or equal to these parameter values. Finally, a

minimum fixation duration parameter of 60ms was

chosen. This minimum fixation duration was chosen

because in addition to viewing radar imagery, fore-

casters were required to read text while creating and

issuing warnings as well as when sampling storms and

processing the readout information (e.g., ‘‘60 dBZ,

30 000 ftAG’’). Fixations during reading studies have

shown to last between 60 and 500ms (Liversedge and

Findlay 2000). All fixations with durations shorter than

60ms were discarded.

2) AREAS OF INTEREST AND FIXATION MEASURES

In addition to identifying eye fixation events, the Tobii

Studio 3.3.0 software was used tomanually draw areas of

interest (AOIs) that define separate spaces on the

computer display (Holmqvist et al. 2011; Bojko 2013).

The AOI boundaries were agreed upon by all authors

and applied consistently to all forecasters’ eye gaze data.

These AOIs represent different semantic content, in-

cluding reflectivity data, velocity data, control icons,
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radar scan information, and the WarnGen interface

(Fig. 2). The two control icon areas were combined in

the analysis. All identified fixations were tagged with the

AOI in which they occurred. The AOI-based labeling of

fixations is useful for comparing forecasters’ sense-

making within these spaces for different portions of the

warning decision process. While many different types of

fixation measures exist, two of the most commonly used

measures are count and duration (Jacob andKarn 2003).

We can assess within each AOI how many times fore-

casters fixated (count) and on average how long those

fixations lasted (duration). Higher fixation counts within

an AOI indicate that the information was more notice-

able or important to the participant, while an AOI as-

sociated with longer fixation durations indicates that the

information was either more difficult to extract or more

engaging to the participant (Poole and Ball 2006; Bojko

2013). However, we recognize the limitations that

forecasters’ eye movements do not represent all aspects

of their cognition and that the eye can drift during

thought. These known limitations were a major driver

for applying a mixed-methods approach during

this study.

3) SCANPATH COMPARISONS

Fixation measures are useful for obtaining an overall

impression of how visual attention is distributed across

AOIs for a given time frame. These measures can be

used to indicate whether the control and experimental

groups visually attended to the different AOIs in a

similar manner or not. However, these bulk measures

are not good at representing how attention is distrib-

uted over time. Additionally, the spatial resolution of

fixations is reduced to the size of theAOIs, meaning that

the spatial distribution of fixations within an AOI is not

represented either. How fixations change in time and

space is an important consideration if forecasters’ un-

derlying cognitive processes during this simulation are

to be understood (Noton and Stark 1971; Holmqvist

et al. 2011). Therefore, in addition to average AOI fix-

ation measures, the sequence of fixations in time and

space was examined with AOI boundaries removed.

In this study, it was essential to maintain both the

temporal ordering of the entire sequence of fixations

and the spatial resolution for adequate representation of

scanpath shape in similarity calculations (Jarodzka et al.

2010). Therefore, the MultiMatch method was selected

for the scanpath comparison analysis. This method is

based on vector representations of scanpaths (i.e., in x

and y space) and preserves a number of aspects, in-

cluding the position and duration of fixations, the shape

of scanpaths, and the length and direction of scanpath

saccades. A more detailed technical description of this

method is given by Jarodzka et al. (2010) and Dewhurst

et al. (2012). This method computes five similarity

measures for the paired fixation and saccade vectors of

two given scanpaths, and these measures are then av-

eraged to give five similarity scores. These five Multi-

Match measures compare the vector, length, direction,

position, and duration of two scanpaths (Fig. 3). Since

the similarity score is calculated differently for each of

the five measures, absolute score values cannot be

compared across measures. However, the distributions

of these similarity scores within the same measure for

the control and experimental groups indicate whether

one group had greater scanpath variability than the

FIG. 2. Areas of interest are identified for the reflectivity data (R, orange), velocity data

(V, green), control icons (C, yellow), radar scan information (S, gray), and the WarnGen

interface (W, blue). Note that the WarnGen interface appeared only when the forecasters

elected to use it.
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FIG. 3. The (a) five MultiMatch measures with corresponding examples of scanpaths that have relatively (b) higher

and (c) lower similarity scores for two control group participants. [Adapted from Dewhurst et al. (2012).]
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other. If greater scanpath variability in one group was

observed, forecasters’ video and retrospective recall

data helped to explain why these differences occurred

within the context of their warning decision processes.

4) DEFINED STAGES

Previous PARISE studies have observed that when

working weather events in simulated real time, there are

clear stages in the warning decision process that are com-

mon among all forecasters. To better understand the dif-

ferences in forecasters’ cognitive processes during times in

which they are engaged in the same task, we chose to focus

our analysis of the eyemovement data during four stages: 1)

the first 5min of the case, 2) the 2min prior to warning

decisions, 3) the warning issuance process, and 4) the first

update on theMcClain and Pontotoc storms. The timing of

these stages for all participants was identified using video

and retrospective recall data (i.e., when forecasters opened

WarnGen and recalled reaching a decision point) (Fig. 4),

and their corresponding eyemovement data were extracted

for analysis. All forecasters issued a severe thunderstorm

warning at least once during the McClain storm and once

during the Pontotoc storm (Fig. 5). Eleven control and 10

experimental group participants also issued a second severe

thunderstormwarningon theMcClain storm (Fig. 5).Given

that theseweremajorwarning decisions across both groups,

the warning issuance process for each of these three de-

cisions is included in the analysis. The timing of participants’

warning decisions determined what storm processes could

be viewed in the 2minprior to thesedecisionpoints. Finally,

updates to these warnings were completed through the

issuance of severe weather statements (SVSs). Some fore-

casters issued many more SVSs than others, but 11 partic-

ipants in the experimental group and all participants in the

control group issued at least oneSVSon theMcClain storm,

and six participants in each group issued at least one SVSon

the Pontotoc storm (Fig. 5). For the fourth stage, we

therefore focused on the first SVS issuance for each of

these storms.

For each of these stages, the participants’ fixation

count and mean fixation duration were calculated, and

the five MultiMatch measures were computed for all

possible participant scanpath combinations within each

group. Of particular interest were the differences iden-

tified between the control and experimental groups’

fixation and MultiMatch measures. Once these differ-

ences were identified, forecasters’ video and retrospec-

tive recall data were used to provide context and

explanation for why they occurred. These qualitative

data were useful for determining whether differences in

eye movements were due to forecasters’ use of different

radar update speeds or due to other factors, and they

enabled an analysis of whether differences occurred at a

group level or whether they were due to specific fore-

casters within the group.

3. Results

a. First 5min

The first 5min characterizes a time in which forecasters

were busy loading their radar data and familiarizing

FIG. 4. Examples of the four defined stages occurring within control group participant C5’s and experimental group participant E6’s

warning decision process. With the exception of the first 5min, the general duration of each stage lasted 1–3min. Severe thunderstorm

(SVR) issuance times are shown for the McClain storm (M in black) and Pontotoc storm (P in black), and first SVS issuance times are

shown for theMcClain storm (m in red) and Pontotoc storm (p in red).Additional issuance decisions potentially impacting analyzed stages

include the issuance of a special weather statement (s in blue) and the issuance of a second SVS for theMcClain storm (m in blue). Vertical

dashed lines indicate the timing of severe weather reports (see Fig. 5).
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themselves with the weather scenario. Video and

retrospective recall data show that forecasters in both

groups spent much of their time sampling the re-

flectivity profiles of the McClain and Pontotoc storms,

frequently moving back and forth between the two

storms while climbing in elevation for vertical com-

parison. The eye fixation measures of the control

(5-min PAR updates) and experimental (1-min PAR

updates) groups reflect this observed behavior. At-

tention was given primarily to the reflectivity AOI,

with the mean fixation count in this AOI exceeding

that of any other AOI [Countcon(std dev)5 401 (34)

and Countexp(std dev)5 377 (77), where ‘‘con’’ is the

control group, ‘‘exp’’ is the experimental group, and

std dev stands for standard deviation]. The second

highest mean fixation count for both groups occurred

within the velocity AOI [Countcon(std dev)5 128 (69)

and Countexp(std dev)5 119 (53)]. Only the deeper

McClain storm was visible at higher elevations, and

for most forecasters a choice was made to prioritize

attention on this storm. These observations led one

participant in each group to issue a severe thunder-

storm warning on the McClain storm because they

thought that the storm was ‘‘Going to take off’’ after

seeing ‘‘65 dBZ above 25 kft’’ (C15) and ‘‘50 dBZ

above 30 kft’’ (E15). One additional participant in the

experimental group (E5) also decided to be ‘‘Pro-

active to be ready to issue a warning’’ and therefore

used this time to prepare a similar warning (Fig. 5).

None of the other forecasters, however, visited the

WarnGen AOI during this time.

Both groups’ scanpaths were relatively more similar

during these first 5min compared to the later defined

stages (Fig. 6). Differences in the groups’ similarity

scores for four of the five MultiMatch dimensions were

not statistically significant, indicating a comparable level

of variability in forecasters’ scanpaths within each

group. However, the groups did differ with respect to

fixation duration (p value , 0.001), with the experi-

mental group’s lower similarity scores indicating more

differences in their processing of these data (Fig. 6e).

The experimental group’s larger variation in mean

fixation duration was most evident within the reflec-

tivity and especially velocity [Durcon(std dev)5
395ms (48ms) and Durexp(std dev)5 486ms (132ms)]

AOIs, where the experimental group’s spread in fixa-

tion duration was notably greater than that of the

control group.

b. 2min prior to warning decision

Forecasters’ eye movements in the 2min preceding a

warning decision were analyzed for up to three occa-

sions. No differences in fixationmeasures (not shown) or

any of the five MultiMatch similarity scores were found

to be statistically significant between the groups prior to

the first warning on theMcClain storm (Fig. 6). For most

FIG. 5. (top) Control and (bottom) experimental group participants’ warning products issued during the weather

scenario. Markers are the same as in Fig. 4. Additionally, the SVR issuance time for the development west of the

McClain storm is shown (w in blue).Vertical dashed lines indicate the timing of the severe weather reports asso-

ciated with the McClain storm.
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participants, video data showed that interrogation con-

tinued in a manner similar to the first 5min, such that

fixations in the reflectivity AOI were 3–4 times as

frequent as those in the velocity AOI. However, most

forecasters expressed that they were ‘‘Concerned with

the McClain cell’’ (e.g., C5) after seeing an increasing

FIG. 6. Boxplot distributions of similarity scores for the fiveMultiMatch measures: (a) vector, (b) direction, (c) length, (d) position, and

(e) duration for the control group (left position, black) and experimental group (right position, blue). Red boxes indicate distributions that

are statistically significantly different according to the Wilcoxon–Mann–Whitney rank-sum test (* indicates a p value , 0.05, ** for

a p value, 0.01, and *** for a p value, 0.001). Nonoverlapping notches also indicate strong evidence for differing medians. Red crosses

(1) indicate outlier values that are less (greater) than 1.5 times the lower (upper) quartile.
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trend in reflectivity values and a three-body scatter spike

indicative of large hail associated with this storm. With

these observations, forecasters shifted their attention to

the McClain storm in the 2min leading up to their de-

cisions to warn, resulting in reduced references and at-

tention given to the Pontotoc storm in the retrospective

recall and video data.

Although fixation measures between the control and

experimental groups were also not statistically signifi-

cantly different in the 2min prior to the Pontotoc

warning (not shown), greater variability in the control

group’s scanpaths was observed in the vector and length

MultiMatch dimensions as a result of two participants’

anomalous scanpaths (Figs. 6a,c). Video data showed

that the lower vector similarity scores were due to C12’s

chosen method for navigating through the radar data.

While C12 preferred to click on icons located in the

control AOIs (Fig. 7a), all other forecasters followed the

taught method of toggling with computer keys. C15 was

predominantly responsible for the lower length simi-

larity scores because of their decision (unlike other

forecasters) to focus interrogation only on the re-

flectivity AOI since their ‘‘Objective [was] to find hail

cores aloft’’ (Fig. 7b). The overall shape of C12’s scan-

path and the shorter saccades belonging to C15’s scan-

path prior to the Pontotoc storm warning decision were

visibly different than that of C10’s. Participant C10 spent

time ‘‘Looking for increases in velocity at 0.58’’ and

‘‘Checking 70dBZ’’ heights, and their scanpath (Fig. 7c)

was a more typical representation of how forecasters

interrogated the radar data prior to the Pontotoc

warning decision. As this representative gaze plot

shows, although forecasters’ attention was distributed

heavily within the reflectivity AOI prior to the Pontotoc

storm warning, they also tended to check the velocity

AOI. Both the video and retrospective recall data show

that forecasters attended to the velocity AOI to analyze

not only low-level wind signatures like C10, but also

midlevel rotation and storm divergence (Fig. 7c).

While just two participants’ unusual fixation pat-

terns explained the control group’s lower scanpath

similarity prior to the Pontotoc warning, more

prominent group differences occurred prior to the

second McClain warning decision. On average,

participants in the experimental group fixated twice

as often in the WarnGen AOI than those in the

control group [Countcon(std dev) 5 27 (37) and

Countexp(std dev)5 62 (81)], while participants in

the control group fixated more frequently within

the velocity AOI [Countcon(std dev)5 48 (31) and

Countexp(std dev)5 33 (29)] but for a statistically significant

shorter mean duration [Durcon(std dev) 5 372ms (81ms)

and Durexp(std dev)5 452ms (49ms)] (p value 5 0.0133).

The higher velocity AOI fixation count corresponds to

the control group participants’ more frequent observa-

tions of the McClain storm’s strengthening low-level

wind signatures, such that participants were seeing

‘‘Downburst winds starting to spread out from the core’’

(C11) and ‘‘Higher winds along the northern flank. . .

one pixel 34 kts’’ (C5) (1 kt5 0.51m s21). Experimental

group participants’ greater use of WarnGen largely ex-

plains their statistically significant lower similarity

scores for four of the five MultiMatch dimensions

(Fig. 6). For example, E11’s low similarity scores were

due to spending much of these 2min issuing a cancel-

lation on the first McClain warning, having previously

seen a downward trend in the reflectivity core (Fig. 8a).

Following this cancellation, he ‘‘Noticed a gigantic three

body scatter spike coming off that core that had 50 dBZ

at 32 kft,’’ and quickly decided to issue a second warning

on this storm. In addition to E11’s cancellation, obser-

vations of increasing reflectivity values aloft (and an

associated updraft pulse) coupled with a storm report

prompted E6 (Fig. 8b) and E8 to update the first

McClain storm warning during these 2min. E15’s use of

WarnGen during this time was a result of his decision to

issue a warning on storm development to the west of the

McClain storm given the strengthening 1-min trends in

its reflectivity core (Fig. 5). Unlike these four partici-

pants in the experimental group, others within this

group used their time to focus only on the radar data and

produced a scanpath evidently different from those

that carried out WarnGen-based tasks (e.g., E14; see

Fig. 8c). Although these other experimental group par-

ticipants checked the Pontotoc storm intermittently,

most of their time was spent on the McClain storm

‘‘because it had various reports and the warning [was]

coming close to expiration’’ (E14).

c. Warning issuance process

The warning issuance process usually took 1–3min to

complete, and the retrospective recall and video data

show that most forecasters followed a typical routine.

This routine involved forecasters loading WarnGen,

using the ‘‘drag me to storm’’ icon to set their polygon,

adjusting polygon vertices, looping reflectivity data

(usually at 0.518), readjusting vertices to better account

for storm development and motion, choosing call to

actions, creating and scanning the text, and finally

signing and sending the warning. The majority of the

forecasters’ scanpath patterns were thusmostly confined

to the reflectivity and WarnGen AOIs.

Although forecasters’ fixation measures were com-

parable across both groups during the issuance of the

first McClain warning, four participants’ deviation from

the typical issuance routine resulted in statistically
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FIG. 7. Gaze plots depicting the scanpaths of participants (a) C12, (b) C15, and (c) C10 in the 2min prior to the

Pontotoc storm warning decision. Circles represent fixations, the circle center identifies the fixation location, and

the circle size characterizes the fixation duration. Lines between fixations represent the corresponding saccades. The

background screenshot is the final frame from the period depicted.
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FIG. 8. Gaze plots depicting the scanpaths of participants (a) E11, (b) E6, and (c) E14 in the 2min prior to the

second McClain storm warning decision. Note that the WarnGen tool could be toggled on and off at any time and

sometimes did not appear in the final screen capture.
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significant lower scanpath similarity scores within the

experimental group for all five MultiMatch dimensions

(Fig. 6). For example, despite making a decision to warn,

E2 reported that he did not feel the urgency to issue the

warning given that the ‘‘Situation was not rapidly

evolving’’ and he could ‘‘Afford to spend time on [the]

warning product [to get a] good handle on what’s going

on’’ (Fig. 9a). While issuing the first McClain storm

warning, E2 spent considerably more time than other

forecasters watching storm trends, ensuring that the

Pontotoc storm did not require his attention, and as he

reported, ‘‘Nitpicking small details.’’ Similarly, while

designing the warning, E12 ‘‘Spent time thinking about

decisions’’ by analyzing trends in radar data and care-

fully considering what threats to include in the warning,

which call to actions to select, and for how long the

warning should be issued (Fig. 9b). Additionally, two

forecasters struggled with technical disruptions when

issuing the warning. E11 struggled to set the polygon

correctly because he ‘‘[Couldn’t] fine tune counties as

much as [he would] like,’’ while E14 found that the

polygon ‘‘Kept snapping around on [him],’’ causing him

to switch between the reflectivity and WarnGen AOIs

frequently and to have more broadly distributed fixa-

tions across the reflectivity AOI after repeatedly read-

justing the vertices (Fig. 9c).

The few technical challenges observed during the

issuance of the first McClain warning did not arise during

the Pontotoc warning issuance and thus did not reduce the

scanpath similarity among participants. Furthermore, the

majority of participants’ decisions to issue this warningwere

prompted within 5–10min of receiving the first hail report

and observing increased reflectivity values as the ‘‘[Ponto-

toc] storm continues to get bigger’’ (E10). The timing and

reasoning of the Pontotoc storm warning was therefore

muchmore similar than for the firstMcClain stormwarning

(Fig. 5). It is then unsurprising that forecasters followed the

routine warning issuance process for the Pontotoc storm,

and no statistically significant differences between the con-

trol and experimental groups’ fixation measures or Multi-

Match dimensions were observed (Fig. 6).

For most participants, the final warning was issued

again on the McClain storm (Fig. 5). Unlike the first

McClain warning, participants’ scanpaths in the exper-

imental group during this second issuance were more

similar to one another than participants’ scanpaths in the

control group (Fig. 6). The scanpaths of three partici-

pants in the control group explain why the vector and

position similarity scores were statistically significantly

lower for this group. First, despite most other partici-

pants thinking that the McClain storm continued to

pose a severe weather threat, C4 was ‘‘Not impressed

with the storm’’ and ‘‘Reluctantly’’ decided to issue the

second McClain storm warning after receiving all storm

reports (Fig. 5). He zoomed into the McClain storm

during this issuance and transitioned between the re-

flectivity and WarnGen AOIs only once (Fig. 10a). This

single transition is an important aspect of C4’s scanpath

because it was more typical for forecasters to transition

between these two AOIs multiple times during warning

issuance. Like C4, C2 also ‘‘Did not think the storm was

severe enough to warn on again.’’ However, the first hail

report associated with the McClain storm prompted C2

to hesitantly issue a second warning given that his first

McClain storm warning was issued early in the case and

would soon be expiring (Fig. 5). C2’s hesitance was ev-

ident in his numerous revisits to the reflectivity AOI to

sample the magnitude of the high-reflectivity core while

creating the warning. This behavior resulted in many

more transitions between the reflectivity and WarnGen

AOIs than what was typical of other participants

(Fig. 10b). The third control group participant that

presented an unusual scanpath was C10. While the is-

suance of the second McClain warning was a quick

process for this participant, he had previously noted

‘‘Increasing values in velocity’’ and, therefore, visited

the velocity AOI to monitor these data while designing

the warning (Fig. 10c). If at all, video data show that

most other participants only glanced at the velocity AOI

during this warning issuance.

d. Warning update process

The timing and reasoning of the first update to the

McClain storm warning was more varied among par-

ticipants in the experimental group than those in the

control group.Whereas retrospective recall data showed

that a storm report drove more than half of the control

group participants’ decision to issue this SVS, most ex-

perimental group participants issued this update be-

cause of ‘‘maintenance reasons,’’ such as altering the

expected weather threat based on radar observations,

trimming areas of the warning polygon, or simply

providing a continuation of the warning. The experi-

mental group’s greater spread in fixation counts

within the reflectivity [Countcon(std dev)5 42 (30) and

Countexp(std dev)5 40 (40)] and WarnGen [Countcon
(std dev)5 124 (59) and Countexp(std dev) 5 146 (96)]

AOIs, along with their statistically significant lower

direction similarity scores (Fig. 6), illustrates their

more variable scanpaths during this warning update

compared to the control group. As observed in the

video data, the experimental group’s lower direction

similarity scores occurred as a result of participants

who either updated the warning with an unusually

quick or an unusually extended process. For example,

while a couple of experimental group participants
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issued the SVS without changing any aspect of the

warning because they thought there had ‘‘Been little

change in the storm overall’’ (e.g., E10; see Fig. 11a),

others spent considerable time assessing the radar data,

updating the expected weather threat, and carefully ad-

justing the polygon vertices (e.g., E5; see Fig. 11b). These

FIG. 9. Gaze plots depicting the scanpaths of participants (a) E2, (b) E12, and (c) E14 during the issuance of the

first McClain storm warning.
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contrasting warning update processes were not observed

in the control group; rather, all participants in the control

group changed at least one aspect of the warning.

Six participants in each group chose to issue an SVS on

the Pontotoc storm (Fig. 5), and since no severe weather

was reported for this storm, all updates were based only

FIG. 10. Gaze plots depicting the scanpaths of participants (a) C4, (b) C2, and (c) C10 during the issuance of

the second McClain storm warning.
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on maintenance reasons. Video data showed that the

experimental group’s statistically significantly lower di-

rection similarity scores were primarily a result of E15’s

more careful adjustment of the warning polygon vertices

and lack of editing within the text portion of theWarnGen

AOI compared to other participants in this group. While

the control group was more similar with respect to scan-

path direction, they were statistically significantly less

similar than the experimental group in the length and

positionMultiMatch dimensions (Fig. 6). The lower length

similarity scores were due to participants C4 (Fig. 12a) and

C15 (Fig. 12b) focusing their attention predominantly in

the reflectivity and WarnGen AOIs, respectively. C4 is-

sued this update to trim the warning polygon, while C15

wanted to add text in the warning to communicate the

expected hail threat, which resulted in C4 and C15 having

the fewest fixations in the WarnGen and reflectivity AOIs

out of the control group, respectively. Finally, the statisti-

cally significantly lower position scores in the control group

were a result of C5’s sporadically placed fixations, which

according to the video data likely resulted from his eye

gaze darting between the keyboard and computer screen

while editing warning text.

e. Differences in duration

Unlike the vector, direction, length, and position

MultiMatch measures, similarity in fixation duration is

difficult to visualize in gaze plots, and thus it is

FIG. 11. Gaze plots depicting the scanpaths of participants (a) E10 and (b) E5 during the first McClain storm warning update.
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challenging to compare between forecasters. When fo-

cused on a piece of information, a person’s fixation du-

ration is indicative of their level of engagement and

effort in extracting and processing it (Poole and Ball

2006; Bojko 2013). In each of the four defined stages, the

difference in fixation duration similarity scores among

control group participants and among experimental

group participants was statistically significant at

least once (Fig. 6e). However, in only one of these in-

stances did the group with statistically significant lower

duration similarity scores also have statistically signifi-

cant lower similarity scores in other MultiMatch

dimensions (Fig. 6). In the other instances, either no

statistically significant difference was found for the

vector, direction, length, or position dimensions, or the

group that experienced statistically significantly more

variation in duration was the one to experience statisti-

cally significantly less variation in other dimensions

(Fig. 6). This result demonstrates that even when fore-

casters’ placement of and transition between fixations is

similar, how intently they focus on information can

still vary.

4. Discussion and conclusions

This eye-tracking experiment provided an opportu-

nity to demonstrate a mixed-methods approach to col-

lecting forecasters’ eye movement data, retrospective

FIG. 12. Gaze plots depicting the scanpaths of participants (a) C4 and (b) C15 during the first Pontotoc storm warning update.

518 WEATHER AND FORECAST ING VOLUME 33

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 02:15 PM UTC



recalls, and computer display activity videos in a sim-

plified warning scenario. Working in experiment con-

ditions, we found that forecasters were comfortable

knowing that their eyes were being tracked, they re-

sponded well to sitting relatively still throughout the

study, and were generally accepting of the need to

constrain both the amount of data available for in-

terrogation and the flexibility in data display. To allow

for some real-life interrogation practices, forecasters

were given the ability to navigate through radar data in

time and space and reposition storms within AOIs

through zooming and panning. The most notable limi-

tation in providing these viewing abilities was that all

forecasters toggled frequently in time and height, so

analysis of eye movement data alone could only inform

on the type of information that was being viewed instead

of what was specifically being viewed by a forecaster at

any given time. Furthermore, while these viewing abil-

ities did not affect forecasters’ bulk fixation measures, it

is possible that the MultiMatch dimensions were im-

pacted. In light of the limitations resulting from these

viewing abilities, interpretation of the eye movement

results alongside the video and retrospective recall data

was essential for determining what portion of the storm

forecasters were viewing (e.g., low-level velocity vs

storm-top divergence or magnitude of the reflectivity

core at the lowest elevation vs at 20 kft) and what their

related thoughts were. Providing meaningful explana-

tion to all quantified differences in forecasters’ eye

movements required joint consideration of all of the

collected data throughout the analysis process.

A more specific goal of this eye-tracking experiment

was to use forecasters’ eye movement data alongside the

qualitative data to identify and explain differences in

their warning decision processes as a result of using

different radar update speeds. However, we found that

the fixation measures were generally comparable

throughout the four defined stages due to forecasters’

similar distributions of attention regardless of whether

1- or 5-min PAR updates were used. In retrospect, we

believe that the chosen weather scenario strongly

influenced this result. Most forecasters had stated prior

to beginning the case that they expected the weather

threat to be primarily hail and secondarily wind. It is

then unsurprising that forecasters focused pre-

dominantly in the reflectivity AOI, switching often be-

tween the persistent McClain and Pontotoc storms, with

more intermittent checking in the velocity AOI. The

threat expectation for these slow-moving multicell

storms did not change throughout the case, and thus this

interrogation pattern was maintained for much of the

hour. It remains to be seen whether differences in the

fixation measures of forecasters using 1- and 5-min PAR

data would be greater if a more dynamic event with

changing weather threats was presented [e.g., such as the

case presented in Wilson et al. (2016)].

Forecasters’ eye movements were further analyzed us-

ing the MultiMatch scanpath comparison algorithm

(Jarodzka et al. 2010). Although other scanpath compar-

ison methods also maintain the temporal ordering of fix-

ation sequences (e.g., Levenshtein 1966; Cristino et al.

2010; Jarodzka et al. 2010; Anderson et al. 2015), the

MultiMatch method was chosen because it compares

scanpaths at a finer spatial scale. With this higher spatial

resolution, we found that the MultiMatch method de-

tected statistically significant differences in the variability

of forecasters’ scanpaths in the control and experimental

groups. The video and retrospective recall data revealed

that these differences occurred as a result of the sensitivity

of the MultiMatch method to how individual forecasters

interacted with the user interface, tackled technological

glitches in WarnGen, and approached tasks differently.

The findings from this experiment suggest that appli-

cations of eye-tracking and qualitative researchmethods

together could be useful for other avenues of opera-

tional meteorology research.With new types of data and

products being introduced to forecasters often, there are

opportunities to use these methods to evaluate the

learnability and usability of this new information (e.g.,

Jacob and Karn 2003). Given the highly dynamic display

systems that forecasters use during operations, focused

evaluations of simplified interfaces would first be nec-

essary to analyze and interpret basic eye movement.

This research would support the development of user-

friendly interfaces that display information in an effec-

tive manner and improve human–computer interactions

for operational meteorologists. We are hopeful that fu-

ture applications of these research methods, such as the

above-suggested usability studies, will expand our un-

derstanding of forecasters’ cognition and act to support

their important role within the weather enterprise.
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