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ABSTRACT

This work demonstrates the influence of the initial amplitude of the sea surface temperature anomaly

(SSTA) associated with El Niño–Southern Oscillation (ENSO) following its evolutionary phase on the

forecast skill of ENSO in retrospective predictions of the Climate Forecast System, version 2. It is noted

that the prediction skill varies with the phase of the ENSO cycle. The averaged skill (linear correlation) of

Niño-3.4 index is in a range of 0.15–0.55 for the amplitude of Niño-3.4 index smaller than 0.58C (e.g., initial

phase or neutral condition of ENSO), and 0.74–0.93 for the amplitude larger than 0.58C (e.g., mature con-

dition of ENSO) for 0–6-month lead predictions. The dependence of the prediction skills of ENSO on its

phase is linked to the variation of signal-to-noise ratio (SNR). This variation is found to be mainly due to the

changes in the amplitude of the signal (prediction of the ensemblemean) during different phases of the ENSO

cycle, as the noise (forecast spread among the ensemble members), both in the Niño-3.4 region and the whole

Pacific, does not depend much on the Niño-3.4 amplitude. It is also shown that the spatial pattern of un-

predictable noise in the Pacific is similar to the predictable signal. These results imply that skillful prediction

of theENSOcycle, either at the initial time of an event or during the transition phase of theENSOcycle, when

the anomaly signal is weak and the SNR is small, is an inherent challenge.

1. Introduction

El Niño–Southern Oscillation (ENSO) is a naturally

occurring fluctuation of the coupled ocean–atmosphere

system and the leading mode of seasonal-to-interannual

variability in the tropics (e.g., Sarachik and Cane 2010).

ENSO is also the primary source for the predictable

component of global atmospheric, oceanic, and terrestrial

climate variations on seasonal and interannual time scales

(Ropelewski and Halpert 1987; Glantz 2000; National

Research Council 2010), including surface air tempera-

ture and precipitation inNorthAmerica (Ropelewski and

Halpert 1986) and sea surface temperature (SST) vari-

ability in the North Pacific (Wen et al. 2012; Hu et al.

2014b) andNorthAtlantic (Hu andHuang 2007; Hu et al.

2013a). Nevertheless, the limits of predictability of ENSO

are still ambiguous and are a topic of continuing debate.

Chen et al. (2004) presented successful retrospective

forecasts of the interannual climate fluctuations in the

tropical Pacific Ocean for the period from 1857 to 2003
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at lead times of up to 2 years, using a coupled ocean–

atmosphere model. They argued that the evolution of El

Niño is more strongly controlled by self-sustaining in-

ternal dynamics than by stochastic forcing, and coupled

model prediction of El Niño, therefore, depends more

on the initial conditions (ICs) than on unpredictable

atmospheric noise, leading to a long predictability ho-

rizon. On the other hand, skill estimates of predictions/

hindcasts of ENSO from state-of-the-art climate models

suggest much lower estimates for predictability limits

and, further, an appreciable seasonal dependence in

predictability (Kumar and Hu 2014; Kumar et al. 2017).

Shorter limits on ENSO predictability are also appar-

ent in forecast plumes of ENSO at various operational

centers that depict considerable forecast divergence

among ensemble members that start from small dif-

ferences in ICs (e.g., see Figs. S1 and S2 in the online

supplemental material). An improved understanding

of limits of predictability of ENSO is important for

quantifying our ability in predicting global climate var-

iability and formanaging user expectations on the future

prospects of seasonal predictions.

Over the last few decades, significant progress has been

achieved in operational ENSO prediction; however,

prediction challenges remain (Barnston et al. 2012;

Zheng et al. 2016; Zhang and Gao 2016). For example,

ENSO prediction skill is lower in boreal spring and

summer than in boreal autumn and winter, indicating

difficulties in forecasting initial or transition phase of

ENSO (Kumar et al. 2017). In a recent example, the

majority of ENSO prediction models were unable to suc-

cessfully predict the follow-up La Niña in 2011/12 and the

interrupted warm event in 2012 (http://iri.columbia.edu/

climate/ENSO/currentinfo/archive/index.html; Zhang et al.

2013), a scenario that seems inconsistent with the gen-

eral sense that the prediction skill of ENSO is high. For

example, the overall correlation between predicted and

observed monthly mean Niño-3.4 index can reach 0.7–

0.8 for 7–8-month lead predictions (Hu andHuang 2007;

Jin et al. 2008; Barnston et al. 2012; Xue et al. 2013) and

is much higher compared to the seasonal skill of pre-

cipitation and surface temperature over land (Peng et al.

2013; Zhu et al. 2013).

In addition to forecast skill dependence on phase of

the ENSO cycle (and season), there are also appreciable

interdecadal variations in the prediction skill of ENSO

(Wang et al. 2010; Barnston et al. 2012). One hypothesis

for the decreased skill of ENSO prediction since 2000

attributes it to the reduced amplitude of the SST anomaly

(SSTA), which is associated with a weakening of the

atmosphere and ocean coupling in the whole tropical

Pacific (Hu et al. 2013b, 2017a). This hypothesis is sup-

ported by evidence based on signal-to-noise ratio (SNR)

consideration and its relationship with expected pre-

diction skill; large (small) SNR corresponds to high (low)

value for differentmeasurements of prediction skill (Kumar

and Hoerling 2000; Tang et al. 2004, 2005, 2008; Tang

and Deng 2011; Kumar and Hu 2014).

Moreover, forecast spread among individual models

(or spread among individual ensemble members of a

model) is quasi-independent of the amplitude of the

ensemble-mean anomalies (e.g., Kumar and Hu 2014),

implying that the interannual variation of SNR (or

predictability) is mainly determined by signal (ensemble

mean) instead of noise (model spread) (Tang et al. 2005,

2008). Analyzing standard deviation and prediction

skill over a 4-yr running window, Wang et al. (2010) also

showed that prediction skill was higher for both Niño-3.4
and global SSTAwhen the variance of observed Niño-3.4
index was larger, confirming the link between prediction

skill and ENSO (signal) intensity (Jin et al. 2008). These

studies indicate that lower prediction skill for ENSO

during the initial or the transition phase of the ENSO

cycle in boreal spring could simply be an artifact of var-

iations in the SNR during the ENSO cycle, particularly

if the noise component does not have appreciable vari-

ations during the ENSO cycle.

As the SNR is an important factor in determining

variations in predictability and prediction skill, a com-

prehensive analysis of the variations of the SNRwith the

ENSO cycle, and further, of the signal and noise sepa-

rately, is of importance. A similar analysis for variations

of seasonal atmospheric and terrestrial anomalies in the

context of ENSOSSTAs as a boundary forcing was done

by Kumar et al. (2000), who examined the impact of SST

forcing on different moments of the probability density

function (PDF) of seasonal-mean atmospheric states

based on an ensemble of atmospheric general circula-

tion model (AGCM) simulations. They noted that the

impact of interannual variations in SSTs (mainly ENSO)

on the spread of the seasonal-mean atmospheric states

(i.e., the second moment of the PDFs) over the

Pacific–North American region during boreal winter

was small (Kumar and Hoerling 2000; Kumar and

Chen 2015; Jha et al. 2018). This conclusion was in

contrast with the well-defined impact of the amplitude of

ENSO SSTA on the first moment (seasonal-mean

anomaly) of the PDF of the seasonal-mean atmo-

spheric state. In seasonal predictions of atmospheric

anomalies, therefore, the results of Kumar and Hoerling

(1998) and Kumar et al. (2000), further confirmed by the

analysis of Peng and Kumar (2005), Jha and Kumar

(2009), Peng et al. (2011), and Kumar et al. (2017) for

other variables, implies that the dominant contribution

to seasonal predictability and prediction skill from one

year to another comes from the impact of SSTs on the
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first moment of the PDF, with little impact of SSTs on

the second moment of the PDFs.

In the context of prediction skill of ENSO as an initial

value problem, the question we investigate here is, How

do the SNR and prediction skill vary with the amplitude

of ENSO (which in turn is also a function of the phase of

the ENSO cycle)? Further, can the variations in the

prediction skill of ENSO following its cycle simply be

explained by SNR considerations too (in that the vari-

ations in the SNR are dominated by the variations in the

signal component, with the noise component having

much smaller variations)?We demonstrate that this may

indeed be the case. The analysis is based on an extensive

hindcast dataset of coupled seasonal forecast system

with an ensemble of forecasts for a target season avail-

able. Here, we analyze the dependence of prediction

skill of ENSO on its amplitude (corresponding to the

ENSO cycle). Furthermore, the variations in the fore-

cast uncertainty or spread of the amplitude of ENSO

SSTA during different phase of the ENSO cycle are also

studied. The rest of the paper is organized as follows:

The data used in this work are introduced in section 2,

the results are shown in section 3, and a summary and

discussion are given in section 4.

2. Data

The retrospective predictions (also called hindcasts

or forecasts hereafter) examined in this work are from

the NCEP Climate Forecast System, version 2 (CFSv2;

Kumar et al. 2012; Hu et al. 2013a; Xue et al. 2013; Saha

et al. 2014). The predictions are initialized in all calendar

months from January 1982 to December 2010. For each

month, predictions with ICs at 0000, 0600, 1200, and

1800 UTC were produced every 5 days starting 1 Janu-

ary. In this analysis, we use predictions from 24 ICs in

each month for subsequent target seasons (Kumar and

Hu 2014). Following a convention in climate forecast

(e.g., Kumar et al. 2012), we refer to the 0-month lead

prediction as predictions initialized from the previous

month. For example, for the 0-month lead prediction of

January, the 24 predictions of the monthly means are

from ICs on 2, 7, 12, 17, 22, and 27 December at 0000,

0600, 1200, and 1800 UTC. The ocean and atmosphere

ICs are from the NCEP Climate Forecast System Re-

analysis (CFSR; Saha et al. 2010; Xue et al. 2011).

The atmospheric component of CFSv2 has about

100 km 3 100 km horizontal resolution with 64 vertical

layers (T126L64) and is coupled to version 4 of the

Modular Ocean Model (MOM4), as well as a three-

layer sea ice model and a four-layer landmodel. For the

ocean model, there are 40 levels in the vertical direction,

extending to themaximumdepth of 4737m. The horizontal

resolution is 0.58 zonally and 0.258 meridionally in the

tropics, tapering to a global resolution of 0.58 northward
of 108N and southward of 108S.
In addition to the 9-month hindcasts during 1982–2010,

forecasts of CFSv2 have been operational at NCEP since

March 2011 (Saha et al. 2014). It has been demonstrated

that CFSv2 has good simulation and prediction skill for

SSTA in the tropical Pacific associated with ENSO (Zhu

et al. 2012; Kim et al. 2012; Xue et al. 2013; Zheng et al.

2016). Compared with version 1 of CFS (Xue et al. 2013)

and other ENSO forecast models (Zheng et al. 2016),

CFSv2 prediction skills for SSTs in the tropical Pacific

and for ENSO are comparable. Beyond the tropical Pa-

cific, CFSv2 has also shown reasonable prediction skill

for SSTA in the North Atlantic (Hu et al. 2013a) and the

North Pacific (Wen et al. 2012; Hu et al. 2014b), as well as

for theAsian summer and winter monsoon (e.g., Zuo et al.

2013; Jiang et al. 2013a,b; Ramu et al. 2016) and North

American climate variability (e.g., Peng et al. 2013; Zhu

et al. 2013).

For validation, seasonal-mean SST data used in this

work are version 2 of the NOAA optimal interpolation

(OIv2) SST dataset at 18 3 18 resolution (Reynolds et al.

2002). The monthly mean Niño-3.4 index is the average

of SSTA over 58S–58N, 1208–1708W for both OIv2 and

CFSv2 hindcasts. According to Xue et al. (2013), two cli-

matologies are used to compute the anomalies both for

the CFSv2 predicted and OIv2 analyzed SST in order to

eliminate the impact of a discontinuity in the initial ocean

analysis and subsequent predictions around 1998/99 (Xue

et al. 2011; Kumar et al. 2012). The first climatology is the

average between January 1982 and December 1998, and

the secondonebetween January 1999 andDecember 2010.

Also, all themonthly mean SST data both from the CFSv2

prediction and from OIv2 are converted into 3-month

seasonal means prior to the correlation and signal and

noise calculations. The CFSv2 prediction skills are re-

ferred to as the linear correlations between CFSv2

predicted and OIv2 analyzed 3-month-mean SSTA.

3. Results

a. Prediction skills of ENSO and no-ENSO months

To analyze the dependence of the prediction skill of the

ENSO cycle on its phases, we first divide the ENSO cycle

based on the observed (OIv2) Niño-3.4 index (e.g., IC of

the forecast) into two groups: one with an amplitude

larger than 0.58C (called ENSOmonths) and another one

with an amplitude smaller than or equal to 0.58C (called

no-ENSO months). Based on this classification, 62% of

the total months belong to ENSOmonths and 38% of the

total months are no-ENSOmonths.We then compute the
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prediction skills of Niño-3.4 index as well as signal and

spread in the forecast Niño-3.4 index for the two groups.

Here, the forecast spread, representing the noise (or the

uncertainty) in ENSO predictions, is defined as the stan-

dard deviation of individual prediction members from the

predicted ensemble-mean SSTA, denoted by snoise, while

the signal refers to as the standard deviation of the

ensemble-mean SSTA, denoted by ssignal. For forecast

variable Fm,n with ensemble member m and year n,

s
noise

5

"
1

(M2 1)(N2 1)
�
n5N

n51
�

m5M

m51

(F
m,n

2F
n
)
2

#0:5

,

s
signal

5

�
1

N2 1
�
n5N

n51

(F
n
2F)

2
�0:5

,

F
n
5

1

M2 1
�

m5M

m51

F
m,n

,

F5
1

(M2 1)(N2 1)
�

m5M

m51
�
n5N

n51

F
m,n

,

SNR5
s
signal

s
noise

,

where M 5 24 (total ensemble members) and N 5
29 (years).

It is noted that the prediction skills of the Niño-3.4
index have large differences between the two groups

(Fig. 1). Here, the correlations are calculated using the

mean and standard deviation in each category. The skill

is much higher for the ENSO months than for the no-

ENSO months. This is generally consistent with the ar-

gument of Wang et al. (2010) that high (low) ENSO

prediction skill corresponds to large (small) ENSO

amplitude. The skill is in a range of 0.14–0.54 for the no-

ENSO month group, and 0.74–0.93 for the ENSO month

group for 0–6-month leads. Interestingly, as shown in

Fig. 2c, where the skill for different forecast lead normal-

ized by skill for 0-lead forecast is shown, the decrease of the

skill with lead time is faster for the no-ENSO group than

for the ENSO group. This is consistent with the slope in

variation between expectedmaximum value of correlation

and SNR [see Fig. 2 of Kumar and Hoerling (2000) and

Fig. 9 of Kumar et al. (2017)]. These results suggest that

achieving higher prediction skill may inherently be chal-

lenging prospect during the initiation of an El Niño or a

La Niña event or their transition phase when the am-

plitude of theNiño-3.4 index is small at the initial time of

the prediction. In contrast, CFSv2 better predicts the

FIG. 1. Dependence of prediction skills of CFSv2 predicted 3-month-mean Niño-3.4 index
on lead time andNiño-3.4 index amplitude based onOIv2 SSTA. Prediction skill is computed

based on all forecasts during January 1982–December 2010. Red (gray) bars represent the

skill when the initial amplitudes of OIv2 jNiño-3.4 indexj. 0.58C (jNiño-3.4 indexj# 0.58C).
The rightmost bar is the average for all 0–6-month leads.
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evolution of a pronounced anomaly, when there is a

large anomaly at the initial time of the prediction.

The differences of the prediction skill between the

ENSO and no-ENSO months are linked to the SNR

differences (Fig. 2b). For example, consistent with the

skill differences, SNR is much larger for the ENSO

months than for the no-ENSOmonths. Consistent with

decrease of prediction skill with lead time, SNR

decreases as lead time increases. The decrease of SNR

is faster for the ENSO months than for the no-ENSO

months, possibly because the SNR at 0-month lead is

much higher for the former than for the latter.

An interesting and an important feature to note is the

similarity in the amplitude of noise between the ENSO

and no-ENSO months for a specified lead time, despite

the fact that the noise in the two groups all increases with

FIG. 2. Dependence of (a) forecast noise (computed as the spread among ensemble

members) and (b) SNR of CFSv2 predicted 3-month-mean Niño-3.4 index on lead time and

Niño-3.4 index amplitude. The analysis is based on all forecasts during January 1982–

December 2010. (c) As in Fig. 1, but for forecast skill relative to the forecast skill in 0-month

lead. Red (gray) bars represent the skills for the initial amplitudes of OIv2 jNiño-3.4 indexj
. 0.58C (jNiño-3.4 indexj # 0.58C). The rightmost bar is the average for all 0–6-month leads.
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increasing lead time (Fig. 2a). This indicates that the spread

among individual forecasts (noise) is independent of the

amplitude of ENSO or signal. The low prediction skill

during no-ENSOmonths, therefore, is almost solely due

to small amplitude of SSTA (signal).

b. Prediction skills of the ENSO cycle

The dependence of the prediction skill on the amplitude

of the Niño-3.4 index is further demonstrated by calculat-

ing the skill in different phases of the ENSO cycle (Fig. 3).

The ENSO cycle is divided into 14 phases based on ob-

served Niño-3.4 index value and its tendency (see Table 1

for details). The x axis of Fig. 3 represents the ranges of

Niño-3.4 index and the y axis is the averaged SSTA (on

the left y axis) and skill (on the right y axis) for different

lead time in each corresponding range of Niño-3.4 index.

The evolution of the skill dependence on the ENSO cycle

in Fig. 3 is consistent with the results shown in Fig. 1,

confirming the prediction skill dependence on the ampli-

tude of theNiño-3.4 index. Furthermore, it is seen that the

skill is less than 0.3 in the initiation (or transition) phase

of an El Niño or a La Niña event. Here, we should point

out that this analysis does not account the asymmetric

evolution between the warm and cold phases of the

ENSO cycle (Hoerling et al. 1997; Kessler 2002; Hu et al.

2014a, 2017b).

The variations in the amplitude of the ensemble-mean

forecast and spread among the forecasts with the ampli-

tude of ENSO are illustrated in Fig. 4. Consistent with the

results shown in Fig. 2, while the forecast ensemble mean

evolves with the ENSO cycle in different phases, the

forecast spread range (shading in Fig. 4) is almost constant

for various phases, implying a quasi-independence of the

forecast spread on amplitude of the predicted ensemble-

mean anomalies. Here, the forecast spread range shown

in Fig. 4 (shading) is referred to as one standard deviation

of the spread. As a result, the variations of SNR values

in various phases of the ENSO cycle (bars in Fig. 4) are

determined by the ensemble-mean anomalies (green

curve in Fig. 4). Thus, SNR (predictability) and pre-

diction skill are low in initial or transition phase of the

ENSO cycle and high in its mature phase (bars in Fig. 4).

We note that constancy of noise within different phases

of the ENSO cycle has important implications for pre-

dictability during different phases of ENSO cycle, and

will be further discussed in section 4.

FIG. 3. Dependence of prediction skill of CFSv2 predicted 3-month-mean Niño-3.4 index

on lead time and 14 ENSO phases classified based on OIv2 SSTA and its tendency (see

Table 1 for details). Bars represent the Niño-3.4 index based onOIv2 SSTA. The blue dashed

lines with different marks are the prediction skill at different lead month, and the black solid

line is themean skill averaged all lead times. The amplitude of theNiño-3.4 index is on the left
y axis while the prediction skill is on the right y axis. The x axis is the range of Niño-3.4 index
for different phases of ENSO. The analysis is based on all forecasts during January 1982–

December 2010.
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c. Spatial distribution patterns of noise and signal
variations

The independence of the SSTA noise on the ampli-

tude of the observed Niño-3.4 index is also valid for the

whole Pacific Ocean. For example, both the spatial

pattern and amplitude of the noise in the Pacific are

almost identical for a specified lead time between the

ENSOmonth and no-ENSOmonth composites (Fig. 5).

The high resemblance of spatial pattern of noise is in-

dicated by linear pattern correlation coefficients of 0.97–

0.98 over the domain displayed in Fig. 5. The spatial

distribution patterns show that large noise is mainly lo-

cated in the eastern tropical Pacific, North Pacific, and

TABLE 1. Classification of 14 ENSO phases based on OIv2 SSTA range and tendency. The numbers in the rightmost column show the

portion of number of months in each phase to total months in all phases.

Phase SSTA range SSTA tendency Portion of each phase (%)

1 0.08 to 0.58C Positive 12

2 0.58 to 1.08C Positive 8

3 1.08 to 1.58C Positive 4

4 .1.58C Both positive and negative 7

5 1.58 to 1.08C Negative 4

6 1.08 to 0.58C Negative 7

7 0.58 to 0.08C Negative 8

8 0.08 to 20.58C Negative 8

9 20.58 to 21.08C Negative 9

10 21.08 to 21.58C Negative 5

11 ,21.58C Both positive and negative 4

12 21.58 to 21.08C Positive 4

13 21.08 to 20.58C Positive 10

14 20.58 to 0.08C Positive 10

FIG. 4. Dependence of ensemble mean (green line) and spread range superimposed on the

forecast ensemble mean (shading) of CFSv2 predicted 3-month-mean Niño-3.4 index on 14

ENSO phases classified based on OIv2 SSTA and its tendency (see Table 1 for details). The

spread range (shading) refers to one standard deviation of the spread. Both the ensemble

mean and spread are for the average of 0–6-month lead hindcasts. Bars represent the cor-

responding SNR. The amplitude of the Niño-3.4 index is on the left y axis while the SNR is on

the right y axis. The x axis is the range of Niño-3.4 index for different phases of the ENSO

cycle. The analysis is based on all forecasts during January1982–December 2010.
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South Pacific, while the small noise is in the western

tropical Pacific and subtropical North and South Pacific.

The noise distribution pattern changes little with in-

creasing lead time.

In addition to similarity in the spatial distribution

of noise between the ENSO and no-ENSO months, the

leading pattern of the noise variability in the tropical

Pacific itself is similar to that of the signal. This is

demonstrated based on the empirical orthogonal

function (EOF) analysis of interannual variability of the

ensemble mean and interannual variability of departure

in the forecasts from the ensemble mean. The EOF

analysis is based on covariance matrix over the global

domain. For the noise variability, to have identical data

length with the signal variability in the EOF calculation,

departure of a randomly selected ensemble member

from the ensemble mean is used. Once the leading pat-

tern of EOF noise variability is obtained, departures of

each of the remaining 23 ensemble members from the

ensemble mean are projected onto the EOF pattern of

FIG. 5. Noise (standard deviation of the spread among ensemble members) in CFSv2

predicted 3-month-mean SSTA (8C) for lead times of (a) 0, (b) 2, (c) 4, and (d) 6months. (left)

The noise for OIv2 jNiño-3.4 indexj . 0.58C, and (right) the noise for jNiño-3.4 indexj #
0.58C.
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noise to get the time series of noise for each forecast

member. This procedure is repeated for forecasts for

different lead times.

Figure 6 shows dominant EOF pattern for the vari-

ability of the ensemble mean and of the noise for 6-

month lead forecasts. The spatial patterns of the leading

mode of the signal (Fig. 6a) and noise (Fig. 6b) have

strong resemblance and are similar to the spatial mode

of ENSO variability. This is confirmed by the time series

of the EOF1 for the signal (Fig. 6c, black curve) that

strongly corresponds to interannual variability of ENSO

[see Fig. 18 of Xue et al. (2011)]. Although the variance

explained by the EOF1 of noise is small on a global

basis, it is appreciable locally in the tropical Pacific. For

example, in the central and eastern tropical Pacific, the

EOF1 of noise (Fig. 6b) can explain 20% total variance

while the EOF1 of ensemble mean (Fig. 6a) can explain

60% total variance (see Fig. S3). The corresponding

second modes mainly reflect variability beyond the

equator (not shown) and explain smaller fractions of

variances (e.g., 9% and 4% variances of signal and en-

semble spread for 6-month lead forecasts, respectively),

and thus are not discussed here. The similarity of the sig-

nal and noise patterns shown in Fig. 6 suggests that var-

iations in individual forecasts from the ensemble mean

are mostly reflected in the amplitude of predicted ENSO

from one forecast to another (i.e., some forecasts have a

stronger anomaly than the ensemble mean while others

are weaker).

From Fig. 6c, we can also see that the corresponding

PC1 of the spread (dots) is largely random. The ran-

domness of PC1 of the spread is confirmed by the fact

that its variance (red curve in Fig. 6c) has no systematic

relationship with PC1 of the ensemble mean (black

curve in Fig. 6c). That is consistent with conclusion that

ensemble member spread (noise) is independent of the

ensemblemean (signal). The results are similar for other

lead-time forecasts (see Fig. S4 for 3-month lead).

4. Summary and discussion

This work investigates the quantitative impact of

ENSO phase and amplitude on prediction skill of ENSO

in retrospective predictions of CFSv2. We note that the

prediction skill varies with the phase of the ENSO cycle.

The forecast skill (linear correlation) of Niño-3.4 index

is in a range of 0.15–0.55 for the no-ENSO months and

0.74–0.93 for the ENSO months for 0–6-month leads.

The differences of the prediction skills are linked to the

SNR differences. SNR is much larger for the ENSO

months than for the no-ENSO months, resulting in

higher predictability for the former than for the latter.

The SNR variation with ENSO cycle is mainly due to the

change in signal, while the noise component is largely

FIG. 6. EOF1 of (a) ensemble mean and (b) spread, and (c) PC1 of ensemble mean (black

curve) and spread (dots) for 6-month lead forecasts. The red curve is the variance of spread

PC1 normalized by its corresponding climatological variance.
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independent of the amplitude of SSTAboth in theNiño-
3.4 region and in the whole Pacific.Moreover, the spatial

patterns for the dominant mode of signal and noise

variability have a strong resemblance and both are

similar to the spatial pattern of ENSO.

The constancy of noise and the spatial similarity

between the predictable signal and the noise can be

used to explain the dependence of correlation skill on

the phase of the ENSO cycle (Fig. 3). The constancy

of noise and spatial structure of the noise mean that

individual forecasts would be scatted around the en-

semble mean. The observed anomalies, on the other

hand, can be one of the forecast ensemble members.

In the transition phase of the ENSO cycle or at the

initiation time of an ENSO event, because of the am-

plitude of noise, and in the presence of a small predict-

able signal, observations could be of the same sign as the

ensemble mean or they could be of opposite sign. This is

illustrated in the plume diagrams of Niño-3.4 SST pre-

dictions for 2015 (Fig. S1) and for 2017 (Fig. S2). For

forecasts during 2015 (a strong El Niño event), because

of a large amplitude for the ensemble-mean anomaly,

all possible forecast outcomes have the same sign. For

2017, however, because of a smaller amplitude for the

ensemble-mean anomaly, some forecasts can also have

an opposite-signed anomaly. In the scenario similar to

2017 case, when correlation is computed over a large

number of weak cases, some of the observed events

would have same sign as the ensemble-mean prediction,

while others would have the opposite sign, resulting in

a small correlation and low predictability. In a mature

phase of ENSO event, however, the observed ENSO

anomalies, even in the presence of noise, would have the

same sign anomalies as the ensemble mean of the fore-

casts (Fig. S1), resulting in a large correlation and high

predictability.

The dependence of the prediction skill on the ENSO

cycle implies that relatively high prediction skill in op-

erational ENSO prediction mainly comes from the skill

during the ENSO events having a large-amplitude Niño-
3.4 index, when the strong anomaly signals of ocean and

atmosphere already exist at initial time of the prediction.

Therefore, the prediction skill of ENSO in seasonal and

interseasonal time scales in state-of-the-art coupled gen-

eral circulation models may be largely due to the success

of nowcasting large anomalies or forecasting the sub-

sequent evolution of the ENSO events that are close to

their mature phase. On the other hand, it is an inherent

challenge for CFSv2 (and other models) to predict the

initiation of an El Niño or a La Niña event or their

transition phase, because during those periods the signal

to be predicted is small while the noise component in the

forecast remains relatively large.

As the prediction skill of ENSO and its connection

with the phase of the ENSO cycle may depend on the

model, it is necessary to compare the results in the

present work with those from other seasonal prediction

systems. For example, based on optimal error analysis,

Tang and Deng (2011) noted that the predictions ini-

tialized from a large amplitude of SSTA have smaller

error growth; this conclusion is different from the anal-

ysis presented here, which shows a quasi-independence

of model forecast spread (noise) with the amplitude of

SSTA (signal).
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