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Abstract: The recent developments of new deep learning architectures create opportunities to accu-
rately classify high-resolution unoccupied aerial system (UAS) images of natural coastal systems
and mandate continuous evaluation of algorithm performance. We evaluated the performance of the
U-Net and DeepLabv3 deep convolutional network architectures and two traditional machine learn-
ing techniques (support vector machine (SVM) and random forest (RF)) applied to seventeen coastal
land cover types in west Florida using UAS multispectral aerial imagery and canopy height models
(CHM). Twelve combinations of spectral bands and CHMs were used. Our results using the spectral
bands showed that the U-Net (83.80–85.27% overall accuracy) and the DeepLabV3 (75.20–83.50%
overall accuracy) deep learning techniques outperformed the SVM (60.50–71.10% overall accuracy)
and the RF (57.40–71.0%) machine learning algorithms. The addition of the CHM to the spectral
bands slightly increased the overall accuracy as a whole in the deep learning models, while the
addition of a CHM notably improved the SVM and RF results. Similarly, using bands outside the
three spectral bands, namely, near-infrared and red edge, increased the performance of the machine
learning classifiers but had minimal impact on the deep learning classification results. The difference
in the overall accuracies produced by using UAS-based lidar and SfM point clouds, as supplementary
geometrical information, in the classification process was minimal across all classification techniques.
Our results highlight the advantage of using deep learning networks to classify high-resolution UAS
images in highly diverse coastal landscapes. We also found that low-cost, three-visible-band imagery
produces results comparable to multispectral imagery that do not risk a significant reduction in
classification accuracy when adopting deep learning models.

Keywords: invasive plant species; UAS multispectral imagery; machine learning; coastal wetlands;
deep learning; vegetation classification; lidar

1. Introduction

Coastal habitats, particularly mangals and grasslands, are some of the world’s most im-
portant ecosystems due to their function in nature. Coastal wetlands are home to a variety
of fish and wildlife, and their vegetation helps enhance water conditions by absorbing nu-
trients from runoff that might otherwise cause harmful algal blooms offshore [1,2], among
other ecosystem services such as nursery grounds for shrimp, shellfish, crustaceans, and
fish, as well as nesting areas for a diversity of birds [3]. A large portion of the world’s coastal
wetlands have been impacted by anthropogenic and environmental disturbances [4–8]. Ac-
curate, rapid, and frequent access to the physical status of coastal areas is needed for
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efficient coastal wetland management and restoration, which can be achieved through
remote sensing data acquisition and recently introduced analysis techniques [9,10].

Related Works

The spatial and spectral resolution of satellite and airborne remote sensing data has
appreciably increased in the last twenty years [11]. Higher-resolution remote sensing
datasets are needed to detect small vegetation changes before those changes become irre-
versible [12]. Sensors mounted on an UAS can provide centimeter-level image resolution
and very dense lidar point clouds (~1400 pts/m2), which can play a pivotal role in monitor-
ing and management of small, coastal areas [13–16]. UAS high-resolution sensor systems
have been successfully used for mapping marine habitats in coastal zones [17–19], coastline
erosion assessment [20–23], identification of marine habitats [24–26], mapping of coastal
archaeological sites [27], and invasive plant detection and monitoring [28–31].

UAS vegetation mapping is typically performed using low-altitude flight missions that
have been carefully designed. Those missions collect images that are later processed using
structure from motion (SfM) techniques, creating multi-band ortho-rectified reflectance
images (orthomosaics) and digital surface models (DSM) of the flown areas [32]. The
ortho-rectified images and DSM are, subsequently, analyzed to produce coastal vegeta-
tion maps [33,34]. Lidar sensors mounted on an UAS, on the other hand, provide very
dense and accurate three-dimensional point cloud datasets that include points within
the canopy and on the ground, enabling the production of both high-resolution digital
terrain models (DTM) and DSM. These digital models can be used to derive canopy height
models (CHM) that are commonly applied to characterize, quantify, and monitor coastal
environments [35–37]. Moreover, UAS sensor systems usually comprise a combination of
lidar sensors and high-resolution cameras or multispectral sensors with the aim of not
only colorizing the point clouds but also obtaining additional spectral information. The
combination of spectral, structural, and geometrical information becomes an invaluable
tool to study and accurately characterize vegetation in general, and it is invaluable in
describing coastal wetland vegetation in particular [38,39].

Machine learning has become one of the most broadly adopted AI techniques for
image analysis purposes. This was facilitated by substantial developments in remote
sensing data acquisition and advances in computational power, which allowed researchers
to reach revolutionary results across various areas of knowledge [40–43]. Different image
classification techniques such as a support vector machine (SVM), artificial neural network
(ANN), random forest (RF), K nearest neighbor (KNN), and convolutional neural network
(CNN) have been used for vegetation mapping [34,44,45]. Vegetation mapping using
machine learning techniques such as RF or SVM, for example, has often been implemented
on a relatively small number of broad classes that are spectrally different, aggregating
features with similar characteristics into a single class, e.g., different types of forests under
an aggregated upland forest class [46–49]. Previous studies have shown that machine
learning algorithms can effectively handle a relatively small number of broad classes
and the inclusion of a larger number of more specific classes causes a significant drop in
accuracy [50,51]. The use of spectrally similar classes, e.g., at the species level, also often
causes a significant drop in accuracy [48,52,53]. On the other hand, convolutional neural
networks (CNN) do not require preliminary feature extraction as they automatically learn
the important features present in an image without human supervision [54]. This important
characteristic gives CNN a major advantage over traditional machine learning techniques
and demonstrates a remarkable capacity for application to raw image data [55,56]. The
CNN process provides a great advantage by lowering the complexity of training data
needed and making patterns perceptible to traditional learning algorithms [57–60].

In this study, we compared the use of two CNN architectures (U-Net and DeepLabV3)
and two traditional machine learning techniques (Support Vector Machine and Random
Forest) to classify 17 coastal vegetation land cover types, some of them at the species level,
located on the west coast of central Florida using UAS-based high-resolution multispectral
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images and lidar datasets. Different spectral band combinations and the use of canopy
height models extracted from two different sources (photogrammetric analysis and lidar
acquisition) were also examined. This study tests the assumption that deep learning
algorithms will have better performance than traditional machine learning classifiers when
applied to a diverse set of coastal vegetation classes, some at the species level, using high-
resolution UAS multispectral images and lidar data. Additionally, this study explores the
importance of using canopy height models in different vegetation mapping classifiers and
the feasibility of replacing costly UAS-acquired lidar datasets with alternative, economically
feasible sources of data for producing a canopy height model for land cover classification.

2. Materials and Methods

Image and lidar datasets were collected and preprocessed to create ortho-rectified
image mosaics and digital CHM. Different spectral bands and CHM combinations were
used to test and compare five different image classification techniques. Training and
accuracy assessment datasets were prepared and used to evaluate the results. The work-
flow in this study spans data acquisition, preprocessing, analysis methods, and accuracy
assessments, Figure 1.
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2.1. Study Area

This study was conducted on an eight-acre, tidally influenced stretch in the Wolf
Branch Creek Coastal Nature Preserve, located in West Florida approximately at latitude:
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27◦44′40.9′ ′N and longitude: 82◦26′34.5′ ′W, Figure 2. The preserve comprises different
types of coastal land cover types, such as upland cabbage palm hammocks, wet and dry
grasslands, mangals, and pine flatwoods, where many of those habitats have already been
artificially restored. The study area is also affected by the non-native invasive species
Brazilian Peppertree (Schinus terebinthifolia), leucaena (Leucaena leucocephala), and cogongrass
(Imperata cylindrica), being the last species listed among the top 10 most pervasive exotic
invasive plants in the world [61]. The preserve periodically goes through management
campaigns to control invasive plant infestations. There are mangrove species, Figure 3,
and native grass species, Figure 4, in the study area. Healthy and treated cogongrass is
present at the site, Figure 5. A land cover classification schema involving 17 coastal land
cover types, Table 1, was adopted. The classes include seven grass species (six natives
and one invasive), Cabbage Palmetto (Sabal Palmetto), two mangrove species (Avicennia
germinans and Rhizophora mangle), black mangrove (Avicennia germinans), two invasive brush
tree species (Brazilian Peppertree (Schinus terebinthifolia), leucaena (Leucaena leucocephala)),
water, dead vegetation, and two exposed soil classes, Table 1. The reserve site is actively
managed to control and eradicate invasive plants (Brazilian Peppertree sprouts, leucaena,
and cogongrass), so we also have a dead vegetation class.
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2.2. Field Data Acquisition

Ground Control Point Establishment: In preparation for the UAS data acquisition
missions, a set of twelve ground control points (GCP) were established in the study area,
Figure 6. The points were surveyed using survey-grade Topcon HiperLite Plus Global
Navigation Satellite System (GNSS) receivers with a reported accuracy for a static survey
of 3 mm + 0.5 ppm horizontal and 5 mm + 0.5 ppm vertical [63]. A set of three receivers
capable of processing signals from the GPS and GLONASS constellations with multipath
mitigation were used to occupy each GCP for at least 2 h, collecting measurements every
5 s, Figure 6. The collected GNSS observations were processed using the National Oceanic
and Atmospheric Administration’s (NOAA) Online Positioning User Service Projects
(OPUS Projects) (https://www.ngs.noaa.gov/OPUS-Projects/OpusProjects.shtml), (ac-
cessed on 8 July 2022) to produce control point coordinates with an uncertainty below the
centimeter level.

https://www.ngs.noaa.gov/OPUS-Projects/OpusProjects.shtml
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Table 1. Classes defined for the study.

Land Cover Type
or Vegetation Specie

Class
Identifier Scientific Name Description

Brazilian peppertree 1 (Schinus terebinthifolia) Invasive evergreen shrub or small tree.

Cabbage palmetto 2 (Sabal palmetto) Native species of palmetto

Water 3
Water (from any source, sea intrusion,
rainwater filling muddy car tracks, brackish
water ponds or tidal creeks).

Black mangrove 4 (Avicennia germinans)
Black mangrove above 0.6 m of height. (In
forested mangroves, seedlings are defined as
individual trees <1.37 m in height [62].

Exposed sand 5 Exposed sand, usually white or light brown.

Organic brown soil 6 Organic brown Ssil, usually dark brown or
light black loam.

Cogongrass 7 (Imperata cylindrica)
Very aggressive perennial invasive grass
species, light green when healthy, brownish
when stressed.

Black needle rush 8 (Juncus roemerianas)

Flowering Juncus, native to North America,
distributed along the Gulf Coast (since it is
not a brush nor a tree, for this study it was
included among the grasses).

Seashore dropseed 9 (Sporobolus virginicus)
Grass. Seashore dropseed not submerged,
growing in higher and drier areas, away
from water bodies.

Cordgrass 10 (Spartina spartinae) Grass, commonly found in marshes and tidal
mud flats.

Dead vegetation 11 Exterminated or naturally dead vegetation of
all types.

Red mangrove 12 (Rhizophora mangle) Considered a native, grows as a shrub or a
tree up to 60 feet tall in tidal swamps.

Short mangrove 13 (Avicennia germinans) Short plants with a characteristic longer stem
compared to its branches and short height

Leucaena 14 (Leucaena leucocefala) Fast-growing, invasive evergreen shrub or
tree with a height of up to 20 m.

Submerged seashore dropseed 15 (Sporobolus virginicus)

Grass. Seashore dropseed dampened or
submerged, growing close to water bodies
where soils are saturated with water or
where the plant is rooted but lives floating on
shallow waters. The grass appears healthier,
under simple visual inspection, than the ones
growing in dry areas.

Shepherd’s needles 16 (Bidens alba)

Healthy, unidentified green grass and bushes
of various species that cover the areas
between bigger and well-defined patches of
vegetation and land cover types.

Broomsedge mixed 17 (Andropogon virginicus)

Broomsedge grass mixed with numerous,
less dominant, brown-colored grass and
small bushes that cover the areas between
bigger, well-defined patches of vegetation
and other land cover types.
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Multispectral Image Acquisition: A Micasense RedEdge-MX multispectral camera
capable of acquiring five-band images was mounted on a DJI Inspire 2 (a multi-rotor UAS)
and used to acquire the images analyzed in this study, Table 2. The spectral bandwidth,
Table 3, and the central wavelength for each of the five bands that were used and the
Micasense-MX camera features, Table 4. The UAS was equipped with a Downwelling
Light Sensor (DLS) to measure the downwelling irradiance for every image spectral band
at the time of acquisition. The DLS is mounted on top of the UAS, pointing toward the
sky, Figure 6E. The irradiance value measured at the time each image is acquired is saved
in the image metadata and is subsequently retrieved and applied to correct the images.
The coordinates of each GCP are used to assure the creation of accurate photogrammetric
products with the smallest possible local distortions.

Table 2. UAS Mission parameters.

Altitude AGL 40 m
Flight speed 4.17 m/s
Forward overlap 80%
Cross overlap 80%
Ground sample distance 2.78 cm/pixel
Time between capture 1.28 s
Distance between tracks 7.11 m
Mission flight time 20 min (8 Acres)
Number of images (total, 5 bands) 4420

Table 3. Spectral bands in which the MicaSense RedEdge multispectral camera operates (courtesy of
www.micasense.com, accessed on 8 July 2022).

Band Name Center Wavelength
(nm)

Full Width at Half Maximum
(FWHM) (nm)

Blue 475 20
Green 560 20
Red 668 10
Near IR 840 40
Red Edge 717 10

www.micasense.com
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Table 4. MicaSense RedEdge multispectral camera specifications (courtesy of www.micasense.com,
accessed on 8 July 2022).

Camera Features

Ground sampling distance 8.2 cm/pixel at 120 m (Above Ground Level
AGL)

Lens focal length (mm) 5.5
Lens horizontal field of view (HFOV)(degrees) 47.2
Imager size (mm) 4.8 × 3.6
Imagery resolution (pixels) 1280 × 960

Lidar Data Acquisition: lidar data was collected using a Phoenix Lidar Systems Scout-
32 mounted on a DJI M600 UAS. The sensor is made of a combination of a Sony Alpha
ILCE-A6000 CMOS 24-megapixel RGB camera and a Velodyne HDL-32E laser scanner
and can collect survey-grade data while flying at an altitude of up to 65 m above ground
level. The Velodyne HDL-32E sensor is composed of 32 laser range finders arranged in
such a way as to be able to cover a 41.33◦ vertical field of view along the flight direction
when mounted on the UAS, Table 5. The UAS measures up to 2 returns per pulse emitted
and can record dual returns for objects spaced by at least 1 m [64]. This laser scanner
generates a relatively dense cloud of points, acquiring a point cloud of 46,090,005 points
covering an area of 32,375 m2 (approximately 8 acres), for an average lidar point density
of approximately 1400 points m−2. Two pyramid-shaped targets [65] and two flat targets
with highly contrasted patterns were positioned in the study area and located using an
RTK GNSS survey to assess lidar data processing accuracy.

Table 5. Mission and UAS-mounted lidar sensor parameters, courtesy of Velodyne lidar, Inc.

Flight Mission and Sensor Parameters

UAS flight altitude (AGL) 40 m

UAS flight speed 6 m/s

Sensor measurement range Up to 100 m

Sensor vertical field of view 41.33◦

Sensor angular resolution (vertical) 1.33◦

Sensor angular resolution (horizontal/azimuth) 0.08◦–0.33◦

Sensor field of view (horizontal) 360◦

Sensor horizontal beam divergence 2.79 milliradian

Sensor vertical beam divergence 1.395 milliradian

Number of returns recorded by the sensor per pulse 2 returns

Number of returns recorded by the sensor per second 695,000 returns/s (single return mode)
1,390,000 returns/s (double return mode)

Beam footprint at 65 m 18.1 × 9.1 cm (dimensions)

2.3. Preprocessing of Image and lidar Datasets

The multispectral aerial images were processed using a structure from motion (SfM)
technique using the Agisoft Metashape software (version 1.7.2 build 12070, St. Petersburg,
Russia) [66] to create an orthomosaic with the five spectral bands of the study site. SfM is a
computer vision technique that employs series of overlapping images, taken in sequence
from different viewpoints, and a highly redundant bundle adjustment to estimate the 3D
structure of a scene [67]. The bundle-block adjustment process calculates the coordinates of
the ground features in object space as well as the geographic position and orientation of the
camera using matched features detected by the algorithm in each sequential image, which
are commonly called key points [68]. The GCP coordinates and the geolocation metadata
of each image are used to solve the over-constrained optimization process and ultimately
transform the image pixel coordinates into a geographic or projected coordinate system.

www.micasense.com
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The 3 cm per pixel resolution orthorectified image mosaic was generated and was
free from perspective distortions associated with camera tilts and feature relief, Figure 7.
Agisoft also produces a dense, three-dimensional point cloud that represents the features
in the scene. The point cloud processing is performed by first running a dense image
matching process to identify conjugate image locations within the scene and then by using
the image exterior orientation parameters to generate points with real-world X, Y, and Z
coordinates [69]. The point cloud was later used to produce a 6 cm DSM to be used in
the analyses.
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Figure 7. Study area UAS imagery. (A) Natural color visualization of the study area; the area
demarcated by a blue rectangle is displayed in (B,C), (B) Zoomed-in color infrared visualization of
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The navigation data of the lidar mission trajectory was analyzed using the Novatel
Inertial Explorer software [70]. The highly accurate trajectory solution was then transferred
to the Phoenix Lidar Spatial Explorer software [71] to produce a georeferenced point cloud.
The georeferenced point cloud was processed using the LAStools software [72] and the
function “lasnoise” to reduce noise. Noisy points were filtered out by removing all points
without at least 10 other neighboring points within 1 m3, resulting in a cloud averaging
1400 points m−2. Finally, the points were classified as ground and non-ground points using
the “lasground” algorithm implemented in the LASTools software [72]. Ten cm pixel size
DSM and DTM models were created using the Global Mapper software (version 23.01) [73].
Subtracting the DTM from the DSM results in a CHM that was used as an additional layer
(UAS_CHM) in the classification process.

A second CHM was created by combining the following two sources of data: the DSM
generated by processing the UAS-acquired multispectral images and the DTM produced
from already existing airborne lidar data acquired in 2017 and published by the Southwest
Florida Water Management District (SWFWMD) [74]. The airborne topographic lidar data
was collected by Dewberry [74] in 2017 using a dual-channel airborne mapping system
Riegl VQ-1560i sensor capturing more than 1.3 million measurements per second, flying at
an altitude of 1300 m above the ground, with 60 percent overlap. A DTM of 75 cm per pixel
was created using this airborne lidar dataset with a mean point density of 16-point m−2.
Subsequently, using Global Mapper, this DTM was subtracted from the 6 cm DSM created
from the SfM of our multispectral images. The resulting CHM (AB-CHM) was resampled
using ArcGIS Pro to reach a resolution of 3 cm per pixel.
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2.4. Band Combinations

Three different experiments on data combinations were conducted in this study, Table 6.
Experiment 1 tested a set of six spectral band combinations, while experiments 2 and 3
used the same spectral band combinations as experiment 1 plus the canopy height models
extracted from UAS-lidar DSM (experiment 2) and image-based DSM (experiment 3),
Table 7. It should be noted here that the second experiment was designed to use the
following two digital products from less expensive sources: a DTM from the publicly
accessible lidar dataset directed by the Southwest Florida Water Management District
(SWFWMD) in 2017 and a DSM from the Agisoft Metashape SfM analysis created by
processing our UAS-acquired multispectral images as indicated in the previous section.

Table 6. Experiments, description.

Experiment Description Abbreviation

1 Only spectral band combinations. (Exp1-OSB)

2
Same spectral band combinations as in experiment 1

plus airborne low-density lidar products and
photogrammetry-based DSM.

(Exp2-SB_AB_CHM)

3 Same spectral band combination as in experiment 1
plus high-density UAS lidar products (DSM and DTM). (Exp3-SB_ UAS_CHM)

Table 7. Spectral band combinations studied.

Spectral Band Combinations for Exp1-OSB

B_G_R_RE_NIR
Composite of all the bands acquired by the multispectral sensor as follows: blue,
green, red, red edge, and near infrared. Micasense MX RedEdge-MX (AgEagle
Sensor Systems Inc., 2022) and Sentera’s 6X (SENTERA, 2022) multispectral sensors.

B_G_R
Composite containing the visible blue, green, and red, bands traditionally captured
by most low-cost consumer cameras. Emulates the use of built-in generic
photographic UAV-mounted cameras.

G_R_RE
G_R_NIR

B_G_R_NIR
B_G_R_RE

Emulates the use of relatively inexpensive cameras (compared to full multispectral
sensors) on the market, designed for specialized purposes with specific band
combinations, built to meet customers specifications.

Band Combinations for Exp2-SB_AB_CHM and Exp3-SB_UAS_CHM

For the two experiments that include canopy height models the 6 band combinations remain the same as
above except for the addition of CHM.

2.5. Training Dataset Preparation

The segment mean shift (SMS) algorithm [75] implemented using the ArcGIS Pro
software [66] was applied to the RGB composite of the study site image. The SMS algorithm
was used to identify likely objects in the image by clustering together neighboring pixels
with similar spectral and spatial characteristics. These three segmentation parameters were
tested, namely, spectral detail, spatial detail, and minimum size in pixels, which were
simultaneously adjusted until a reasonable object size of 3 m2 was agreed on and used to
control the size of the polygons. A total of 24,298 objects covering the whole image were
produced, and a group of 3094 objects or polygons (around 180 per land cover type) were
randomly selected and manually labeled to train the classifiers. The polygons were labeled
as a specific class based on their dominant species, Figure 8. Labeling was conducted
in the lab and verified through site visits in collaboration with the Wolf Branch Nature
Preserve manager. The same segmentation results were also used to post-process the
pixel-based classification by labeling each object with the class to which the majority of its
pixels are classified.

Training data was extracted for every band combination, Table 6. The 3094 training
sample polygons were used to train the RF and SVM algorithms (see next section). The
same training polygons were used to create training tiles (256× 256 pixels) from the images
with a 128-pixel stride and 30◦ rotation angles to train the deep learning networks (U-Net
and DeepLabv3, see next section), Figure 9. The stride and rotation features were used to
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augment the training data. Training tiles were only retained for the instances where the
polygons and tiles overlapped, resulting in a final set of 27,948 training tiles.
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2.6. Data Training and Classification

The U-Net [76] and DeepLabv3 [77] CNN deep learning architectures, widely used for
semantic segmentation in the remote sensing community [78–81], as well as the support
vector machine (SVM) [82], and random forest (RF) [83], machine learning algorithms were
trained and tested using the same training polygons and accuracy assessment points for
all the classifiers used in this study. Training and classification were performed using the
ArcGIS Pro software on a computer machine with an Intel(R) Core (TM) i9-10900KF CPU,
running at 3.70 GHz with an NVIDIA Titan X 12 GB GPU and 64 GB RAM. The following
briefly introduces the classification techniques used in this study.

Machine Learning Classifiers:

The Random Forest (RF) classifier [84,85] is a decision tree algorithm that applies the
most probable class label to each pixel in an image using a set of rules developed during
the training process. This process relies on previously labeled training data, where the RF
algorithm chooses features and observations randomly to build numerous, uncorrelated
decision trees. The final output of the random forest system is formed by the output chosen
by the majority of the decision trees. This algorithm is found to be adaptable, fast, simple,
the least demanding in terms of computer resources, and a practical machine learning
algorithm that generally produces quality outcomes with only a few parameters. After
initial experimentation with different parameters, our study adopted a maximum number



Remote Sens. 2022, 14, 3937 12 of 41

of trees equal to 50, a maximum tree depth equal to 30 rules (or splits), and a maximum
number of samples per class equal to 1000 to be used in the training process. Applying the
“Train Random Trees Classifier” from the ArcGIS Pro Image Analyst Toolbox, RF models
were trained using the previously labeled training polygons as input training features.
The trained model for each band combination was applied to perform pixel classification
on the respective raster file using the tool “Classify Raster”, of the ArcGIS Pro, Image
Analyst Toolbox.

Support Vector Machine (SVM) is another machine learning algorithm that functions
by identifying the hyperplane that best segregates the close observations that belong to
separate classes [86,87]. For well-defined and properly labeled classes, the quantity of
observations needed to train an SVM classifier is relatively small, yielding reasonably
good outcomes compared to more data-demanding algorithms such as CNN [33,88]. This
algorithm was applied similarly to the random forest machine learning technique in ArcGIS
Pro. The tool “Train Support Vector Machine Classifier” from the ArcGIS Pro Image Analyst
Toolbox was employed using the labeled training polygons as input, and the tool “Classify
Raster” from the ArcGIS Pro Image Analyst Toolbox was used to classify the rasters after
the models were generated.

Deep Learning Architectures:

The U-Net architecture was introduced in 2015 for biomedical image segmentation at
the Computer Science Department of the University of Freiburg to segment cell images [76].
This architecture was designed to minimize the need for classified training data by using
the labeled samples more efficiently. The U-Net architecture involves the following two
paths: a contracting and an expanding path. The contracting path captures the context
within the sample images by applying a sequence of convolution operations and ‘maxpool’
down-sampling to encode the input training images into feature representations. The
expanding path allows for accurate localization of each pixel in the image while assigning
it a class type. The expanding path uses repeated up-sampling operators that combine high-
resolution elements from the contracting path with the up-sampled output, propagating
context information to higher resolution layers [76,89].

To train the U-Net architecture, the algorithm was set to balance the classes and ignore
the background class. Balancing the classes works by under-sampling the training data
from the most numerous classes to pair them down to match the less-represented classes
in the dataset. The use of class balancing in the training is intended to avoid biasing
the classifier, which would accentuate the most represented class, leading to skewing
the classifier decision boundary and producing overfitting [90,91]. Initially, in our study,
different training rates were experimented with, and based on those trials, training rates
ranging between 8 × 10−6 and 9 × 10−3 were used to train the deep learning models.
Similarly, a different number of epochs were tested, and the results revealed that 25 epochs
were an adequate amount to train the network in most cases. We used a batch size of 8 in
most of our training. These parameters were applied to both deep learning architectures
(U-Net and DeepLabV3) used in this study.

DeepLab Version 3: [77] DeepLab is the abbreviation for deep labeling, which is
a CNN model for general, dense pixel labeling using deep neural network algorithms.
One major challenge when using fully convolutional networks for image classification
is that input feature maps become smaller while moving through the convolutional and
pooling layers of the network, causing a loss of information contained within the images.
Another drawback of the down-sampling performed by the pooling layers in convolutional
networks is the lower spatial resolution of the output and blurred object boundaries.
DeepLab corrects those pitfalls by removing the down-sampling operations from the last
few max-pooling layers of the convolutional network, using atrous convolution [77], and
instead using up-sampling in subsequent convolutional layers. The application of this
technique results in feature maps processed at a higher sampling rate [92,93].

The backbone for the two deep learning architectures was fixed to ResNet34 [94] due
to its powerful performance with reasonable computational power and processing time
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demands [95]. Although a different number of training epochs were tested, we found that
training results often stopped improving after 20 epochs; thus, 25 epochs were used for
most of the tested models, which took from 9 to 12 h. The pixel-based classification was
then applied using the trained models for each band combination.

2.7. Post-Classification Filtering and Accuracy Assessment

A majority filter was applied to each classified output using the segmented objects
initially generated by applying the segment mean shift algorithm [96] to improve the
quality of the final classified image through dominant class assignment, Figure 10.
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An accuracy assessment was conducted on each classified image. A total of 747 random
points were created, representing all 17 classes. The points were manually labeled with
their corresponding ground truth classes collected through onscreen inspection and field
verification. A confusion matrix (error matrix) [97] was created using the randomly gen-
erated accuracy assessment points. For each classification result, the overall accuracy
(Equation (1)), user accuracy (Equation (2)), producer accuracy (Equation (3)), and the
F1-score (Equation (4)) were calculated [98–100].

Overall Accuracy =
True positives + True negatives

True positives + True negatives + False positives + False negatives
(1)

Precision =
True positives

True positives + False positives
= User′s accuracy (2)

Recall =
True positives

True positives + False negatives
= Producer′s accuracy (3)

F1score = 2 ∗ (User accuracy ∗ Producer accuracy)
(User accuracy + Producer accuracy)

(4)

3. Results
3.1. Overall Accuracy

A quantitative evaluation was conducted on the classification experiment results both
from using different combinations of five spectral bands (Blue: B, Green: G, Red: R, Near
InfraRed: NIR, and RedEdge: RE) in experiment 1 and when adding two canopy height
bands (based on SfM solution: AB-CHM for experiment 2 and UAS lidar: UAS-CHM for
experiment 3). Four different classifiers (SVM, RF, DeepLabv3, and U-net) were tested in
each dataset. In general, the U-net and DeepLabv3 deep learning models require more
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than 24 h to train a single model. The SVM models were trained for an average of 2 h each,
while the RF models only needed an average of 4 min to train. The classification time using
a trained deep learning model usually took from one to two minutes, utilizing the GPU to
accelerate the process. Classification using RF and SVM did not use the GPU to run the
process. RF classifiers needed 3 min, while SVM required between 25 and 40 min.

The same randomly selected accuracy assessment points were used to compute the
confusion matrices for all 72 (3 experiments × 6 band combinations × 4 classification tech-
niques) image classifications conducted in this study. The highest accuracy levels achieved
by the classification algorithms for the three experiments in the twelve combinations are
shown in Figure 11. The user and producer accuracy for each experiment is shown in
Appendix A. The confusion matrices of the trials corresponding to those maps are shown
in Appendix B. The overall accuracy of all tested classifications is shown in Figure 12, and
the F1 score is shown in Figures 13 and 14.
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Deep learning algorithms, especially U-Net, provided higher overall accuracies com-
pared with the RF and SVM traditional machine learning classifiers, Figure 12, which con-
firms the findings of several other studies, e.g., Liu Tao et al. 2018 [33], Bhatnagar et al. 2020 [101],
and Jozdani et al. For example, U-net’s overall accuracy was more than 83.40% in the first
experiment for all band combinations, with a maximum of 85.27% for the B_G_R_RE band
combination. This contrasts with the 62.65% overall accuracy obtained by RF applied to the
same band combination. Similarly, U-net produced overall accuracies in the range of 83.00%
to 85.94% in the second and third experiments, compared to SVM yielding accuracies in
the range of 62.92% to 74.56% and RF yielding accuracies ranging from 67.07% to 71.89%.
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Adding the near-infrared and red edge bands did not seem to have a consistent effect
on the overall accuracy of the two deep learning algorithms, Figure 12, which corroborates
the findings of other studies, e.g., Li et al. 2021 [102], Zhao et al. 2018 [103]. Including at
least one of the near-infrared or red edge bands had a positive influence on the RF and SVM
classifiers. This could be explained by the deep learning architecture’s ability to extract
and model the important features in a smaller spectral subset, reducing the need for the
relatively more expensive multispectral datasets.
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Our research matched the findings of other studies [30,104,105], indicating that classes
with contrasting spectral properties such as the cabbage palmetto class (class 2), the exposed
sand class (class 5), and the black needle rush class (class 8) are in general more likely
to be correctly identified by the classifiers (high producer accuracy) and to be reliably
mapped (high user accuracy). On the other hand, classes such as the Brazilian pepper tree
class (class 1), cordgrass class (class 10), leucaena class (class 14), and submerged seashore
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dropseed class (class 15), which have similar spectral signatures to other existing classes,
have a much higher likelihood of being correctly classified using the deep learning methods
than by traditional machine learning classifiers, Figures 13 and 14. All of the classification
algorithms, including deep learning, yielded relatively low user accuracies compared to
their producer accuracies for the cordgrass class (class 10), leucaena class (class 14), and
submerged seashore dropseed class (class 15); Figure 14, (for more detail see Appendix A),
which, as mentioned above, have similar spectral signatures to other existing classes. This
indicates a higher level of difficulty for those classes to be differentiated when they do not
grow isolated from other vegetation species.
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In general, the use of the red edge and near-infrared bands in the three experiments
yielded slightly higher accuracies in mapping the Brazilian pepper class (class 1), Cabbage
palmetto class (class 2), black mangrove class (class 4), organic brown soil class (6), black
needle rush class (class 8), cordgrass class (class 10), red mangrove class (class 12), short
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mangrove class (13), and submerged seashore dropseed (class 15), which could be an
argument to consider these bands when those particular land cover types are of interest
and need to be mapped using the RF or SVM classifiers Figures 13 and 14, (for more detail
see Appendix A). We observed levels of class mixing among classes with similar spectral
characteristics in the visible spectrum. For example, the RF and SVM classifiers show the
broomsedge class (class 17) was frequently confused with the cogongrass class (class 7),
seashore dropseed class (class 9), cordgrass class (class 10), dead vegetation class (class 11),
and the Shepherd’s needles class (class 16) (Appendix B). The misclassification is so severe
that the user and producer accuracies (Appendix A) of these classes in most cases were
very low when the RF and SVM classifiers were used. This inability to isolate class 17 did
not replicate itself in the deep learning classifications, where U-net was able to map class
17 with an F1 score of around 70%, Figure 14.

3.2. Effect of Canopy Height Models

When comparing the first experiment that used spectral data only with the results
of the second and third experiments, we found that using canopy height as a means
to incorporate geometrical information in the classification process did not consistently
improve the classification accuracy for the deep learning results, Figure 12. This contrasted
with the results of the SVM and RF classifiers, which benefited from the extra CHM
information. Our results show that the first experiment produced an overall accuracy
ranging from 57.43 to 65.33% for the SVM classifier. The overall accuracy improved to a
range of 64.79% to 74.56% when the canopy height model was added in experiment 3. The
Random Forest increased its accuracy from a range of 60.91% to 68.14% using the spectral
bands only to a higher accuracy range of 67.7% to 74.6% when the canopy height model
was included in experiment 3.

In general, the CHM obtained from the UAS lidar dataset had a better effect on the
overall accuracy of the maps produced by the DeepLabv3 compared to the U-net results,
Figure 12. DeepLabV3 achieved slightly higher overall accuracies in the third experiment
for all the band combinations except for the G_R_RE_CH band combination. A clear
example of this behavior is the band combination of B_G_R_CH, for which DeepLabV3
achieved only 75.4% overall accuracy in the second experiment, where the CHM was
produced from SfM and low-resolution DTM was used, and 83.5% overall accuracy in the
third experiment using the UAS-based CHM.

For classes with zero canopy height, such as the water class (class 3) and the exposed
sand class (class 5), the performance of the deep learning algorithms did not seem to
benefit from the addition of the canopy height model, probably due to their distinct spectral
characteristics, which prompted higher accuracy outcomes even from the spectral data
alone. Individual class performance reflects little to no improvement in the overall accuracy
of the deep learning classifications compared to the more substantial improvement in the
RF and SVM classification results when canopy heights were introduced. The introduction
of the canopy heights improved the accuracy of the SVM and RF classification of the
broomsedge class (class 17) noticeably, although the F1 score never reached the 50% mark.
The deep learning algorithms, however, probably benefited from the structural and textural
differences among the broomsedge and the other grasses, minimizing the influence of the
canopy height on the classification process [106,107].

The Shepherd’s needles class (class 16) is another class where RF and SVM benefited
from the use of canopy heights with minimal improvement in the accuracy of the deep
learning classifiers, Figure 14. The producer accuracy of the SVM results increased from
an average of nearly 52% accuracy in the first experiment to about 85% in experiment 2
utilizing (SfM/low-resolution DTM) canopy heights (Appendix A). The user accuracy did
not improve as much, with an F1 score increasing from an average of 51% to about 56%. The
RF classification showed marked improvement, with average producer accuracy growing
from 38% to 83% and the user accuracy from 57% to 65%, Figures 13 and 14. It should be
noted that this class (class 16) was developed to represent several heavily mixed bushy



Remote Sens. 2022, 14, 3937 19 of 41

vegetation species with no apparent dominance of a single species and with relatively
similar spectral characteristics and canopy height values.

The introduction of canopy height information in experiments 2 and 3 had a negative
effect on the classification accuracy for dead vegetation (class 11). This class represents areas
where grass has been either chemically exterminated or bushes mechanically harvested
(mulched), and thus, the area would have low canopy height values. When dead vegeta-
tion was classified using the spectral bands only, the results were consistent since dead
vegetation areas still have consistent and distinguished spectral characteristics. Introducing
the canopy heights confused the classifier since dead vegetation had inconsistent canopy
height across the landscape. For example, dead but still standing grasses that had been
recently chemically treated can have a different height than piles of cut-down tree branches
that have not been mulched yet, Figure 14.

3.3. Invasive Plants Classification

Out of the three invasive species (Brazilian pepper, leucaena, and cogongrass) included
in our study, the first two have similar spectral signatures, especially when the Brazilian
pepper tree is stressed [108–111]. Healthy Brazilian pepper trees commonly have a dark
green appearance, which is not similar to the healthy bright green appearance of leucaena.
On the contrary, Brazilian pepper trees growing in coastal wetlands with roots constantly
subjected to salt and brackish water inundation typically have leaves that have turned
yellowish, making them look much more similar to the natural leucaena color [110]. For all
experiments, RF, SVM, and DeepLabV3 showed a predisposition for Brazilian pepper to
be confused with leucaena (high omission error), compared to the rest of the vegetation
classes. This tendency is less prominent when U-net is used, with U-net more able to
identify Brazilian peppers in almost all experiments better. Brazilian pepper (class 1)
is often confused with other classes as well, including cabbage palmetto (class 2), black
mangrove (class 4), cogongrass (class 7), and seashore dropseed class (class 9) (Appendix B).

The leucaena class (class 14) shows a high producer accuracy, in many cases, close to
100% for all three experiments (Appendix A) and most of the band combinations of the deep
learning classifications, except for two band combinations in trials using DeepLabV3. User
accuracy, however, was frequently below 70% for the deep learning results and averaging
32% for the SVM and RF classifiers. The introduction of canopy heights, in all cases, slightly
improved the user accuracy of the leucaena class in all tested models. Leucaena prefers
elevated dry areas and grows next to grasses such as the seashore dropseed grass, which
may explain the positive effect of introducing canopy heights.

When spatially isolated from other grasses, cogongrass was identified by all the
classifiers with relatively high accuracy, Figure 13, even as several other grass species with
similar spectral properties existed in the study area. Cogongrass was slightly confused with
neighboring patches of other grasses when mixed with different grass types in the area.
The deep learning algorithms were able to achieve the highest cogongrass classification
results among all tested classifiers, Figure A2 in Appendix A. The inclusion of canopy
height did not seem to benefit the deep learning classifiers, although RF and SVM showed
accuracy improvement. The cogongrass class was not clearly defined by any spectral band
combination.

4. Discussion

We found the U-net and DeepLabv3 deep learning networks to be superior compared
to the SVM and RF traditional machine learning techniques, which matches the findings
of other studies reporting similar ranges of overall accuracy [33,101]. Even though deep
learning requires GPUs to train the models in a considerable amount of time, the quality
of the achieved results justifies its use when there is no need for expediency, and higher
accuracy mapping levels are required.

In this study, we experimented with a relatively large number of coastal land cover
classes (17 classes), achieving an overall accuracy higher than 83% using deep learning



Remote Sens. 2022, 14, 3937 20 of 41

networks. Previous studies have found similar or comparatively higher values of overall
accuracy, although in most of the reviewed cases the number of classes tested has been
smaller, either because the studies focused on identifying a single vegetation species or a
reduced number of classes [112–114]. The outcomes of this research suggest further investi-
gation to explore the possibility of increasing the number of classes and experimenting with
different training data sizes to train the machine and deep learning models. Traditional
machine learning techniques have reached results comparable to the ones achieved by those
techniques in previous studies, e.g., Durgan et al. 2020 [115], highlighting the effectiveness
of their use for wetland vegetation mapping using multispectral UAS-acquired datasets.

Adding the near-infrared and red edge spectral bands and the canopy heights im-
proved the accuracy of RF and SVM classifications, while incorporating these additional
datasets had minimal, inconsistent impacts on the deep learning classifications. This ob-
servation may indicate the efficiency of current deep learning networks in extracting and
modeling the features in fewer bands and highlights the need for further exploration of
new deep learning network architectures capable of fully utilizing additional spectral and
canopy height information. The use of the red edge and near-infrared bands in the three
experiments yielded slightly higher accuracies in mapping a few classes. Some classes were
significantly mixed, especially when the machine learning classifiers were used.

Although deep learning networks require intensive computational power and longer
training times compared to traditional machine learning algorithms, the consistent and
considerable accuracy increases achieved using the deep learning models, even when only
the three visible bands are used, highlight the advantages of these models. The advantage
of deep learning models goes beyond accuracy improvement to sensor utilization, high-
lighting the potential of using only inexpensive, visible band cameras without the need for
the more expensive multispectral cameras.

Based on our findings and backed by the results obtained by other studies experi-
menting with adding geometric data to classification models [115,116], we recommend the
use of canopy height models due to their positive impact on the classification accuracy of
specific classes within the deep learning experiments and their significant contribution to
the increased accuracy of the RF and SVM results. We also found that both canopy height
models derived from UAS lidar datasets and the one derived from SfM photogrammetric
model and low-resolution DTM (from airborne lidar datasets) yielded almost similar over-
all accuracy results in most experiments. This latter realization highlights the fact that even
though UAS-lidar remains the preferred method to assure canopy penetration, enabling
the construction of high-resolution DTM and canopy height models, the use of a digital
surface model extracted from the SfM solution of high-resolution UAS imagery and the
often-available low-resolution DTM models extracted from low-density airborne lidar can
provide a low-cost alternative to costly UAS lidar datasets.

Even though UAS remote sensing data acquisition and processing, as well as machine
learning techniques, are already widely used in coastal environmental monitoring, it is
still imperative to further explore and expand the boundaries of knowledge in vegetation
classification and invasive species detection, especially as UAS datasets become more
integrated into natural resource management operations. For example, concerns related to
how to more adequately group classes together as communities to improve the accuracy of
the learning models and how to improve the training dataset preparation process remain
active research subjects. Additionally, our results showed confusion in some classes that
could be improved with more consideration of the operational characteristics (e.g., invasive
plant control and removal efforts) in the study area. Utilizing the same methods applied in
this study, invasive species detection can also be explored at different phenological and
physiological stages, vegetation mixes, and treatment stages [115,117,118].

5. Conclusions

In this study, we assessed the potential of two deep learning architectures (i.e., U-
net and DeepLabV3) compared to other traditional machine learning algorithms (i.e.,
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SVM and RF) for coastal wetland vegetation and land cover mapping. The study helps
expand the knowledge about the effectiveness of the use of high-resolution UAS-acquired
lidar and multispectral data in the generation of accurate vegetation maps. The methods
experimented with not only help introduce the application of deep learning techniques in
vegetation mapping but also introduce the use of alternative, publicly available lidar data
to improve the efficiency of traditional machine learning algorithms in vegetation and land
cover classification.

Three experiments were conducted, testing different spectral bands in combination
with two canopy height models extracted from UAS lidar observations and the combination
of structures from the motion digital surface model and existing digital elevation model.
Our findings showed that the U-net network yielded the most consistently accurate classi-
fication results, followed in order by the DeepLabV3, RF, and SVM. While deep learning
proved to have great potential in the field of vegetation mapping, as was demonstrated by
the overall accuracy outcomes achieved in our study, traditional machine learning algo-
rithms, especially RF, which produced overall accuracy that is inferior but still reasonable
compared to the deep learning models in a very short time, can be a quick alternative.

Our study reached the conclusion that including the red edge and near-infrared
bands in addition to the three visible bands (Green–Blue–Red) produced results that were
statistically similar to the results obtained using visible bands only when the classification
was carried out using the deep learning techniques. This conclusion did not apply to the RF
and SVM classification results. Regarding CHM, the results obtained in this study suggest
that canopy height models derived from SfM photogrammetric models and low-resolution
DTM (from airborne lidar datasets) are a suitable option to add geometrical information to
the machine learning classification models. The study found that even when the accuracy
increased using the deep learning techniques compared to traditional machine learning
algorithms, the deep learning techniques did not seem to use the full potential of the
multispectral and CHM data, suggesting a need for improved deep learning algorithms.
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Figure A18. Confusion matrix for the best results obtained in Exp3-SB_ UAS_CHM, using the Ran-
dom Forest classifier (the Blue_Green_Red_RE_NIR_CH band combination). 
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Figure A19. Confusion matrix for the best results obtained in Exp3-SB_ UAS_CHM, using the Sup-
port Vector Machine classifier (the Blue_Green_Red_RE_NIR_CH band combination). 
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Figure A21. Confusion matrix for the best results obtained in Exp3-SB_ UAS_CHM, using the Deep 
Learning classifier with the U-Net architecture (the Blue_Green_Red_CH band combination). 
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45. Gigović, L.; Pourghasemi, H.R.; Drobnjak, S.; Bai, S. Testing a New Ensemble Model Based on SVM and Random Forest in Forest
Fire Susceptibility Assessment and Its Mapping in Serbia’s Tara National Park. Forests 2019, 10, 408. [CrossRef]

46. Ahmad, A.M.; Minallah, N.; Ahmed, N.; Ahmad, A.M.; Fazal, N. Remote Sensing Based Vegetation Classification Using Machine
Learning Algorithms. In Proceedings of the 2019 International Conference on Advances in the Emerging Computing Technologies
(AECT), Al Madinah Al Munawwarah, Saudi Arabia, 10 February 2020; pp. 1–6. [CrossRef]

47. Wang, H.; Han, D.; Mu, Y.; Jiang, L.; Yao, X.; Bai, Y.; Lu, Q.; Wang, F. Landscape-level vegetation classification and fractional
woody and herbaceous vegetation cover estimation over the dryland ecosystems by unmanned aerial vehicle platform. Agric. For.
Meteorol 2019, 278, 107665. [CrossRef]

48. Ahmed, O.S.; Shemrock, A.; Chabot, D.; Dillon, C.; Williams, G.; Wasson, R.; Franklin, S.E. Hierarchical land cover and vegetation
classification using multispectral data acquired from an unmanned aerial vehicle. Int. J. Remote Sens. 2017, 38, 2037–2052.
[CrossRef]

49. Erinjery, J.J.; Singh, M.; Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats
using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ. 2018, 216, 345–354. [CrossRef]

http://doi.org/10.1007/s00338-016-1522-0
http://doi.org/10.1016/j.jag.2021.102414
http://doi.org/10.1073/pnas.1911285116
http://www.ncbi.nlm.nih.gov/pubmed/31685629
http://doi.org/10.1002/esp.4992
http://doi.org/10.3390/rs11101208
http://doi.org/10.3390/rs11111380
http://doi.org/10.1371/journal.pone.0188714
http://www.ncbi.nlm.nih.gov/pubmed/29176860
https://support.pix4d.com/hc/en-us/articles/202739409-Reflectance-map-vs-orthomosaic
https://support.pix4d.com/hc/en-us/articles/202739409-Reflectance-map-vs-orthomosaic
http://doi.org/10.1080/15481603.2018.1426091
http://doi.org/10.3390/rs10030457
http://doi.org/10.1016/j.ecss.2008.02.003
http://doi.org/10.2112/JCOASTRES-D-10-00188.1
http://doi.org/10.1201/9780429172410
http://doi.org/10.1007/s10661-021-08949-8
http://doi.org/10.1016/j.isprsjprs.2019.01.021
http://doi.org/10.1109/TGRS.2022.3152782
http://doi.org/10.1109/JSTARS.2020.3026724
http://doi.org/10.1109/TGRS.2021.3135028
http://doi.org/10.1109/ACCESS.2022.3170049
http://doi.org/10.1016/j.foreco.2008.04.025
http://doi.org/10.3390/f10050408
http://doi.org/10.1109/AECT47998.2020.9194217
http://doi.org/10.1016/j.agrformet.2019.107665
http://doi.org/10.1080/01431161.2017.1294781
http://doi.org/10.1016/j.rse.2018.07.006


Remote Sens. 2022, 14, 3937 39 of 41

50. Macintyre, P.D.; van Niekerk, A.; Dobrowolski, M.P.; Tsakalos, J.L.; Mucina, L. Impact of ecological redundancy on the perfor-
mance of machine learning classifiers in vegetation mapping. Ecol. Evol. 2018, 8, 6728–6737. [CrossRef]

51. Rommel, E.; Giese, L.; Fricke, K.; Kathöfer, F.; Heuner, M.; Mölter, T.; Deffert, P.; Asgari, M.; Näthe, P.; Dzunic, F.; et al. Very
High-Resolution Imagery and Machine Learning for Detailed Mapping of Riparian Vegetation and Substrate Types. Remote Sens.
2022, 14, 954. [CrossRef]

52. Zagajewski, B.; Kluczek, M.; Raczko, E.; Njegovec, A.; Dabija, A.; Kycko, M. Comparison of Random Forest, Support Vector
Machines, and Neural Networks for Post-Disaster Forest Species Mapping of the Krkonoše/Karkonosze Transboundary Biosphere
Reserve. Remote Sens. 2021, 13, 2581. [CrossRef]

53. Uehara, T.D.T.; Corrêa, S.P.L.P.; Quevedo, R.P.; Körting, T.S.; Dutra, L.V.; Rennó, C.D. Landslide Scars Detection using Remote
Sensing and Pattern Recognition Techniques: Comparison Among Artificial Neural Networks, Gaussian Maximum Likelihood,
Random Forest, and Support Vector Machine Classifiers. Rev. Bras. De Cartogr. 2020, 72, 665–680. Available online: http:
//www.seer.ufu.br/index.php/revistabrasileiracartografia/article/view/54037/30208 (accessed on 3 August 2022). [CrossRef]

54. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021,
8, 53. [CrossRef] [PubMed]

55. Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach.
Intell. 2013, 35, 1798–1828. [CrossRef]

56. Li, B.; Pi, D. Network representation learning: A systematic literature review. Neural Comput. Appl. 2020, 32, 16647–16679.
[CrossRef]

57. Pedergnana, M.; Marpu, P.R.; Mura, M.D.; Benediktsson, J.A.; Bruzzone, L. A Novel Technique for Optimal Feature Selection in
Attribute Profiles Based on Genetic Algorithms. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3514–3528. [CrossRef]

58. Novack, T.; Esch, T.; Kux, H.; Stilla, U. Machine Learning Comparison between WorldView-2 and QuickBird-2-Simulated Imagery
Regarding Object-Based Urban Land Cover Classification. Remote Sens. 2011, 3, 2263–2282. [CrossRef]

59. Topouzelis, K.; Psyllos, A. Oil spill feature selection and classification using decision tree forest on SAR image data. ISPRS J.
Photogramm. Remote Sens. 2012, 68, 135–143. [CrossRef]

60. Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci.
Remote Sens. 2004, 42, 1778–1790. [CrossRef]

61. Dozier, H.; Gaffney, J.F.; McDonald, S.K.; Johnson, E.R.R.L.; Shilling, D.G. Cogongrass in the United States: History, Ecology,
Impacts, and Management. Weed Technol. 1998, 12, 737–743. [CrossRef]

62. Kauffman, J.B.; Donato, D. Protocols for the Measurement, Monitoring and Reporting of Structure, Biomass and Carbon Stocks in
Mangrove Forests. Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2012. [CrossRef]

63. Topcon Corporation. Hiper Lite +. January 2004. Available online: https://www.lengemann.us/pdf/HiPerLitePlus_Broch_
REVC.pdf (accessed on 3 August 2022).

64. Velodyne. Velodyne LiDAR HDL-32E User’s Manual. 2021. Available online: https://velodynelidar.com/downloads/ (accessed
on 3 August 2022).

65. Wilkinson, B.; Lassiter, H.A.; Abd-Elrahman, A.; Carthy, R.R.; Ifju, P.; Broadbent, E.; Grimes, N. Geometric Targets for UAS Lidar.
Remote Sens. 2019, 11, 3019. [CrossRef]

66. Agisoft LLC. Agisoft Metashape User Manual: Professional Edition, Version 1.8. 2022. Available online: https://www.agisoft.
com/pdf/metashape-pro_1_8_en.pdf (accessed on 3 August 2022).

67. Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost,
effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [CrossRef]

68. Triggs, B.; McLauchlan, P.F.; Hartley, R.I.; Fitzgibbon, A.W. Bundle Adjustment—A Modern Synthesis. In International Workshop
on Vision Algorithms; Springer: Berlin/Heidelberg, Germany, 2000; pp. 298–372. [CrossRef]

69. Wolf, P.R.; Dewitt, B.A.; Wilkinson, B.E. Elements of Photogrammetry with Applications in GIS, 4th ed.; McGraw-Hill Education:
New York, NY, USA, 2014. Available online: https://www.accessengineeringlibrary.com/content/book/9780071761123 (accessed
on 3 August 2022).

70. Hexagon © 2022. Inertial Explorer®. January 2022. Available online: https://novatel.com/products/waypoint-post-processing-
software/inertial-explorer (accessed on 3 August 2022).

71. Phoenix LiDAR Systems. Learn about the Latest Spatial Explorer 6.0 Features. January 2021. Available online: https://www.
phoenixlidar.com/software/ (accessed on 3 August 2022).

72. Rapidlasso GmbH. LAStools-Efficient LiDAR Processing Software. January 2022. Available online: https://rapidlasso.com/
LAStools/ (accessed on 3 August 2022).

73. Blue Marble Geographics®. Global Mapper Pro®. 2022. Available online: https://www.bluemarblegeo.com/global-mapper-pro/
(accessed on 3 August 2022).

74. Dewberry. Dewberry to Collect and Process Lidar Data for Southwest Florida Water Management District. 2021. Avail-
able online: https://www.dewberry.com/insights-news/article/2017/05/16/dewberry-to-collect-and-process-lidar-data-for-
southwest-florida-water-management-district (accessed on 3 August 2022).

75. Fukunaga, K.; Hostetler, L. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE
Trans. Inf. Theory 1975, 21, 32–40. [CrossRef]

http://doi.org/10.1002/ece3.4176
http://doi.org/10.3390/rs14040954
http://doi.org/10.3390/rs13132581
http://www.seer.ufu.br/index.php/revistabrasileiracartografia/article/view/54037/30208
http://www.seer.ufu.br/index.php/revistabrasileiracartografia/article/view/54037/30208
http://doi.org/10.14393/rbcv72n4-54037
http://doi.org/10.1186/s40537-021-00444-8
http://www.ncbi.nlm.nih.gov/pubmed/33816053
http://doi.org/10.1109/TPAMI.2013.50
http://doi.org/10.1007/s00521-020-04908-5
http://doi.org/10.1109/TGRS.2012.2224874
http://doi.org/10.3390/rs3102263
http://doi.org/10.1016/j.isprsjprs.2012.01.005
http://doi.org/10.1109/TGRS.2004.831865
http://doi.org/10.1017/S0890037X0004464X
http://doi.org/10.17528/cifor/003749
https://www.lengemann.us/pdf/HiPerLitePlus_Broch_REVC.pdf
https://www.lengemann.us/pdf/HiPerLitePlus_Broch_REVC.pdf
https://velodynelidar.com/downloads/
http://doi.org/10.3390/rs11243019
https://www.agisoft.com/pdf/metashape-pro_1_8_en.pdf
https://www.agisoft.com/pdf/metashape-pro_1_8_en.pdf
http://doi.org/10.1016/j.geomorph.2012.08.021
http://doi.org/10.1007/3-540-44480-7_21
https://www.accessengineeringlibrary.com/content/book/9780071761123
https://novatel.com/products/waypoint-post-processing-software/inertial-explorer
https://novatel.com/products/waypoint-post-processing-software/inertial-explorer
https://www.phoenixlidar.com/software/
https://www.phoenixlidar.com/software/
https://rapidlasso.com/LAStools/
https://rapidlasso.com/LAStools/
https://www.bluemarblegeo.com/global-mapper-pro/
https://www.dewberry.com/insights-news/article/2017/05/16/dewberry-to-collect-and-process-lidar-data-for-southwest-florida-water-management-district
https://www.dewberry.com/insights-news/article/2017/05/16/dewberry-to-collect-and-process-lidar-data-for-southwest-florida-water-management-district
http://doi.org/10.1109/TIT.1975.1055330


Remote Sens. 2022, 14, 3937 40 of 41

76. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image
Computing and Computer-Assisted Intervention 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International
Publishing: Cham, Switzerland, 2015; pp. 234–241. [CrossRef]

77. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep
Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848.
[CrossRef] [PubMed]

78. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

79. Heydari, S.S.; Mountrakis, G. Meta-analysis of deep neural networks in remote sensing: A comparative study of mono-temporal
classification to support vector machines. ISPRS J. Photogramm. Remote Sens. 2019, 152, 192–210. [CrossRef]

80. Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review.
ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [CrossRef]

81. Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Gill, E.; Molinier, M. A new fully convolutional neural network for
semantic segmentation of polarimetric SAR imagery in complex land cover ecosystem. ISPRS J. Photogramm. Remote Sens. 2019,
151, 223–236. [CrossRef]

82. Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification. 2003. Available online: https://www.csie.
ntu.edu.tw/~{}cjlin/papers/guide/guide.pdf (accessed on 3 August 2022).

83. Ponraj, A. Decision Trees. DevSkrol. July 2020. Available online: https://devskrol.com/2020/07/26/random-forest-how-random-
forest-works/ (accessed on 3 August 2022).

84. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
85. David, D. Random Forest Classifier Tutorial: How to Use Tree-Based Algorithms for Machine Learning. freeCodeCamp. 2020.

Available online: https://www.freecodecamp.org/news/how-to-use-the-tree-based-algorithm-for-machine-learning/ (accessed
on 3 August 2022).

86. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
87. Hsu, C.-W.; Lin, C.-J. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13, 415–425.

[CrossRef]
88. Chandra, M.A.; Bedi, S.S. Survey on SVM and their application in image classification. Int. J. Inf. Technol. 2018, 13, 1–11. [CrossRef]
89. Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmenta-

tion. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–11. [CrossRef]

90. Feng, R.; Gu, J.; Qiao, Y.; Dong, C. Suppressing Model Overfitting for Image Super-Resolution Networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019.

91. Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional neural networks.
Neural Netw. 2018, 106, 249–259. [CrossRef] [PubMed]

92. Tsang, S.-H. Review: DeepLabv3—Atrous Convolution (Semantic Segmentation). Towards Data Science. 19 January 2019. Available
online: https://towardsdatascience.com/review-deeplabv3-atrous-convolution-semantic-segmentation-6d818bfd1d74 (accessed
on 3 August 2022).

93. Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017,
arXiv:1706.05587.

94. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

95. Canziani, A.; Paszke, A.; Culurciello, E. An Analysis of Deep Neural Network Models for Practical Applications. arXiv 2016,
arXiv:1605.076782016.

96. Michel, J.; Youssefi, D.; Grizonnet, M. Stable Mean-Shift Algorithm and Its Application to the Segmentation of Arbitrarily Large
Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 952–964. [CrossRef]

97. Congalton, R.G. Accuracy assessment and validation of remotely sensed and other spatial information. Int. J. Wildland Fire 2001,
10, 321–328. [CrossRef]

98. Barsi, Á.; Kugler, Z.; László, I.; Szabó, G.; Abdulmutalib, H.M. Accuracy Dimensions in Remote Sensing. Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. 2018, 42, 3. Available online: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/
XLII-3/61/2018/isprs-archives-XLII-3-61-2018.pdf (accessed on 3 August 2022). [CrossRef]

99. Opitz, J.; Burst, S. Macro F1 and Macro F1. arXiv 2019, arXiv:1911.03347.
100. Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary

classification evaluation. BMC Genom. 2020, 21, 6. [CrossRef]
101. Bhatnagar, S.; Gill, L.; Ghosh, B. Drone Image Segmentation Using Machine and Deep Learning for Mapping Raised Bog

Vegetation Communities. Remote Sens. 2020, 12, 2602. [CrossRef]
102. Li, G.; Han, W.; Huang, S.; Ma, W.; Ma, Q.; Cui, X. Extraction of Sunflower Lodging Information Based on UAV Multi-Spectral

Remote Sensing and Deep Learning. Remote Sens. 2021, 13, 2721. [CrossRef]
103. Zhao, X.; Yuan, Y.; Song, M.; Ding, Y.; Lin, F.; Liang, D.; Zhang, D. Use of Unmanned Aerial Vehicle Imagery and Deep Learning

UNet to Extract Rice Lodging. Sensors 2019, 19, 3859. [CrossRef] [PubMed]

http://doi.org/10.1007/978-3-319-24574-4_28
http://doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
http://doi.org/10.1016/j.isprsjprs.2019.04.016
http://doi.org/10.1016/j.isprsjprs.2019.04.015
http://doi.org/10.1016/j.isprsjprs.2019.03.015
https://www.csie.ntu.edu.tw/~{}cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~{}cjlin/papers/guide/guide.pdf
https://devskrol.com/2020/07/26/random-forest-how-random-forest-works/
https://devskrol.com/2020/07/26/random-forest-how-random-forest-works/
http://doi.org/10.1023/A:1010933404324
https://www.freecodecamp.org/news/how-to-use-the-tree-based-algorithm-for-machine-learning/
http://doi.org/10.1007/BF00994018
http://doi.org/10.1109/72.991427
http://doi.org/10.1007/s41870-017-0080-1
http://doi.org/10.1007/978-3-030-00889-5_1
http://doi.org/10.1016/j.neunet.2018.07.011
http://www.ncbi.nlm.nih.gov/pubmed/30092410
https://towardsdatascience.com/review-deeplabv3-atrous-convolution-semantic-segmentation-6d818bfd1d74
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1109/TGRS.2014.2330857
http://doi.org/10.1071/WF01031
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3/61/2018/isprs-archives-XLII-3-61-2018.pdf
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-3/61/2018/isprs-archives-XLII-3-61-2018.pdf
http://doi.org/10.5194/isprs-archives-XLII-3-61-2018
http://doi.org/10.1186/s12864-019-6413-7
http://doi.org/10.3390/rs12162602
http://doi.org/10.3390/rs13142721
http://doi.org/10.3390/s19183859
http://www.ncbi.nlm.nih.gov/pubmed/31500150


Remote Sens. 2022, 14, 3937 41 of 41

104. Baron, J.; Hill, D.J.; Elmiligi, H. Combining image processing and machine learning to identify invasive plants in high-resolution
images. Int. J. Remote Sens. 2018, 39, 5099–5118. [CrossRef]

105. Tichý, L.; Chytrý, M.; Landucci, F. GRIMP: A machine-learning method for improving groups of discriminating species in expert
systems for vegetation classification. J. Veg. Sci. 2019, 30, 5–17. [CrossRef]

106. Gao, Y.; Gan, Y.; Qi, L.; Zhou, H.; Dong, X.; Dong, J. A Perception-Inspired Deep Learning Framework for Predicting Perceptual
Texture Similarity. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 3714–3726. [CrossRef]

107. Xu, Y.; Zhu, H.; Hu, C.; Liu, H.; Cheng, Y. Deep learning of DEM image texture for landform classification in the Shandong area,
China. Front. Earth Sci. 2021, 1–16. [CrossRef]

108. University of Redlands. Brazilian Peppertree. University of Redlands Tree Website, 2022. Available online: https://sites.redlands.
edu/trees/species-accounts/brazilianpeppertree/ (accessed on 3 August 2022).

109. Virginia Tech Dept. of Forest Resources and Environmental Conservation. Brazilian Peppertree. Virginia Tech Dendrology, 2021.
Available online: http://dendro.cnre.vt.edu/dendrology/syllabus/factsheet.cfm?ID=704 (accessed on 3 August 2022).

110. University of Florida; IFAS; Geosciences Department, Boise State University; Entomology and Nematology Department. Intera-
gency Brazilian Peppertree (Schinus terebinthifolius) Management Plan For Florida, 2nd ed.; University of Florid: Gainesville, FL,
USA, 2006. Available online: https://ipm.ifas.ufl.edu/pdfs/BPmanagPlan.pdf (accessed on 3 August 2022).

111. Vanderhoff, E.N.; Rentsch, J.D. A Review of Avian Dispersal of Non-Native and Invasive Plants in the Southeastern United States.
Castanea 2022, 86, 225–244. [CrossRef]

112. CZweig, L.; Burgess, M.A.; Percival, H.F.; Kitchens, W.M. Use of Unmanned Aircraft Systems to Delineate Fine-Scale Wetland
Vegetation Communities. Wetlands 2015, 35, 303–309. [CrossRef]

113. Mishra, N.; Mainali, K.; Shrestha, B.; Radenz, J.; Karki, D. Species-Level Vegetation Mapping in a Himalayan Treeline Ecotone
Using Unmanned Aerial System (UAS) Imagery. ISPRS Int. J. Geo-Inf. 2018, 7, 445. [CrossRef]

114. Sandino, J.; Gonzalez, F.; Mengersen, K.; Gaston, K.J. UAVs and Machine Learning Revolutionising Invasive Grass and Vegetation
Surveys in Remote Arid Lands. Sensors 2018, 18, 605. [CrossRef] [PubMed]

115. Durgan, S.D.; Zhang, C.; Duecaster, A.; Fourney, F.; Su, H. Unmanned Aircraft System Photogrammetry for Mapping Diverse
Vegetation Species in a Heterogeneous Coastal Wetland. Wetlands 2020, 40, 2621–2633. [CrossRef]

116. Al-Najjar, H.A.H.; Kalantar, B.; Pradhan, B.; Saeidi, V.; Halin, A.A.; Ueda, N.; Mansor, S. Land Cover Classification from fused
DSM and UAV Images Using Convolutional Neural Networks. Remote Sens. 2019, 11, 1461. [CrossRef]

117. Correll, M.D.; Hantson, W.; Hodgman, T.P.; Cline, B.B.; Elphick, C.S.; Shriver, W.G.; Tymkiw, E.L.; Olsen, B.J. Fine-Scale Mapping
of Coastal Plant Communities in the Northeastern USA. Wetlands 2019, 39, 17–28. [CrossRef]

118. Zhou, R.; Yang, C.; Li, E.; Cai, X.; Yang, J.; Xia, Y. Object-Based Wetland Vegetation Classification Using Multi-Feature Selection of
Unoccupied Aerial Vehicle RGB Imagery. Remote Sens. 2021, 13, 4910. [CrossRef]

http://doi.org/10.1080/01431161.2017.1420940
http://doi.org/10.1111/jvs.12696
http://doi.org/10.1109/TCSVT.2019.2944569
http://doi.org/10.1007/s11707-021-0884-y
https://sites.redlands.edu/trees/species-accounts/brazilianpeppertree/
https://sites.redlands.edu/trees/species-accounts/brazilianpeppertree/
http://dendro.cnre.vt.edu/dendrology/syllabus/factsheet.cfm?ID=704
https://ipm.ifas.ufl.edu/pdfs/BPmanagPlan.pdf
http://doi.org/10.2179/0008-7475.86.2.225
http://doi.org/10.1007/s13157-014-0612-4
http://doi.org/10.3390/ijgi7110445
http://doi.org/10.3390/s18020605
http://www.ncbi.nlm.nih.gov/pubmed/29462912
http://doi.org/10.1007/s13157-020-01373-7
http://doi.org/10.3390/rs11121461
http://doi.org/10.1007/s13157-018-1028-3
http://doi.org/10.3390/rs13234910

	Introduction 
	Materials and Methods 
	Study Area 
	Field Data Acquisition 
	Preprocessing of Image and lidar Datasets 
	Band Combinations 
	Training Dataset Preparation 
	Data Training and Classification 
	Post-Classification Filtering and Accuracy Assessment 

	Results 
	Overall Accuracy 
	Effect of Canopy Height Models 
	Invasive Plants Classification 

	Discussion 
	Conclusions 
	Appendix A
	Experiment: EXP1-OSB, Producer and User Accuracy Organized by Class and Classification Method 
	Experiment: EXP2-SB_AB_CHM, Producer and User Accuracy Organized by Class and Classification Method 
	Experiment: EXP3-SB_ UAS_CHM, Producer and User Accuracy Organized by Class and Classification Method 

	Appendix B
	Confusion Matrices for the Highest Accuracy Results by Classification Method. Experiment 1 
	Confusion Matrices for the Highest Accuracy Results by Classification Method. Experiment 2 
	Confusion Matrices for the Highest Accuracy Results by Classification Method. Experiment 3 

	References

