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1. Supplemental Information 1 
Under the United Nations Framework Convention on Climate Change (UNFCCC), all Parties 2 
(countries) have agreed to report anthropogenic emissions by sources and removals by sinks, 3 
including from the land use, land-use change and forestry sector. Reporting is accomplished 4 
through the submission of national reports (National Communications and National GHG 5 
Inventories, biennial reports or biennial update reports), with different requirements for Annex I 6 
and non-Annex I countries (Iversen et al 2014). The United States EPA prepares the official 7 
U.S. Inventory of Greenhouse Gas Emissions and Sinks to comply with existing commitments 8 
under the UNFCCC. 9 
            In 2014, the IPCC released the 2013 Supplement to the 2006 IPCC Guidelines for 10 
National Greenhouse Gas Inventories: Wetlands (IPCC 2014). The Wetlands Supplement 11 
“extends the content of the 2006 IPCC Guidelines by filling gaps in coverage and providing 12 
updated information reflecting scientific advances, including updating emission factors for 13 
human activities on wetlands”. 14 
    Chapter 4 of the Wetlands Supplement provides guidance on estimating emission and 15 
removals of greenhouse gases (CO2, CH4 and N2O) associated with specific activities on 16 
managed coastal wetlands, which may or may not result in a land use change (Wetlands 17 
Supplement, Overview Chapter, p. O-8) (IPCC 2014). Regardless of whether a land-use change 18 
occurs or not, it is good practice to quantify and report significant emissions and removals 19 
resulting from management activities on coastal wetlands in line with their country-specific 20 
definition (IPCC 2014). 21 

The Wetlands Supplement provides methodological guidance on managed coastal 22 
wetlands so that countries can, at a minimum, produce Tier 1 estimates of GHG emissions and 23 
removals for specific management activities that had been shown at the time of writing to be 24 
among the most significant anthropogenic activities in coastal wetlands globally (IPCC 2014). 25 
As it is known that a country’s national circumstances will determine what anthropogenic 26 
activities are significant at a national scale, and that countries will have different levels of 27 
resources and data to report on their GHG emissions and removals, the emphasis of the 28 
Wetlands Supplement and the guidelines that precede it, is on enabling countries to meet the 29 
conditions set by their national circumstances and good practice in national GHG inventory 30 
compilation. 31 

In this supplement we present additional details, methods, assumptions and references 32 
used to calculate our version of a contiguous united states (CONUS) coastal national 33 
greenhouse gas inventory (NGGI). We additionally discuss datasets that contributed less 34 
compared than others to overall uncertainty in greater detail. We provide interesting results, 35 
observations, and discussion regarding results of the analyses that were not discussed in the 36 
main text. 37 
 38 
2. Additional Materials and Methods 39 
Activities data were generating using the coastal change analysis program from 2006 to 2011, 40 
with additional interpretation of palustrine wetland categories done using digital elevation 41 
models (DEMs). A full accounting of spatial products download and utilized is available in 42 
supplemental table 1. 43 
 44 



 

2.1. Probabilistic Mean Higher High Water Spring Maps 1 
To create a probabilistic coastal lands map we utilized digital elevation models archived and 2 
aggregated by the NOAA sea-level rise viewer (NOAA 2016) (Supplemental Table 1). Some 3 
data sources for the San Joaquin Delta (Wang and Ateljevich 2012), Maryland State (Eastern 4 
Shore Regional GIS Cooperative n.d.), and the Northern Gulf of Mexico Region (USGS 2014) 5 
were not archived through the NOAA portal, so we cite the original data sources (Supplemental 6 
Table 1). All DEMs were relative the the NAVD88 datum. In the rare cases in which units were 7 
not in meters (m) relative to NAVD88, they were converted to m in ArcGIS Pro (Esri Inc. 2017). 8 

For the LiDAR maps we corrected for bias and propagated random error by calculating 9 
mean error and root mean square error (RMSE) from weighted averages from a literature 10 
review  (Hladik et al 2013, Medeiros et al 2015, Buffington et al 2016, Holmquist et al in Prep) 11 
(Supplemental Table 3). If a LiDAR pixel intersected a wetland as mapped by C-CAP data 12 
(NOAA 2013) we applied an average 17.3 cm offset using ArcGIS (Esri Inc. 2017) 13 
(Supplemental Fig. 1). 14 

To transform the NAVD88 datum of the LiDAR DEMs to a tidal datum, we used NOAA 15 
tide gauge data. For the NAVD88 to MHHW datum transformation, we used NOAA datums 16 
which had established MHHW and a NAVD88 datum (NOAA 2017). To establish datum 17 
uncertainty we used NOAA’s reported standard errors for tidal datum transformation (NOAA 18 
n.d., n.d., n.d.). This included 705 gauges. To transform MHHW to MHHWS we calculated 19 
MHHWS offsets at gauges using NOAA high-low tide data (NOAA CO-OPS n.d.) and 20 
astronomical records of full and new moons (USNO n.d.). We assumed that the spring tides 21 
occur twice monthly and can have occur between one day before to two days after a full or new 22 
moon. We queried NOAA servers for all of those gauges over the most recent datum period for 23 
the gauge and represented MHHWS relative to MHHW as the mean offset over those time 24 
periods. We represented uncertainty in the datum itself by estimating the standard error of the 25 
mean (Eq. 1). There was a notable and precipitous increase in standard error for gauges that 26 
had few observations of spring tides, which we detected using a piecewise linear regression 27 
(Sonderegger 2012). So we excluded tide gauges from the analysis that had fewer than 31 28 
datapoints. 127 tide gauges were included in the MHHW to MHHWS transformation. 29 

 30 
𝑠𝑒	 = 	 %&

'
 1. 31 

 32 
 In which: 33 

se = standard error of the mean 34 
sd = standard deviation 35 
n = sample size 36 

 37 
For the NAVD88 to MHHW transformation and MHHWS to MHHW offset we extrapolated point 38 
data to a 2-d surface using Empirical Bayesian Kriging (EBK) (Pilz and Spöck 2008, Krivoruchko 39 
2012). We reduced the resolution of both datum transformation layers 300 x 300 m, with pixel 40 
edges snapped to C-CAP’s dimensions. 41 
 Our goal in creating a probabilistic MHHWS layer was to reflect uncertainty in both the 42 
datums themselves (areas with lower-quality datums have greater uncertainty than areas with 43 
higher-quality datums), as well as distance from gauges (areas further away from any gauge 44 



 

have greater uncertainty than those nearer). We calculated total propagated error for NAVD88 1 
measurement, MHHW transformation and MHHWS transformation. For the NAVD88 surface we 2 
used the weighted mean RMSE for wetland surfaces from multiple studies (Supplemental Table 3 
2). For tidal datum transformations we incorporated for two types of uncertainty: 1. uncertainty in 4 
the extrapolation process itself -- the standard error of prediction from the empirical bayesian 5 
kriging output -- and 2. uncertainty in the datums themselves (NOAA n.d., n.d., n.d.), also 6 
extrapolated from points to a 2-d surfaces using empirical bayesian kriging. EBKs were run in 7 
ArcGIS pro (Esri Inc. 2017) with a power semivariogram model, 100 maximum points for each 8 
local model, a local model area overlap factor of 1, 100 simulated semivariograms, a standard 9 
circular neighborhood with a radius of 15, and max and min neighbors of 15 and 10 10 
respectively. 11 

We calculated total propagated uncertainty in all of the transformations algebraically (Eq. 12 
2). We resampled raster resolutions of the DEMs to 30 x 30 m to match C-CAP. At the pixel 13 
level we calculated a Z-score according to Eq. 3 (Schmid et al 2013). We used the function ‘z2p’ 14 
in Python’s (Continuum Analytics, Inc 2017) NumPy package (NumPy Developers 2017) to 15 
calculate a ‘p value’ -- probability of a pixel being below MHHWS -- from the standard score. 16 
 17 

𝑠𝑒()(*+(-,/) 	= 	 𝑅𝑀𝑆𝐸56789: + 	𝑠𝑒<==>(-,/)
: + 𝑠𝑒?@6A.C(-,/)

: + 	𝑠𝑒	<==>D(-,/)
: + 𝑠𝑒?@6A.:	(-,/)

:   2. 18 

 19 
In which: 20 

setotal(x,y)  = the total propagated uncertainty of the transformation for point x,y 21 
RMSELiDAR = the root-mean square error for LiDAR-based DEMs for marsh 22 
surfaces 23 
seMHHW and seMHHWS = the standard errors of the datums at point x,y 24 
sekrig.1 and sekrig.2 = the standard error of prediction resulting from the EBK 25 
process for MHHW and MHHWS respectively at point x,y 26 

 27 

𝑍(-,/) 	= 	
(F*(G@	%H@I*JG(K,L)	M	G+GN*(6)'(K,L))

%GOPOQR	(K,L)
	 3. 28 

In which: 29 
Z(x,y) = the standard score of point x,y 30 
Water surface(x,y) = elevation of MHHWS relative to NAVD88 at point (x,y)  31 
elevation(x,y) = elevation of the surface at point (x,y) relative to NAVD88 32 

 33 
The number of palustrine stable and change 2006 to 2011 category, excluding changes to and 34 
from estuarine wetlands, totaled to 111. For each of these categories we extracted values from 35 
the probabilistic inundation map using ‘extract by mask’ in ArcGIS Pro (Esri Inc. 2017). The 36 
results were saved in separate tables and probabilities were rounded to a precision of 4 decimal 37 
points. 38 
 We downloaded and mosaiced C-CAP data from all coastal states (both oceanic and 39 
Great Lakes) (NOAA 2013). As a first step we extracted mapped areas for palustrine and 40 
estuarine stable wetland and 2006 to 2011 wetland changes. For each of 111 palustrine stable 41 
and change classes we approximated mapped area as a normal distribution using Eq. 4 and 5 . 42 



 

 1 
𝜇 = 𝑛𝜙6V

6WC   4. 2 
In which: 3 

mu = mean of the normal approximation 4 
N = number of probability classes 5 
i = is a probability class in n probability classes 6 
n = the number of pixels in probability class i 7 
phi = the probability of class i 8 

 9 
𝜎: = 𝑛𝜙6(1 − 𝜙6)V

6WC  5. 10 
 In which: 11 

sigma squared = variance of the normal approximation 12 
 13 
The probabilistic model for palustrine mapped area assumes complete independence of error at 14 
the pixel level, however remaining error is likely correlated based on the source of the DEM, the 15 
individual LiDAR surveys, or event the passes within a LiDAR survey. Modeling correlation of 16 
errors at the pixel level may require re-analysing the original LiDAR point-cloud data, which is 17 
beyond the scope and computational constraints of this exercise. 18 
 19 
2.2. C-CAP Accuracy Assessment 20 
For the remaining 129 estuarine stable and 2006 to 2011 change classes, we represented 21 
mapped area as is in C-CAP and treated them as fixed values (Supplemental Fig. 1). To 22 
estimate area and incorporate uncertainty in C-CAP classification and change detection, we 23 
utilized C-CAP’s 2011 23 class accuracy assessment, C-CAP’s 2006 to 2011 accuracy 24 
assessment for change and no-change, and C-CAP 2006-2010 area data from all coastal states 25 
(both ocean and Great Lakes). We calculated proportional area accuracy assessment matrix 26 
(Eq. 6) and calculated estimated area (Eq. 7) (Olofsson et al 2014). 27 
 28 

𝑝6,\ = 𝑊6
'^,_
'^
	  6. 29 

In which: 30 
pi,j = the proportional area of reference class j mapped as class i 31 
Wi  = proportion of mapped area for class i 32 
ni,j = sample counts for reference class j mapped as class i 33 
ni. = sample counts for mapped class i 34 

 35 
𝑝.\ = 	 𝑝6,\

`
6	W	C  7. 36 

 In which: p.hat.j = the estimated proportional area of reference class j 37 
 38 

𝑟\ 	=
G%(6b*(G&.*@G*_
b*ccG&.*@G*^d_

	 8. 39 

In which: rj is the ratio of estimated to mapped landcover j  40 
 41 
With equation 6 we transformed the accuracy assessment matrix from counts to proportional 42 
areas. In equation 7 we calculate an estimated area as the column sum of a class in the 43 



 

proportional area confusion matrix. We calculated an estimated area for the entire C-CAP extent 1 
and represented it as a scaler r, the ratio of estimated to mapped area for smaller subsections 2 
of the map (Eq. 8). 3 

We could have represented estimated area uncertainty in the Monte Carlo analysis as a 4 
normal distribution following the best practices for estimating standard error of the estimate 5 
(Olofsson et al 2014, Byrd et al 2018). However, this would make the assumption that errors 6 
were symmetrical; some key classes were skewed towards over or under-mapping. So, we 7 
decided to represent the accuracy assessment data itself as a 23 separate probability 8 
distributions, simulate the accuracy assessment as a random draw from those distributions for 9 
each iteration of the Monte Carlo analysis, and recalculate estimate to mapped area ratios. We 10 
modeled each reference class as a multinomial distribution with 23 possible mapped classes. 11 
We did the same for 2006 to 2011 change and no change analysis. 12 

For each iteration of the Monte Carlo analysis we scaled mapped estuarine area (which 13 
was fixed) and mapped palustrine area (which was a random draw from a normal distribution) 14 
separately by the estimated to mapped area ratio for the 2011 class and for either 2006 to 2011 15 
change or no change. 16 

In the Monte Carlo Analysis we redrew the accuracy assessment data using the 17 
multinomial distribution. The multinomial distribution could be described by two parameters, the 18 
total number of observations for the mapped class i (ηi) and a vector of probabilities, each 19 
instance indicating the probability of the reference class being mapped as a category (ϕI). For 20 
each row in an accuracy assessment matrix ηi is equal to the column sum and is ϕi a vector for 21 
reference class i containing each reference value (column value) divided by ηi (row sum) (Eq. 22 
9). 23 

 24 
𝐴6 ∼ 𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚(𝜂6, 𝜙𝒊)  9. 25 

In which: A is a square accuracy assessment matrix and Ai is a row i representing 26 
mapped class i 27 

 28 
2.3. Emissions Factors 29 
For all emissions and storage factors reported in units relative to organic carbon mass, we 30 
converted to CO2-equivalents using a conversion factor of 3.667 gCO2 gC-1. We made other 31 
area and mass conversions throughout to convert units as reported all emissions factors in their 32 
original text to gCO2 m-2 yr-1. These included converting hectares to m2 (10,000 m2 ha-1), C-CAP 33 
pixels to m2 (900 m2 pixel-1), Pg to g (1E15 g Pg-1), and kg to g (1,000 g kg-1). Final reports of 34 
emissions summed at the national scale were made in millions of metric tonnes of CO2e per 35 
year (yr-1).  36 
 37 
2.3.1. Soil Fluxes 38 
If wetlands remained wetlands, we assumed carbon burial occurred annually over the full five 39 
years. If wetland area were gained from another category, or were lost to other categories but 40 
soil mass was not lost, we assumed carbon was buried over half that time, 2.5 years. We 41 
assumed changes from wetlands to open water and unconsolidated shore, estuarine and 42 
palustrine aquatic beds, cultivated and pasture/hay, or developed (high, medium, and low 43 



 

intensity) land cover classes represented soil loss events, while other conversions such as to 1 
grasslands, forests, or bare land, did not. 2 

We used a review of carbon accumulation rates (CAR) from a literature review created 3 
for the next iteration of the U.S. NGGI (Lu et al 2017). The CAR data selected for this 4 
compilation was obtained from published peer-reviewed manuscripts and reports that 5 
specifically presented single CARs associated to a coring location; manuscripts reporting CAR 6 
ranges or total averages from multiple coring locations were excluded. The type of data taken 7 
from these publications was either in the form of an actual CAR, or calculated from the reported 8 
soil accretion rate and (1) organic soil carbon pool, or (2) organic soil carbon content and soil 9 
bulk density. This database only contains long-term soil accretion or soil C accretion data, 10 
determined with 137Cs, 210Pb, pollen, or 14C. Publications with rates estimated with eddy 11 
covariance, or short-term accretion rates such as horizon markers were not included.  In this 12 
paper we used a subset of the data presenting 210Pb-based records. Citations used herein 13 
follow: (Lynch 1989, Kearney and Stevenson 1991, Roman et al 1997, Orson et al 1998, Craft 14 
and Richardson 1998, Merrill 1999, Hussein et al 2004, Church et al 2006, Callaway et al 15 
2012a, 2012b, Bianchi et al 2013, Crooks et al 2014, Weston et al 2014, Villa and Mitsch 2015, 16 
Marchio et al 2016, Noe et al 2016). 17 

For soil carbon stock change associated with wetland loss, we used average soil carbon 18 
density values (mean = 0.027 gC cm-3 , s.d. = 0.013, n = 8280 samples) (Holmquist et al 2018) 19 
to characterize the CO2 emission rate. 20 
 21 
2.3.2. Biomass Fluxes 22 
For flux related to biomass change we used multiple datasets. For emergent and scrub/shrub 23 
we used the calibration and validation data produced and compiled as part of a national remotes 24 
sensing dataset (Byrd et al 2018). Of 2,400 plots reported in the dataset, almost all were 25 
dominated by emergent vegetation, though 8 plots had 50% or greater cover of the shrub Iva 26 
frutescens, which we assumed qualified them as dominated by scrub/shrub according to C-CAP 27 
classifications (NOAA Office of Coastal Management n.d.). 28 

To generate national scale metrics of mean flux associated with changes to or from 29 
forested wetland, and to further supplement the scrub/shrub data from Byrd et al. (2018), we 30 
performed a cursory database search and literature data synthesis. We archived tree diameter 31 
at breast height (DBH) measurements and plot areas for six studies (Megonigal et al 1997, 32 
Simard et al 2006, Doughty et al 2016, Craft et al 2017, Krauss et al 2018, Twilley et al 2018). 33 
We estimated above ground biomass (AGB) per unit area estimated at the level of the plot as 34 
the fundamental unit of inclusion in this synthesis.  35 

For tidal freshwater forested wetlands we converted DBH to AGB using the following 36 
allometric equations. For (Megonigal et al 1997) we used allometric equations listed within. We 37 
note one correction to appendix 2; Fraxinus spp. DBH values need to be converted from 38 
centimeters to inches before input into the function, mass needs to be converted pounds to 39 
kilograms after output. For (Krauss et al 2018) and (Craft et al 2017) we utilized generic genus-40 
specific allometric equations listed in (Jenkins et al 2003).  41 

For mangroves we used to following allometric equations. For (Simard et al 2006) and 42 
(Doughty et al 2016) we used allometric equations listed therein. For (Twilley et al 2018) we 43 
used allometric equations originating from (Smith and Whelan 2006). 44 



 

For each plot we summed biomass and divided total biomass by plot area to calculate 1 
AGB in grams per m2. However (Simard et al 2006), used a variable area plot methodology. For 2 
these plots we followed the authors methodology calculating tree area to plot area ratio for each 3 
sampling area by multiplying the basal area factor of the prism they used to determine tree 4 
inclusion (BAF; 5 tree area [m2] plot area [ha-1]) by the number of trees within the plot. For each 5 
tree we calculated plot area from each tree area. For each tree we calculated biomass per 6 
hectare, and for each sampling area we calculated the average biomass per plot area. We also 7 
synthesized tree height data when available, to classify plots as shrub/scrub if average tree 8 
height was below 5 m and forested if above (NOAA Office of Coastal Management n.d.).  9 

For studies that measured the same plots multiple times, we averaged the total plot 10 
biomass over all the sampling instances. We did not include belowground biomass, because the 11 
vast majority of studies referenced by (Holmquist et al 2018) made no note of removing root 12 
material from soils, so we assumed that root matter was part of the soil profile. We converted all 13 
AGB biomass values to carbon using a single conversion factor (Byrd et al 2018). We realize 14 
that this is an oversimplification for forested biomass data. However we intend this to be a first 15 
cut used for the purposes of uncertainty and sensitivity analysis, not to make definitive or 16 
authoritative statements about the carbon properties of various communities and species of 17 
forested wetland trees. 18 
 19 
2.3.3. Methane Fluxes 20 
In total, CH4 flux measurements were available at 51 sites in North America (Windham-Myers 21 
and Cai in Revision). While chambers were used to estimate annual CH4 fluxes at the majority 22 
of the sites, fluxes at two of the sites were measured using the using the eddy covariance 23 
method. Sources used in this analysis follow: (DeLaune et al 1983, Bartlett et al 1985, 1987, 24 
Kelley et al 1995, Magenheimer et al 1996, Neubauer et al 2000, Megonigal et al 2002, Marsh 25 
et al 2005, Poffenbarger et al 2011, Krauss and Whitbeck 2012, Neubauer 2013, Reid et al 26 
2013, Segarra et al 2013, Weston et al 2014, Wilson et al 2015, Chmura et al 2016, Holm et al 27 
2016, Krauss et al 2016, Mueller et al 2016). 28 
 29 
2.3.4. Additional Detail on Monte Carlo Analysis 30 
We simulated the central tendency of each input variable 10,000 times in R (R Core Team 31 
2017) using random draw functions for the appropriate probability distributions (runif, rnorm, 32 
rlnorm, rmultinom). We required a separate R package for truncated normal distributions; we 33 
generated simulated datasets using the ‘rtruncnorm’ function in the ‘truncnorm’ package in R 34 
(Mersmann et al 2018). Running the analysis on a single core took a prohibitively long time 35 
using a single core, so we parallelized the execution of the Monte Carlo uncertainty analysis 36 
using the R Packages ‘foreach’ (Microsoft and Weston 2017), ‘doParallel’ (Revolution Analytics 37 
and Weston 2015), and ‘doSnow’ (Microsoft Corporation and Weston 2017). 38 

For burial and storage data we performed the the same number random draws as the 39 
input dataset size, and represented the emissions factor using the central tendency (mean or 40 
logmean) as the defined probability distribution (Supplemental Tab. 2). The IPCC Wetlands 41 
Supplement Guidance reports methane and soil emissions factors using geometric means, 42 
which are similar to exponentiated logmeans as they approximate medians for some types of 43 
skewed distributions and that they decrease the influence of outliers. However arithmetic means 44 



 

of logmean distributed data are often more appropriate when scaling estimates up in space and 1 
time in order to estimate totals (Levy et al 2017). We performed a second version of uncertainty 2 
and sensitivity analyses using the mean of lognormally distributed data rather than the 3 
exponentiated logmean, to test the effect of this alternative assumption on uncertainty and 4 
sensitivity of total flux to inputs 5 
 6 
3. Additional Results and Discussion 7 
3.1. Estimated to Mapped Area Ratios 8 
We would like to highlight a few interesting results from the Monte Carlo-based uncertainty 9 
estimates of C-CAP estimated to mapped area ratios (Supplemental Fig. 4). There is variation in 10 
both the scope and shape of errors. Within estuarine wetlands scrub/shrub wetland accuracy is 11 
overall lower than both emergent and forested wetlands. Estuarine forested wetlands have an 12 
asymmetric error distribution because the have relatively few validation samples (21) and exhibit 13 
only commission error. Palustrine emergent and scrub/shrub wetlands were under-mapped 14 
while, estuarine scrub/shrub, forested, and emergent were generally over-mapped. Of the key 15 
classes that conversion to and from led to the greatest uncertainty in our sensitivity analysis, 16 
estuarine aquatic beds, and unconsolidated shore showed a relatively great degree of 17 
uncertainty. Estuarine aquatic bed estimated to mapped area ratios Monte Carlo results 18 
exhibited a complex distribution; the majority of omission errors for this class were open water 19 
misclassified as estuarine aquatic bed. Because open water has a much larger area this effect 20 
is magnified when calculating uncertainty from a proportional area matrix. 21 
 Similarly, from 2006 to 2011 ‘no change’ was more uncertain as a class than ‘change’. In 22 
addition change is under-mapped as a category. This is different conclusion than the official C-23 
CAP accuracy assessment drew (McCombs et al 2016). However, McCombs et al., calculated 24 
accuracy assessments using raw count rather than a proportional area matrix. Because no-25 
change classes made up a much larger area, for change classes omission errors (errors of 26 
exclusion) ended up having a much greater proportional effect than commission errors (errors of 27 
inclusion). Thus, the differences between these two approaches. 28 
 29 
3.2. How should we scale up positively skewed emissions factors: logmeans or means? 30 
During the course of revising this manuscript we realized that for positively skewed emissions 31 
factors -- which we describe throughout using exponentiated lognormal distributions -- an 32 
argument could be made that we should be using mean values to scale up estimates of flux to 33 
the national level, rather than using exponentiated logmeans, which approximate medians for 34 
these types of distributions. 35 

Simply put, median values are more appropriate for estimating how much CO2e any 36 
individual point or site emits or buries, but a mean is more appropriate when scaling up and 37 
estimating the entire sum total of emissions and burials at a continental scale. While this 38 
followed logically we could not find any explicit guidance in the IPCC Wetlands Supplement or 39 
Uncertainty Chapters which we reference throughout the text. In fact almost all emissions 40 
factors in the Wetlands Supplement report geometric means, which are very similar to the 41 
logmeans we describe throughout, implying that we should scale up emissions factors while 42 
depressing the effects of positive outliers. Because the goal of this paper was to test the effects 43 
of assumptions, dataset uncertainty, etc. on the overall accounting, we re-ran the Monte Carlo 44 



 

and sensitivity analyses replacing logmeans with means for summarising emissions factors from 1 
lognormally distributed variables (soil carbon burial rates, palustrine methane emissions, and 2 
forested, scrub/shrub, and emergent biomass). 3 

Simulated total flux values when using only means as emissions factors were more 4 
extreme and far more uncertain than when using logmeans (Supplemental Fig. 4). The sum 5 
total of the accounting as far more uncertain than previously with a long tail going into the 6 
extreme net-emissions. Palustrine CH4 emissions in particular introduced far more uncertainty 7 
when using means (Supplemental Fig. 5). Palustrine methane emissions introduced 79.3 million 8 
tonnes of CO2e per year of uncertainty into the overall accounting. The upper 95% CI on a 9 
simulated mean palustrine methane emissions using GWP for converting to CO2e (643 to 6849 10 
gCO2e m-2 yr-1) was greater than the maximum value of the dataset (5333 gCO2e m-2 yr-1). The 11 
top contributors to uncertainty ranked by the sensitivity analysis shifted when relying on means 12 
with other inputs that affect the net flux of palustrine methane emissions gaining more 13 
uncertainty (the method for mapping palustrine coastal wetlands [NWI vs Coastal Lands], and 14 
the conversion factor used to estimate CO2e from CH4 [GWP vs SGW/CP]). 15 

These results could be interpreted in two ways ways. First we originally thought this 16 
could be an indication that the Monte Carlo simulation technique we were using had the 17 
potential itself to introduce unreasonably high values. However we estimated the CI of using an 18 
Cox Method approximation (Eq. 10-11) (Olsson 2005) and found the two estimates to agree in 19 
terms of scale (691 to 7318 gCO2e m-2 yr-1). Future iterations of these uncertainty simulations 20 
could rely on a bootstrapping approach to estimate CIs, which would effectively constrain CI’s 21 
by the upper and lower limits of the observed dataset. This could be reasonable if there were a 22 
process-based justification for assuming an upper limit on methane emissions, but it would also 23 
introduce a major assumption that would need to be justified. 24 

 25 
𝜇 = 𝑒𝑥𝑝(𝛼 + 0.5𝛽:)  10. 26 

 27 

𝐶𝐼	 = 𝑒𝑥𝑝(𝛼 + 0.5𝛽:) 	± 1.96 yz

'
+ y{

:('MC)
	)	 11. 28 

 29 
In which: 30 

mu = approximate arithmatic mean 31 
alpha = mean of log transformed data 32 
beta = standard deviation of the log transformed data 33 
CI = confidence interval 34 
n = number of datapoints 35 

 36 
Second, the palustrine wetland methane emissions subset is very small, only 24 data points. 37 
This could be interpreted to mean that the high amount of uncertainty observed in this second 38 
iteration is very real, and we should consider the possibility of mean values being higher than 39 
observed given such a small dataset. Third and finally we need to consider whether these 40 
outliers in palustrine wetland methane emissions represent landscape-level variability in annual 41 
emissions, or are they the results of outliers caused by the temporal windows, the frequency of 42 



 

sampling, or the variety in methodology. This question, especially for methane emissions, is not 1 
new to this study (Krauss et al 2016), but is beyond the scope of our current effort.  2 

Because there is not clear guidance on this issue, and extreme positively skewed 3 
uncertainty in methane emissions could either be caused by real landscape scale variability, or 4 
observational and methodological outliers, we ultimately decided that it would be the most 5 
conservative to leave our original analysis -- utilizing exponentiated logmeans to scale up 6 
lognormally distributed emissions factors -- as is; but we decided to include these observations 7 
and this discussion as supplemental information for the sake of transparency and to stimulate 8 
further discussion about the most appropriate methods to scale or coastal wetland GHG fluxes, 9 
and their inherent uncertainties, using the concepts of emissions factors and activities data. 10 
 11 
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Supplemental Table and Figures: 1 

 2 
Supplemental Figure 1: A. Process for calculating probabilistic coastal lands layer (1.) correcting 3 
for mean LiDAR bias for wetland surfaces (2.) converting the orthometric height (NAVD88) to a 4 
tidal surface (mean higher high water [MHHW]), and (3) estimating mean higher high water 5 
spring (MHHWS) using a local offset. Each conversion has one or more sources of uncertainty 6 
associated it. We calculated propagated uncertainty and (4) probability of a pixel falling below 7 
MHHWS. B. Probabilistic MHHWS for South San Francisco Bay. C. CONUS-scale extent of this 8 
mapping. D. The probabilities of all these pixels were summarized at the national level, using a 9 
binomial normal approximation. 10 
 11 
 12 
 13 



 

 1 

 2 
 3 
Supplemental Figure 2: Biomass stocks and probability distributions used in the Monte Carlo 4 
Analysis for emergent, scrub/shrub, and forested wetlands. Data sources are pictured by 5 
colored lines to emphasize inter-study system-specific variability. 6 
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 17 
 18 
 19 
 20 
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 1 
Supplemental Figure 3: Histograms show the result of the Monte Carlo uncertainty analysis for 2 
key C-CAP estimated to mapped area ratios. These include the six 2011 wetland classifications, 3 
and three common 2010 classifications that can represent erosion, counting as a catastrophic 4 
soil loss, as well as 2006 to 2011 change and no-change overall. Values great than 0 are under-5 
mapped at the national scale. Values lower than 0 are over-mapped at the national scale. 6 
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 2 
Supplemental Figure 4: Comparison of 10,000 different randomized iterations of the U.S. 3 
coastal national greenhouse gas inventory. Left: utilizing arithmetic means for lognormally 4 
distributed emissions factors. Right: utilizing exp(logmean) (similar to the median) for 5 
lognormally distributed emissions factors. 6 
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 2 
Supplemental Figure 5: Comparison of the top fifteen inputs introducing the most uncertainty 3 
into the Coastal Wetland National Greenhouse Gas Inventory (NGGI) according to one-at-a-4 
time sensitivity analyses. Left: Strategy utilized arithmatic means for lognormally distributed 5 
emissions factors. Right: Utilized exp(logmean) (similar to the median) for lognormally 6 
distributed emissions factors. GWP: Global Warming Potential, SGWP: Sustained GWP, SGCP: 7 
Sustained Global Cooling Potential, NWI: National Wetlands Inventory, EAB: Estuarine Aquatic 8 
Bed, OW: Open Water, UCS: Unconsolidated Shore, PAB: Palustrine Aquatic Bed. 9 
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 1 
Supplemental Table 1: The names and sources of digital elevation models and land cover maps 2 
used in the analysis 3 
 4 
Supplemental Table 2: The results of a literature review of four studies comparing real-time 5 
kinematic global positioning system elevation measurements to elevation models based on light 6 
detection and ranging. The bottom row shows how we calculated a weighted average mean 7 
error (ME) and root mean square error (RMSE) from the various studies and the number of 8 
datapoints (n). 9 
 10 
Supplemental Table 3: Mapped pixel counts for each sub-class. Each pixel is 30 x 30 m. 11 
Estuarine wetlands are fixed values. Palustrine values are defined as a normal with a mean and 12 
standard deviation. These were estimated from binomial normal approximations from the 13 
probabilistic MHHWS mapping. 14 
 15 
Supplemental Table 4: C-CAP 2011 Class Accuracy Assessment Data (McCombs et al 2016) 16 
with total 2011 C-CAP mapped areas used to calculate estimated area. Definition of 17 
abbreviations: HID = High Intensity Developed, MID = Medium Intensity Developed, LID = Low 18 
Intensity Developed, OSD = Developed Open Space, CULT = Cultivated, PAST = Pasture, GRS 19 
= Grassland, DEC = Deciduous Forest, EVR = Evergreen Forest, MIX = Mixed Forest, SS = 20 
Scrub/Shrub, PFW = Palustrine Forested Wetland, PSS = Palustrine Scrub/Shrub Wetland, 21 
PEM = Palustrine Emergent Wetland, EFW = Estuarine Forested Wetland, ESS = Estuarine 22 
Scrub/Shrub Wetland, EEM = Estuarine Emergent Wetland, UCS = Unconsolidated Shore, BAR 23 
= Bare Land, OW = Open Water, PAB = Palustrine Aquatic Bed, EAB = Estuarine Aquatic Bed, 24 
SNOW = Snow. 25 
 26 
Supplemental Table 5: C-CAP 2006 to 2011 Change Detection Accuracy Assessment Data 27 
(McCombs et al 2016) with total 2006 to 2011 C-CAP mapped areas used to calculate 28 
estimated area. 29 
 30 
Supplemental Table 6: The results of the entire Monte Carlo Uncertainty Analysis. These 31 
include the minimum (0.025 quantile), median (0.5 quantile) and maximum (0.975 quantile) 32 
distribution of total scenario results for each relevant mapped land cover type and land cover 33 
change type from 2006 to 2011 according to the coastal change analysis program. We also 34 
present the confidence interval range. We present the results of mapped area and estimated 35 
area as pixel counts, and total flux, soil flux, biomass flux, a methane flux as tonnes CO2e per 36 
year per mapped pixel. Positive values indicate storage, negative values emissions. 37 
 38 
Supplemental Table 7: Full results of the one-at-a-time sensitivity analysis. Each parameter is 39 
listed along with what type of contribution it makes to the inventory, and what effect it has on the 40 
inventory total in tonnes CO2e per year. 41 
 42 
 43 
 44 
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