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1. Introduction17

This document provides information about the supplementary figures including: 1) differences18

in the relationship between TC maximum 10-m winds versus minimum sea-level pressure in the19

current climate and late 21st century compared to IBTrACS (Fig. S1), 2) changes in lifetime20

maximum intensity by the late 21st century (Fig. S2), and 3) differences in the latitude of lifetime21

maximum intensity between the current and late 21st century (Fig. S3).22

2. Supplemental Figure S1: TC Wind-Pressure Relationship26

Figure S1 of the supplement shows the differences in the relationship between the maximum27

10-m wind speed versus the minimum sea-level pressure for TCs from the simulations in this study28

with IBTrACS. Unlike TC outer size, maximum TC wind speeds in the GFDL hurricane model29

are defined at a 10-m height. One key difference is that the simulated TCs tend to have lower30

pressures and broader radii of maximum wind, especially at stronger wind speeds (Knutson et al.31

2015; Murakami et al. 2015). This is likely due to the inability to resolve the fine radial pressure32

gradients associated with a given wind speed since the horizontal grid spacing is not sufficiently33

fine (Walsh et al. 2007; Davis 2018). As expected, there are also fewer of the most intense TCs34

in the control simulations consistent with expectations from the horizontal grid spacing (Walsh35

et al. 2007; Davis 2018). Last, there are fewer than expected TCs with the weakest intensities (i.e.,36

maximum 10-m winds of 35–40 kt), which may be due to the genesis criteria imposed (i.e., ≥24-h37

with maximum 10-m winds >17.5 m s−1). However, we believe that these simulations are still38

useful for understanding changes in TC outer size for the reasons given in the manuscript.39

3. Supplemental Figure S2: Lifetime Maximum Intensity40

Figure S2 of the supplement shows the distribution of lifetime maximum intensity for the TCs41

from our simulations and IBTrACS. In contrast to TC outer size, most projections show a statistical42

shift towards stronger intensities in ≥1 distribution statistics by the late 21st century including43

7 of the 12 Zetac-downscaling GFDL hurricane model simulations and both the HiFLOR and44

HiRAM-downscaling GFDL hurricane model simulations. Moreover, several simulations also45

show ≥2 statistics statistically shifting towards stronger TC intensities indicative of larger changes46

in the distribution, whereas only the Zetac-downscaling A1BHADGEM1 simulation shows similar47
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Fig. S1. Joint histogram of maximum 10-m wind (kt) versus minimum sea-level pressure for TCs in (a), (b)

HiFLOR, (c), (d) HiRAM-downscaling GFDL hurricane model, (e), (f), (h) Zetac-downscaling GFDL hurricane

model, and (g) IBTrACS data. Each set of simulations shows its difference from IBTrACS data.
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Fig. S2. As in Fig. 1 from manuscript, but for lifetime maximum intensity (kt).

large shifts in TC outer size distributions. Two of the Zetac-downscaling simulations, the A1B48

HADGEM1 and HADCM3, also show statistical decreases in at least one distribution statistic49

towards weaker intensities. Comparing the distributions of lifetime maximum intensity (Fig. S2)50

and lifetime maximum r8 (Fig. 8 in the revised manuscript), only the Zetac-downscaling A1B51

HADGEM1 simulation shows strong changes in the same sign for both TC outer size and intensity.52

Nonetheless, the Zetac-downscaling A1B HADGEM1 simulation is an outlier compared to the53

other simulations partially due to the large-scale warming of the upper-troposphere temperatures54

in the Atlantic that is much stronger than the other ensemble members (Knutson et al. 2013, 2022).55

Together, these results suggest differences in the projected changes in TC intensity and outer size56

in the simulations.57

4. Supplemental Figure S3: Gridded Sample Size of TCs62

Figure S3 of the supplement shows the number of 6-h TC track points in each simulation for a 5◦63

longitude × 5◦ latitude grid. The sample size of 6-h track times is maximized within the subtropics64

typically within the western or central Atlantic. Figure S3 serves as a reference for the 6-h TC65

track sample sizes in Figs. 3 and 13 of the revised manuscript.66
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Fig. S3. As in Fig. 3 from manuscript, but for the number of 6-h TC times. The late 21st century simulations

shown in panels (b), (d), (f), and (h) show raw values instead of the differences with the control simulation

to clearly highlight sample size differences. The colorbar range also differs among the simulations due to the

differences in the years or simulation periods used.
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