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Abstract: In cases of severe wildlife population decline, a key question is whether recovery
efforts will be impeded by genetic factors such as inbreeding depression. Decades of excess
mortality from gillnet fishing have driven Mexico's vaquita porpoise (Phocoena sinus) to ~10
remaining individuals. We analyzed whole genome sequences from 20 vaquitas and integrated
genomic and demographic information into stochastic, individual-based simulations to quantify
the species' recovery potential. Our analysis suggests the vaquita's historical rarity has resulted
in a low burden of segregating deleterious variation, reducing the risk of inbreeding depression.
Similarly, genome-informed simulations suggest the vaquita can recover if bycatch mortality is
immediately halted. This study provides hope for vaquitas and other naturally rare endangered

species and highlights the utility of genomics in predicting extinction risk.

One-sentence summary: Whole genome sequencing and genomics-based population viability

analyses suggest the vaquita is not doomed to extinction.
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Main Text:

A central question for populations that have undergone severe declines is whether recovery is
possible, or if it may be hindered by deleterious genetic factors (1). Perhaps the most
immediate genetic threat in populations of very small size (<25 individuals) is the deterioration
of fitness due to inbreeding depression (2, 3). Thus, predicting the threat of inbreeding
depression under various genetic and demographic conditions is essential for the conservation

of endangered species.

The critically endangered vaquita porpoise (Phocoena sinus), found only in the northernmost
Gulf of California, Mexico, has declined from ~600 individuals in 1997 to around 10 individuals
at present (4). This precipitous decline has been driven by incidental mortality in fishing gillnets
(bycatch) ((4, 5); Fig. 1A). Efforts to reduce the intensity of illegal gillnet fishing and implement
stronger protections for vaquitas have not been successful, and vaquitas are now considered
the most endangered marine mammal (4). A recent viability analysis found that the vaquita
population could theoretically rebound if bycatch mortality is eliminated (6). However, the
degree to which genetic factors may prevent a robust recovery is unknown, leading some to

argue that the species is doomed to extinction from genetic threats (see discussion in (1, 7, 8)).

Population viability analysis (PVA) has long been an important tool for modelling extinction risk
(9). However, it is often challenging to parameterize PVA models for highly endangered species
where information on the potential impact of inbreeding depression is limited. Genomic data
offer a potential solution, as they can be used to estimate the fundamental genetic and
demographic parameters underlying inbreeding depression. Although the potential applications
of genomics in conservation have been widely discussed (10, 11), genomics remain under-

utilized in forecasts of population viability and extinction risk.

To investigate the impact of the vaquita’s recent decline and to quantify the species’ recovery
potential, we sequenced genomic DNA of 19 archival tissue samples to high depth (total n = 20

including genome from (12), mean coverage = 60X; table S1). Samples were obtained across
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three time periods: 1985-1993, 2004, and 2016-2017, spanning ~3 vaquita generations
(assuming a generation time of 11.9 years; (13)) and an estimated ~99% decline in population
size (Fig. 1A, (5)). All 20 vaquita genomes contain uniformly low heterozygosity (mean =
9.04x10°, standard deviation (S.D.) = 2.44x10°° heterozygotes/site; Fig. 1B and fig. S1),
consistent with a previous estimate from a single individual (12). Additionally, genome-wide
diversity appears stable over the sampling period (Fig. 1B, C), as expected given the short

duration of the decline.

We also investigated whether vaquita genomes show signs of recent inbreeding. We found that
the mean cumulative fraction of vaquita genomes in long (=1 Mb) runs of homozygosity (ROH)
is 5.42% (S.D. = 1.7%), implying a low average inbreeding coefficient of Fron = 0.05 (Fig. 1D and
fig. S2). Furthermore, ROH in our sample are relatively short (mean length 1.59-3.18 Mb),
suggesting that they trace to a common ancestor from roughly 15-31 generations ago (178-369
years; (5)). This result indicates that these ROH are a consequence of the vaquita’s historically
limited population size rather than recent inbreeding. Finally, we found limited evidence for

close relatives in our dataset, aside from two known mother-fetus pairs (fig. S3).

To better characterize the vaquita’s long-term demographic history, we used the distribution of
allele frequencies to perform model-based demographic inference. Overall, we found good fit
for a two-epoch model in which the vaquita effective population size (N.) declined from 4,485
to 2,807 individuals ~2,162 generations ago (~25.7 KYA; (5); Fig. 1E, figs. S4 and S5, tables S2 to
S4). Thus, vaquitas have persisted at relatively small population sizes for at least tens of
thousands of years, resulting in uniformly low genome-wide diversity that is among the lowest
documented in any species to date (12). Here, we use ‘long-term small population size’ to mean
Ne on the order of a few thousand individuals over thousands of generations, as opposed to

‘small population size’” meaning N <100, as in some other contexts (e.g., (14, 15))).

A predicted consequence of long-term small population size is the reduced efficacy of purifying

selection against weakly deleterious alleles with selection coefficients <<1/(2*N,) (14, 15). Such
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alleles can drift to high frequencies and become fixed, potentially contributing to reduced
fitness. To investigate this, we compared the burden of putatively deleterious protein-coding
variants in vaquitas with 11 other cetacean species (table S5, fig. S6). Specifically, we focused
on nonsynonymous mutations at sites under strong evolutionary constraint (16), and loss-of-
function (LOF) mutations that are predicted to disrupt gene function. We used the ratio of
deleterious to synonymous variants as a proxy for the efficacy of purifying selection (5) and
used genome-wide heterozygosity as a proxy for N. (Fig. 2A, B and fig. S7). The ratio of
deleterious variants is significantly negatively correlated with N. (phylogenetic generalized least
squares (PGLS) regression, pdel. = 1.32x107?, pLor = 7.88x1073), consistent with expectation.
Among all species in our study, vaquitas have the highest proportional burden of deleterious
alleles. Compared to the species with the next lowest diversity (orca, Orcinus orca), ratios for
deleterious and LOF mutations in vaquitas are 1.14x and 1.23x higher, respectively.
Furthermore, we demonstrate using simulations that this elevated ratio is minimally impacted
by the vaquita’s recent population decline, and is instead attributable to its historical
population size (fig. S9; (5)). Similar trends exist for homozygous deleterious mutations, which
includes variants that may be fixed in the species (fig. S8). Thus, elevated ratios of deleterious
to neutral variation among polymorphisms (heterozygotes) and substitutions (homozygotes) in
vaquitas are consistent with an accumulation of weakly deleterious alleles under long-term
small population size. The remaining vaquita individuals appear healthy and are actively
reproducing (17, 18), suggesting the species’ fitness has not been severely compromised by its

longstanding elevated burden of weakly deleterious alleles.

A larger concern for vaquita recovery is future fitness declines due to inbreeding depression,
given the inevitability of inbreeding in any recovery scenario. However, the risk of inbreeding
depression (or “inbreeding load”) is predicted to be reduced in species with long-term small
population size because 1) increased homozygosity exposes recessive strongly deleterious
alleles to selection more frequently, and 2) drift decreases the absolute number of segregating
recessive deleterious variants (19, 20). To assess the potential for future inbreeding depression

in vaquitas relative to other cetaceans, we quantified the total number of heterozygous
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deleterious alleles per genome, which reflect alleles that could contribute to inbreeding
depression when made homozygous through inbreeding. We found that the total number of
heterozygous putatively deleterious alleles per genome is positively correlated with genome-
wide diversity (PGLS pdel. = 5.57x10°°, pior = 1.91x10) (Fig. 2C, D). Among all cetaceans in our
study, vaquitas harbor the fewest deleterious heterozygotes per genome. Compared to the
orca, vaquitas have 0.33x and 0.36x the number of deleterious and LOF heterozygotes,
respectively. Similar trends are evident in all mutation classes, including conserved noncoding
regions (fig. $10). Thus, although vaquitas have an elevated proportion of deleterious relative to
neutral variants (Fig. 2A, B, fig. S8), they nevertheless have a low absolute number of

segregating deleterious variants (Fig. 2C, D), implying a low inbreeding load.

To model potential recovery scenarios for the vaquita, we combined our genomic results with
information about vaquita life history to parameterize stochastic, individual-based simulations
using SLiM3 ((5, 21); Fig. 3A, fig. S11). These simulations were designed to model vaquita
protein-coding regions, incorporating both neutral mutations and recessive deleterious
mutations, the latter of which are thought to underlie inbreeding depression (3, 22). We used
our genomic dataset to estimate a vaquita mutation rate (fig. S12) as well as a distribution of
selection coefficients for new mutations (fig. S13), and assumed an inverse relationship
between dominance and selection coefficients (5). Importantly, our model allows for
deleterious mutations to drift to fixation and impact fitness (figs. S14 to S16; (5)). We used our
demographic model (Fig. 1E) to simulate the historical vaquita population (figs. S17 and S18),
then initiated a bottleneck by introducing stochastic bycatch mortality at a rate calibrated to
the empirical rate of recent decline as of 2018 (Fig. 1A and fig. S19; (5)). Finally, we allowed for
recovery by reducing the bycatch mortality rate after the population reached a ‘threshold

population size’ of 10 or fewer individuals, based on the current estimated population size.

We first used this model to examine the impact of varying levels of bycatch mortality on
extinction risk over the next 50 years. We estimate a high probability of recovery if bycatch

mortality ceases entirely, with only 6% of simulation replicates going extinct (Figs. 3B, 4A). In



163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

addition, simulated populations that persist exhibit substantial growth, with a mean population
size in 2070 of 298.7 individuals (S.D. = 218.2; Fig. 4A). However, if bycatch mortality rates are
decreased by just 90%, extinction rates increase to 27% (Figs. 3B and 4B), with more limited
recovery in population sizes (mean of 49.2 individuals in 2070, S.D. = 34.4; Fig. 4B). Finally, if
bycatch mortality rates are decreased by just 80%, extinction occurs in 62% of simulation
replicates. Thus, recovery potential critically depends on reducing bycatch mortality rates, with

even moderate levels of bycatch resulting in a high likelihood of extinction.

Next, we examined the importance of the threshold population size, given uncertainty in the
2018 estimate of 10 individuals (4). As expected, extinction rates decrease when assuming a
threshold population size of 20 and increase when assuming a threshold population size of 5
(Fig. 3B). These results emphasize that the number of remaining vaquita individuals is also a

critical factor underlying extinction risk.

To quantify the inbreeding load in our model, we estimated the ‘number of diploid lethal
equivalents’ (or 2B), which characterizes the rate at which fitness is lost with increasing levels of
inbreeding (2, 23). Typically, inbreeding load is quantified by comparing estimates of individual
fitness and inbreeding in natural populations (2, 24); however, such data do not exist for most
species, including the vaquita. Under our simulation parameters, we estimate an inbreeding
load of 2B = 0.95 in vaquitas (table S6), significantly lower than the median empirical estimate
for mammals of 6.2 (24), likely due to the vaquita’s relatively small historical N.. Nevertheless,
simulations that exclude deleterious mutations result in a significantly lower extinction rate

(Fig. 3B), confirming that inbreeding depression impacts recovery potential in our model.

To further explore how the inbreeding load in our model depends on historical demography, we
ran simulations with the historical Ne increased x20. We found an increased extinction rate of
52%, compared to 27% with our empirical population size parameters, with minimal recovery
for replicates that persisted (mean of 16.2 individuals in 2070, S.D. = 14.5, Fig. 4C). Additionally,

with this larger historical Ne, we observe a greatly increased inbreeding load of 2B = 3.32 (fig.
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S20 and table S6). These findings further demonstrate the importance of the vaquita’s natural

rarity as a factor underlying their low inbreeding load and increased potential for recovery.

Given the uncertainty in many of our model parameters, we conducted sensitivity analyses
varying the calving interval, mutation rate, distribution of dominance and selection coefficients,
and target size for deleterious mutations (5). Although these factors influence extinction
probabilities, recovery remains the likely outcome (>50% probability) in nearly all cases when
assuming a threshold population size of 10 and a 90% reduction of bycatch mortality (fig. S21
and table S6). Two notable exceptions to this are for models with a higher mutation rate, where
we observed a 55% extinction rate compared to 27% in our ‘base’ model, and for models with
decreased calving interval, where we also observed a 55% extinction rate (fig. S21 and table S6).
Thus, although uncertainty exists in our projections, the overall conclusion that recovery is
possible if bycatch is greatly reduced remains robust to our model assumptions. Finally, we
note that our simulations do not consider factors such as reduced adaptive potential or
increased susceptibility to disease caused by low genetic variability, which may impact future
persistence. Vaquitas have survived with low diversity for tens of thousands of years and have
endured environmental changes in the past (12), suggesting that these factors alone do not
doom the species to extinction. Conceivably, low diversity in the vaquita may limit the species’
capacity to adapt to increasing global change over the long term, but this risk is challenging to

guantify and should not preclude recovery efforts in the short term.

In conclusion, our results suggest there is a high potential for vaquita recovery in the absence of
gillnet mortality, refuting the view that the species is doomed to extinction by genetic factors.
Our approach leverages genomic data and methodology to forecast population viability and
extinction risk, enabling a more nuanced assessment of the threat of genetic factors to
persistence. The key aspect of the vaquita that our analysis reveals is that its historical
population size was large enough to prevent the fixation of all but weakly deleterious alleles,
and small enough to reduce the inbreeding load from recessive strongly deleterious mutations.

Numerous other examples of species rebounding from bottlenecks of similar magnitude to that
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of the vaquita have been documented (reviewed in (1)). For example, many parallels exist
between the vaquita and Channel Island foxes, which similarly have exceptionally low genetic
diversity, yet were able to rebound from severe recent bottlenecks without apparent signs of
inbreeding depression (25). Together, these examples challenge the assumption that
populations that have experienced catastrophic declines are genetically doomed and provide
hope for the recovery of endangered species that are naturally rare. Finally, our analysis
demonstrates the potential for genomics-informed population viability modelling, which may
have widespread applications given the increasing feasibility of genomic sequencing for non-

model species amid a worsening extinction crisis (26).
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Figure Legends

Fig. 1. Vaquita genome-wide diversity and demographic history. (A) Model of vaquita census
population size based on previous surveys (5) shows a dramatic recent decline. (B) Bar plots of
per-site heterozygosity in 1-Mb genomic windows in three individuals (one from each sampling
period; see fig. S1 for all) show little variability within or between individuals. (C, D) Genome-
wide heterozygosity and ROH burden are consistent between sampling periods. Lines connect
mother-fetus pairs; open symbols indicate offspring. (E) Two-epoch demographic model
inferred with dadi. Parameter 95% confidence intervals indicated in parentheses.

Fig. 2. Deleterious variation in vaquitas and other cetaceans. Ratios of deleterious
nonsynonymous (A) and LOF (B) heterozygotes to synonymous heterozygotes are significantly
negatively correlated with genome-wide heterozygosity (per bp, log-scaled). Total numbers of
deleterious nonsynonymous (C) and LOF (D) heterozygotes per genome are significantly
positively correlated with genome-wide heterozygosity (per bp). Grey lines show phylogeny-
corrected regressions (excluding the Indo-Pacific finless porpoise (5)).

Fig. 3. Model schematic and extinction rates under various simulation parameters. (A)
Diagram of events that occur during one year in our SLiM simulation model. (B) Percent of
replicates going extinct over the next 50 years under varying recovery parameters. Shading
indicates extinction rates when only neutral mutations are simulated, and “N” represents the
threshold population size.

Fig. 4. Simulation trajectories under various recovery scenarios. (A) Simulation trajectories
under empirically-inferred historical demographic parameters assuming a reduction in bycatch
mortality of 100%. (B) Simulation trajectories with bycatch mortality rate decreased by only
90%. (C) Simulation trajectories with historical population size increased x20 and assuming a
decrease in bycatch mortality of 90%. For all simulations, we assumed a population size
threshold of 10 individuals. Replicates that went extinct are colored red and replicates that
persisted are colored blue.
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Materials and Methods

Samples and sequencing

We obtained tissue samples of 19 vaquitas sampled from 1985-2017, spanning roughly
three vaquita generations. The 12 samples from 1985-1993 included 10 adults and two fetuses,
implying that this sample alone may span ~2 generations. Additionally, the animal captured,
biopsied and released in 2017 was a juvenile, suggesting that this individual was born at least 30
years after the oldest individuals in our dataset. Other sampled individuals that were fetuses or
calves are noted in table S1.

All samples except one (ID = z0186934) were obtained opportunistically from beach-cast
or bycaught animals, and stored in salt-saturated 20% DMSO at -20°C. The single sample from a
live individual was collected under veterinary care and all animal handling was conducted under
permit no. SGPA/DGVS/07534/17. The skin biopsy sample was stored without preservative
at -80°C. Samples were transferred internationally under MMPA and CITES permits. DNA was
extracted using the PureGene or DNeasy Tissue kits (Qiagen), following the manufacturer’s
recommendations, or using a salt/ethanol precipitation (29). DNA quality was checked by
agarose gel electrophoresis and quantified using a Qubit-v3 fluorometer. Genomic libraries were
prepared using the Swift Biosciences Inc. Accel-NGS single-strand 1S DNA Library Kit or using
a blunt-end ligation method with double indexing (30, 31). Libraries were sequenced with
Illumina HiSeq-X to generate 150 bp paired end reads.

Variant calling and filtering
We aligned vaquita whole genome sequence reads to the previously assembled vaquita

reference genome (mPhoSin1 .pri, GCF_008692025.1) (12) as follows. First, sequence reads
were trimmed to remove low quality bases with BBDUK v38.72
(http://sourceforge.net/projects/bbmap). We then used an adapted version of the Best Practices
workflow for the Genome Analysis Toolkit v3 (GATK v3.8-1-0-gf15c1c3ef, (32)) to perform
variant calling. Initial processing steps were carried out per-sample prior to joint genotype
calling. First, we used Picard v2.20.3-0 (http://broadinstitute.github.io/picard)
MarkIlluminaAdapters to flag any adapter sequence contamination, and then aligned reads to the
vaquita reference genome with BWA MEM v0.7.17-r1188 (33). Duplicate reads were then
flagged with Picard MarkDuplicates and indel realignment was performed with GATK
RealignerTargetCreator and IndelRealigner. Next, we performed base quality score recalibration
(BQSR) using a set of high confidence variant calls from within each individual for use as the set
of "known variants" — a procedure referred to as "bootstrapping" for cases where no database of
known variation exists. These variants were called using Bcftools v1.9 (34) mpileup/call/filter
with the following requirements: reads mapped in proper pairs, minimum read mapping quality
score of 20, minimum base quality score of 30, at least one forward and one reverse read
supporting the alternate allele, and no more than one alternate allele. One round of recalibration
was sufficient to equalize the reported and expected base quality score distributions.

Genotype calling was performed in each individual with GATK HaplotypeCaller to
produce gVCEF files using the options -ERC BP_RESOLUTION -out_mode EMIT _ALL_SITES to
call genotypes at all sites in the reference. We then generated joint VCF files by passing all
individual gVCEF files to GATK GenotypeGVCFs using the options allSites -stand_call_conf 0.
These settings produced VCF files with genotypes at all sites in the genome, including invariant
sites. We applied filters and masks to exclude low-quality genotypes from subsequent analyses.
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Variants that were not bi-allelic SNPs were excluded. Variants failing recommended GATK hard
filtering criteria (QD < 4, FS > 60, MQ < 40, MQRankSum < -12.5, ReadPosRankSum < -8,
SOR > 3) were then filtered out, as well as sites with excess missingness (>25%) or excess
heterozygosity (>75% of individuals heterozygous). Genotypes were filtered on a per-individual
basis to exclude those with insufficient or excess read depth (<1/3x or >2x mean read depth for
that individual). Individual genotypes were further filtered on the basis of allele balance (percent
of reads carrying the reference allele out of total reads covering a site): homozygotes with >10%
of reads carrying a different allele and heterozygotes with allele balance <20% or >80% were
filtered out. We masked repetitive sequences identified with RepeatMasker v.open-4.0.9 (35) or
Tandem Repeats Finder v4.09 (36). Finally, we masked regions of extreme SNP density (>0.01),
which likely reflect technical artifacts, such as errors in the underlying assembly. Only data from
the autosomes were used in our analyses.

Estimation of recent vaquita abundance

To estimate the trajectory of vaquita abundance in recent decades (as in Fig. 1A), we fit
an exponential model consistent with point estimates from recent surveys (37-39). Specifically,
our aim was to match the trend given by three abundance estimates from complete surveys of the
vaquita distribution: an estimate of 567 in 1997 (37), an estimate of 245 in 2008 (38), and an
estimate of 59 in 2015 (39). Based on these estimates, we fitted a model assuming two rates of
decline. We assumed a constant exponential rate of decline for the period prior to 2012 that fit
the 1997 and 2008 abundance estimates. Projecting this growth rate (lambda = 0.92) into the past
resulted in reaching the population size estimated from genetic data (~5,000 vaquitas) by
1972. The second rate of decline (lambda = 0.67) solved the exponential equation between the
projected number in 2012 and the number in 2019 (~10). This simple model approximated the
estimated abundances from recent surveys well (see Fig. 1A).

Genomic diversity. runs of homozygosity, and relatedness

We define heterozygosity as the proportion of all called genotypes within a single
individual that are heterozygous. This value represents the average number of pairwise
differences per site between homologous chromosomes within a single individual. As we
generated VCF files that included invariant positions, the denominator includes all sites with
called genotypes, including those that are invariant and match the reference. The distribution of
genome-wide heterozygosity in vaquitas revealed two notable peaks with high diversity across
many individuals: one at the end of Chromosome 2 in eight individuals, and one in the middle of
Chromosome 18 in twelve individuals (fig. S1). The peak at the end of Chromosome 2 is a 150
kb region containing one pseudogene, five orthologs of human immunoglobulin genes, and six
unnamed genes. Several genes in this region have multiple stop codons, suggesting they are non-
functional or that the annotations contain errors. The immunoglobulin genes in this region are
also highly paralogous, and an elevated proportion of sites in this region fail numerous quality
filters. The peak on Chromosome 18 is a 300 kb region that contains three genes (FAM7IA,
OGT, CEP78) that, to our knowledge, have no clear significance for fitness. These peaks of
heterozygosity may represent technical artifacts rather than genuine signals of high germline
diversity.

We identified runs of homozygosity (ROH) = 1 Mb with three methods: the --homozyg
function in Plink v1.90b6.12 (40), the --LROH function in Vcftools v0.1.16, (41), and the roh
function in Bcftools v1.10.2 (42). Plink and Vcftools were run with default parameters. VCF
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files containing all genotyped sites were provided for Plink, whereas files containing just variant
sites were provided for Vcftools. For Beftools, we provided variants only, used option -G 30, and
specified that the function should use allele frequencies from the 15 unrelated vaquitas in
identifying ROH (see below). All three methods yielded similar total lengths of ROH (fig. S2).
Bcftools produced the highest summed ROH lengths overall, and we chose to use those results
for the main text as they represent the most conservative estimate of the maximum degree of
inbreeding.

To calculate the proportion of the genome in ROH, we generated a pseudo-genome with
100% homozygous genotypes and included this when re-running Bcftools roh. Including the
pseudo-genome had no effect on ROH estimated in the true genomes but provided a maximum
possible ROH length for a fully homozygous genome. The summed ROH length from this
pseudo-genome (2,237,397,028 bp, slightly less than the full autosomal genome length of
2,237,877,686 bp) was then used as the denominator for calculating Froy in the vaquitas. To
estimate the coalescence time for the two copies of the chromosome within a ROH (when
identical segments originated from a single chromosomal segment in a common ancestor), we
used a model in which the length of ROH due to inbreeding decays exponentially through
recombination each generation (43). Specifically, we calculated the number of generations to the
common ancestor (g) as g = 100/(2*L), where L is the mean length of ROH in megabases (Mb).
Here, we assumed a generation time of 11.9 years (/3), and, in the absence of data on
recombination rates in cetaceans, a constant recombination rate of 1 cM/Mb.

We estimated genetic relatedness among vaquitas in order to exclude closely related
individuals from population allele frequency-based analyses (Demographic Inference and
Inference of the distribution of selection coefficients). To calculate relatedness, we used the
“KING-homo” method (44) in SNPRelate v1.24.0 (45) to estimate pairwise genetic distances
between individuals on the basis of identity-by-state (IBS). Prior to estimating genetic distance
and relatedness metrics, SNPs were pruned for linkage disequilibrium (using options
method = “composite” and ld.threshold = 0.5), resulting in 59,420 SNPs for analysis. As two
pairs of individuals were known to be first-degree relatives (mother and fetus pairs; see table S1),
we were able to easily identify two other pairs of first-degree relatives that shared a similar
degree of IBS/relatedness (kinship ~0.25; z0004390/z20004394, z0183496/z20185383), and one
individual (z0004382) with a more distant relationship (kinship = 0.079) to one of the mother-
fetus pairs (z0004380/z0004393) (fig. S3). Among all other individuals, there was no evidence of
close relatedness (mean kinship = 7.73x107). For all analyses which required using unrelated
individuals only, we kept the higher coverage individual of each relative-pair, excluding
20001663, z0004380, 0004393, z0004394, and z0185383.

Demographic inference

To reconstruct the demographic history of the vaquita based on the neutral site frequency
spectrum (SFS), we selected SNPs in putatively neutrally evolving regions of the genome,
constructed a folded SFS, and used two demographic inference methods. We identified
putatively neutral regions as those located >10 kb from coding sequences which did not overlap
with CpG islands (identified with cpg_lh, from
https://hgdownload.soe.ucsc.edu/admin/exe/linux.x86 64). To exclude highly conserved un-
annotated regions under strong evolutionary constraint, which may be functional, we aligned the
remaining regions against the zebra fish genome using BLAST (v2.7.1(46)) and removed any
region which had a hit below a 1e-10 threshold (indicating high sequence similarity).
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To create the neutral SFS, we used a modified version of EasySFS
(https://github.com/isaacovercast/easySES), which implements dadi’s (47) hypergeometric
projection to account for missing genotypes at some sites. The maximum number of SNPs was
recovered using a projection value of 26 haploid, or 13 diploid, individuals. The number of
monomorphic sites passing the projection threshold in neutral regions were counted and
incorporated into the 0-bin of the SFS.

We used the neutral SES for demographic inference under a coalescent framework with
fastsimcoal2 v2.6 (48) and a diffusion approximation method with dadi (47). The four models
we tested were: /-Epoch model: no size change, infers the ancestral size (N,,.) of the population;
2-Epoch model: one size change from N, to the current size (N.,,) occurring T generations ago;
3-Epoch model: two size changes, from N, to a reduction (N,,) T», generations ago, followed
by a recovery to the current size (N..,) .. generations ago; 4-Epoch model: three size changes,
N to a reduction or expansion (N,,) T, generations ago, followed by a recovery or reduction
(Nree), T, generations ago and a final change T,,, generations ago to the current size (N.,,) (fig.
S4).

In fastsimcoal2 (48), we estimated demographic parameters using 60 expectation
conditional maximization (ECM) cycles, each with 500,000 simulated coalescent trees. The
starting parameters were chosen from a uniform distribution with an enforced minimum value
and flexible upper boundary. We compared the expected SFS under the fastsimcoal2 parameters
to the empirical SFS and the multinomial log-likelihood was calculated. We performed 100
replicates of the inference to confirm that both parameters and log-likelihoods converged, and
parameters with the maximum log-likelihood were chosen. All estimated effective population
size parameter values were obtained as the number of haploids and converted to diploids, while
time parameters were inferred as the number of generations before the present day. We
calculated confidence intervals for the estimated parameters by generating 100 parametric
bootstrap replicates of the SFS for the set of parameters in each model as follows. For each
bootstrap replicate, we simulated 2,000,000 non-recombining segments of 1 kb (2 Gb total) in
fastsimcoal2 under the parameters with the maximum likelihood for each model. Then, we
estimated the parameters from these pseudo-observed data. We used the estimated values
obtained from the data as the initial values for bootstrap parameter estimation. To determine
which model explained our data better, we performed several tests. For each model we first
evaluated the convergence for the estimated parameters and log-likelihood values in the five best
replicates, then calculated the Akaike information criterion (AIC) for the replicate with the
maximum log-likelihood and used these top replicates to carry out a likelihood ratio test (LRT)
between nested models.

For demographic inference with dadi v2.1.1 (47), we permuted the starting parameter
values for each of 100 runs for each model. The log-likelihood was calculated for the expected
SES using dadi’s optimized parameter values and compared to the empirical SFS. We then
estimated the best fit for each replicate and scaled by the total sequence length (L) and mutation
rate (5.8x10”° mutations/site/generation; see Vaquita mutation rate estimation) to calculate the
diploid ancestral size (N,..) as N, = 0/(4uL). Parameter values for population size changes were
scaled by N,,., and time parameters were scaled by 2*N,,., into units of diploids and number of
generations, respectively. For each model, we selected the maximum likelihood estimate from
the 100 runs. To determine the uncertainty in parameter estimates for the best run per model (i.e.
with the maximum log-likelihood), we first performed a bootstrap analysis by partitioning the
VCF file used to build the SFS into 1,000 independent fragments of 2 Mb (2 Gb total); then used
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those fragments to calculate a Godambe information matrix to obtain the standard deviation and
95% confidence intervals of the best fitting parameters (49). The bootstrap and uncertainty
analysis were done using dadi functions Misc.bootstraps_from_dd_chunks and
dadi.Godambe .GIM _uncert, respectively. As with fastsimcoal2, we evaluated the models based
on convergence, AIC, and LRT.

Vaquita mutation rate estimation

Our inferences of the demographic history and distribution of selection coefficients in
vaquitas, as well as our forward simulations, require that a per-site, per-generation mutation rate
be specified. The mutation rate in vaquitas is unknown. Previously, Morin et al. (/2) assumed a
rate of 1.08x10%/site/generation, based on a previously estimated nuclear mutation rate of
9.10x10'%/site/year in odontocetes (50), and a vaquita generation time of 11.9 years (/3).
However, this substitution rate estimate was based on a limited set of just four nuclear genes. We
therefore used genome-wide divergence between the vaquita and two other porpoises (harbor
porpoise, Phocoena phocoena (SRR8305658, (51)), and Indo-Pacific finless porpoise,
Neophocaena phocaenoides (SRR940959, (52)) to estimate plausible alternative mutation rates.

Divergence (d,,) is related to mutation rate («) through the equation u = d,,/2t, where t is
the time since two species diverged from a common ancestor. We calculated divergence as
dy = (h; +2hy) / (2g), where h, is the number of sites in which one or both members of the pair is
heterozygous, /i, is the number of sites in which individuals are homozygous for different alleles,
and g is the number of sites in which both individuals had called genotypes. We estimated that
d., between the vaquita and harbor porpoise is 4.25x10-%/site, and d,, between the vaquita and
finless porpoise is 5.31x10%/site. Using a previous divergence time estimate of 5.42 million years
(53) and a generation time of 11.9 years yields estimated mutation rates of 4.66-
5.83x10%/site/generation (fig. S12). These are potentially over-estimates, however, because they
do not account for the level of diversity in the ancestral population prior to divergence (),
which is a reasonable assumption only when d,,>> m,,.. Here, we calculate the mutation rate as
U = (dyy— Tne)/2, where we set m,, to the genome-wide estimate of heterozygosity in the harbor
or finless porpoise, as T, 1S unknown. Using this method, we estimate mutation rates of 3.00-
4.79x107/site/generation (fig. S12). To include uncertainty in the divergence time estimate, we
also calculated mutation rates using median estimated divergence times from TimeTree.org (54):
7.33 million years since the split between vaquitas and harbor porpoises, and 8.15 million years
since the split between vaquitas and finless porpoises. With these divergence times, we obtain
mutation rates of 3.45-4.31x10/site/generation without considering m,,., and 2.22-
3.54x10/site/generation when incorporating ,,. (fig. S12).

We used the minimum and maximum mutation rates estimated here (2.22x10 and
5.83x10/site/generation, respectively) as well as the previously used rate of
1.08x10%/site/generation (/2) for inferring the distribution of fitness effects and population
viability simulations (see Inference of the distribution of selection coefficients and Simulation
methods). All findings presented in the main text used the rate of 5.83x10/site/generation,
which is intermediate between our estimated lower bound and the previously used rate. Our
range of mutation rates spans the range of direct estimates from other mammals, including mice
and humans (535, 56).

Annotation of putatively deleterious variants
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We used the Sorting Intolerant From Tolerant program (SIFT (/6)) to annotate
synonymous and nonsynonymous mutations, and to identify nonsynonymous mutations that are
putatively deleterious. SIFT designates mutations as putatively deleterious when they occur at
highly conserved sites in alignments of homologous protein-coding sequences. We used SIFT4G
(57) with the UniRef90 protein database (downloaded May 1, 2020) to develop custom SIFT
databases for each of the species analyzed in our study, following the developer's
recommendations. We used SnpEff v4.3t (build 2017-11-24 10:18) (58) to identify putative LOF
mutations. Following (59), SnpEff identifies putative LOF mutations as those that introduce
premature stop codons, disrupt splice sites, or induce frameshifts within the first 95% of a gene's
coding sequence (LOF mutations in the last 5% of the sequence tend to be tolerated). Note that
indels were excluded from our analyses and we therefore did not count frameshift mutations in
LOF tallies. For sites with multiple annotations due to overlapping gene transcripts, we
prioritized the most deleterious annotation (LOF > deleterious nonsynonymous > tolerated
nonsynonymous > synonymous). Custom per-species databases for both SnpEff and SIFT were
built using genome annotations (GTF files) provided by RefSeq.

Comparative analyses with cetaceans

We obtained whole genome sequence data for eleven other cetacean species from the
NCBI Sequence Read Archive (SRA). Species were selected if they had: 1) an assembled
reference genome in GenBank, 2) a genome annotation in RefSeq, and 3) short read [llumina
resequencing data in the SRA. Reads from each species were aligned to the reference genome for
that species (note: we used the Yangtze finless porpoise as the reference for the closely-related
Indo-Pacific finless porpoise, which does not have its own genome assembly) and were
processed using the same pipeline described above for the vaquita data. The only differences
were that: 1) these samples were processed individually (no joint genotyping), and 2) slightly
different filtering criteria were implemented, as follows. We excluded short scaffolds (<500 kb)
and scaffolds with depth of coverage <75% or >150% of the genome-wide mean on a per-
individual basis. Filtering and masking were the same as for the vaquita data with the following
exceptions: we did not incorporate missingness or excess heterozygosity filters, or an excess
SNP density mask, as those were implemented exclusively for joint VCF files containing
multiple individuals. SIFT and SnpEff databases were generated for each reference genome and
used to annotate variants (see Annotation of putatively deleterious variants).

For comparisons between the vaquita and other cetacean species (Fig. 2, fig. S8, S10), the
value used for the vaquita was the average value calculated from all 20 individuals (see fig. S7
for plots showing values for all 20 vaquitas). All estimates of heterozygosity and heterozygosity-
based analyses for comparisons between vaquitas and cetaceans used the same-species-reference
dataset described above. In order to obtain counts of homozygous variants (fig. S8), which
includes potentially fixed substitutions, we aligned reads from the vaquita and its closest
relatives (porpoises, monodontids, and delphinids) to the reference genome of an outgroup, the
blue whale (GCF_009873245.2_mBalMus] .pri.v3). We used an identical pipeline to the same-
species pipeline described above to obtain filtered, annotated VCF files. More distantly related
species were excluded from this analysis in order to mitigate biases from using a divergent
outgroup reference genome.

We use several statistics to quantify and compare the burden of deleterious variation, or
the "genetic load" (sometimes called the "mutation load"), between vaquitas and other cetacean
species. Genetic load can arise from several distinct processes, leading to different types of load
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(reviewed in (60)). One form of load is "drift load", or the increased frequency and fixation of
weakly deleterious alleles as a result of genetic drift. Specifically, weakly deleterious alleles may
accumulate because purifying selection is ineffective at removing mutations with selection
coefficients <<1/(2N,). A second type of load is the “inbreeding load”, or the load of recessive
deleterious mutations that may reduce fitness by becoming homozygous through inbreeding.
Unlike drift load, inbreeding load may be lower in small populations where recessive mutations
are more frequently exposed to purifying selection as homozygotes, and higher in large
populations where inbreeding seldom occurs and high heterozygosity masks recessive alleles
from selection. In our study, we attempt to approximate both types of load using different
statistics as described below.

To assess the effects of drift on deleterious variation, we calculated ratios of putatively
deleterious variants (deleterious nonsynonymous mutations identified with SIFT and LOF
mutations identified with SnpEff) to synonymous variants (Fig. 2A, B, fig. S8). With this
approach, we use the number of synonymous variants as the "neutral" baseline to compare the
relative burden of deleterious variants between species. This method accounts for varying
evolutionary rates among species, and therefore corrects for branch length variation due to
varying degrees of divergence between each focal species and the outgroup (in this case, the blue
whale; see fig. S6), making it a valid approach for between-species comparisons. In particular,
when comparing numbers of derived deleterious homozygotes between species, raw absolute
counts are somewhat meaningless by themselves as each focal species has a different divergence
time with respect to its outgroup species. A further advantage of our approach is that it inherently
accounts for technical differences between samples that can influence absolute counts, such as
varying sequence quality or genome coverage. Note, it has been suggested that the ratio of
nonsynonymous to synonymous variants may not always be a good proxy for genetic load in
non-equilibrium populations (67). However, normalization of putatively deleterious variation by
putatively neutral variation is appropriate here because our objective is to compare patterns
between divergent species, rather than between closely related populations of the same species.
Moreover, the vast majority of homozygous derived variants that we identify are due to fixed
substitutions that have accumulated over long branches with respect to the outgroup reference
genome, and recent demography should therefore have little effect on this ratio (fig. S8).
Because our analyses involve comparisons between divergent species, rather than between
populations, we do not require a method that corrects for shared polymorphisms (e.g., Ry, (62)).
For these reasons, normalization of the counts of nonsynonymous variants by the counts of
synonymous variants is appropriate for assessing the effects of long-term N, on the relative
burden of deleterious variants per genome.

To quantify inbreeding load, we tabulated the absolute number of deleterious
heterozygotes per genome, as this captures the deleterious variation that can reduce fitness if
made homozygous through inbreeding (Fig. 2C, D, fig. S10). We normalized raw heterozygous
genotype counts to correct for varying call rates across individuals due to technical differences in
coverage, filtering, etc. Specifically, we divided the raw heterozygous genotype counts by the
total number of genotype calls passing all filters within each individual, then multiplied this
result by the mean total number of genotype calls across all individuals. For protein-coding
heterozygotes (synonymous, tolerated nonsynonymous, deleterious nonsynonymous, LOF), we
normalized by the total number of called genotypes in the exonic regions; for numbers of
conserved noncoding heterozygotes, we normalized by the total number of calls in the conserved



noncoding regions (see Identification of conserved noncoding regions in vaquita and cetacean
genomes).

Phylogenetic correction for multi-species correlations

We used phylogenetic generalized least squares (PGLS) regression to account for
phylogenetic non-independence among species when modelling the association between
genome-wide heterozygosity and the burden of deleterious alleles. To generate a species
phylogeny, we used alignments of vertebrate-specific single copy orthologous genes from each
species. Briefly, we identified orthologs in each genome assembly with BUSCO v4.1.4 (63),
generated an alignment for each ortholog with mafft v7.475 (64), and then inferred tree topology
and branch lengths using maximum likelihood with IQ-TREE v2.1.2 (65). We included the cow
genome (ARS-UCD1.2 (66)) as an outgroup, and excluded the Indo-Pacific finless porpoise as
there is currently no genome assembly or annotation available for this species. Our species
phylogeny therefore includes 11 cetaceans, including the vaquita, plus the cow. We used the
vertebrata_odb10.2020-09-10 BUSCO dataset, which contains 3,354 orthologs from 67 species.
Of these, 2,459 orthologs were found in all 12 genomes and used for inferring the species
phylogeny. Alignments for each ortholog were trimmed with trimal v1.4.rev15 (67), and then
concatenated into a supermatrix (containing 4,421,551 sites total) with catsequences (68).
Phylogenies inferred with and without partitioning (69) yielded identical topologies with similar
branch lengths, but the partitioned analysis yielded higher AIC and BIC scores. The best
partitioning scheme and model, as identified with ModelFinder (70), was an edge-linked-
proportional partition model of 167 partitions with separate substitution models and rates across
sites. Consensus and maximum-likelihood tree topologies from partitioned and non-partitioned
analyses were identical and consistent with the cetacean phylogeny inferred by (717) (fig. S6). In
both partitioned and non-partitioned analyses, all branches received 100% support from 1000
bootstrap replicates (UFBoot2, (72)). We used the phylogeny inferred from the partitioned
analysis for performing PGLS regression under a Brownian motion correlation structure in R
v4.0.5 (73) with the ape v5.5 (74), geiger v2.0.7 (75), and nlme v3.1.152 (76) packages.

Identification of conserved noncoding regions in vaquita and cetacean genomes

Conserved noncoding elements are genomic sequences with high sequence similarity
across species that may function in gene regulation (77). To identify conserved noncoding
regions, we converted the coordinates of conserved noncoding elements in the mouse genome
(mm10) provided by the UCSC Genome Browser (http://genome.ucsc.edu/cgi-bin/hgTables) to
their corresponding coordinates in the vaquita and other cetacean genome assemblies. Briefly,
we extracted the coordinates of conserved elements =50 bp originally identified with PhastCons
(78) from a 60-way alignment of placental mammal genomes, then followed the UCSC cross-
species reciprocal best alignment protocol to obtain homologous regions in the cetacean genome
assemblies (complete pipeline available at (27)). Converted coordinates that overlapped protein-
coding sequences (annotated as “CDS”) or repetitive sequences were then discarded to retain
only noncoding, non-repetitive conserved regions with a final total length of ~32 Mb.

Inference of the distribution of selection coefficients

We used the distributions of synonymous and nonsynonymous allele frequencies (fig.
S13A) to infer the distribution of selection coefficients (s) of new nonsynonymous mutations
(also known as the distribution of fitness effects) in vaquitas. Importantly, this distribution
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characterizes the selective effects of new mutations, but the extent to which these mutations may
segregate and potentially reach fixation is determined by the combined effects of natural
selection and genetic drift (see The impact of fixed mutations on vaquita recovery). Despite
being a central parameter in population genetics, this distribution has only been characterized for
a few species, and little is known about how it differs between species (79-81). Thus, we provide
an estimate of the distribution inferred for humans for comparison (80), given that this
distribution has been studied most extensively using molecular data from humans.

We followed the methods of (79) and (80) to infer this distribution in vaquitas. First, site
frequency spectra were generated from synonymous and nonsynonymous sites as annotated by
SNPE(f (58). Hypergeometric projection using easySFS
(https://github.com/isaacovercast/easySES), a wrapper for hypergeometric projection with dadi
(v1.7.0 (47)), reduced the SFS down to 12 individuals to smooth over missing data and maximize
the number of SNPs. Next, demographic parameters for the two-epoch model were inferred from
the synonymous SFS using dadi to control for both demography and the effects of linked
selection in coding regions. One hundred runs of dadi were carried out, and the parameters with
the maximum multinomial log-likelihood were chosen. The optimal value of the population-
scaled mutation rate for synonymous sites (8yonmous) Was inferred using dadi and then scaled up
by a factor of 2.31 for 8,.susynonymeus Sites, as in (79) and (80) (the value of 2.31 in those papers was
chosen to reflect the higher number of nonsynonymous sites in the exome, and the higher
mutation rate of synonymous sites due to their higher GC and CpG-content). The ancestral
population size was calculated as:

stnonymous

N, =

4 * u* Lsynonymous
where u is the mutation rate per site per generation, and L was estimated as:

Lsynonymous = (m) * Legs
231
Lnonsynonymous - <m) * Lcds
where L. 1s the total number of sites in coding regions (annotated as “CDS”) with at least 12
called genotypes (the projection value).

The distribution of selection coefficients of new mutations was then inferred from the
nonsynonymous SFS using fitdadi (80), conditioning on the demographic parameters inferred
from the synonymous SFS. A grid of expected site frequency spectra under the demographic
model was created for a grid of 300 values of the population-scaled selection coefficient y
(y = s*2N,). Following (80), we fit a gamma distribution for y, with parameters for shape and
scale. Shape and scale parameters were inferred from 25 runs of fitdadi by integrating over the
grid of expected site frequency spectra and fitting model output to the empirical nonsynonymous
SFS. Parameters with the highest Poisson log-likelihood were chosen. For plotting, the scale
parameter was divided by 2N, to no longer be scaled by the ancestral population size. For use in
SLiM (/9) simulations, the expected value of s (E[s]) was calculated by multiplying the shape
and scale parameters together, making the sign negative, and multiplying by two since fitdadi
computes fitness as 142s for homozygotes, whereas SLiM computes it as 1+s:

—2 * shape * scale
E[s] = 25N,
This process was repeated for each of the three mutation rates used for demographic inference
and forward simulations (2.2x10°, 5.8x10, 1.08x10-® mutations/site/generation).
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Compared to humans (24), vaquitas have a higher fraction of new mutations that are
neutral and nearly neutral (0 < Isl < 10%), a lower fraction of weakly to moderately deleterious
mutations (10 < Isl < 10-2?), and a higher fraction of strongly deleterious mutations (Isl = 102),
though we caution that this latter category is the most difficult to estimate accurately (24, 83) and
greatly depends on the mutation rate parameter (fig. S13B). To determine whether the vaquita
distribution of selection coefficients (shape = 0.131, scale = 0.098) was an improvement over the
distribution inferred for humans in (80), we generated an expected vaquita nonsynonymous SFS
using parameters from the human distribution of fitness effects (shape = 0.186, scale = 0.0352),
scaled using the estimated value of 2N, for the vaquita described above and the value of
0 onsynonymous 10 Vaquitas. We then compared the fit of this expected SFS based on human
parameters to the empirical vaquita nonsynonymous SFS and found that it had a lower log-
likelihood (log-likelihood = -65.37) than the fit of the expected SFS under our inferred vaquita
parameters (log-likelihood = -47.64), meaning that our inferred vaquita distribution of selection
coefficients yields an expected SES that is a better fit to the vaquita empirical data (fig. S13C).
Thus, the vaquita distribution of selection coefficients is relatively similar to that of humans, but
may result in slightly different selection dynamics. We carried out population viability
simulations using both sets of vaquita and human parameters for comparison (see Simulation
methods).

Simulation methods

Stochastic, individual-based simulations were conducted using the non-Wright-Fisher
(nonWF) model in SLiM v3.3.2 (21). This model differs from the classical Wright-Fisher model
in several key ways. First, generations in this model are overlapping (and can be thought of in
this case as years), whereby the probability of an individual surviving from one year to the next
is given by its absolute fitness. Absolute fitness for each individual ranges from O to 1 and is
determined by its genetic composition. Thus, population size (V) in this model is not
predetermined, but instead is an outcome of a stochastic process of reproduction and viability
selection (Fig. 3A). To keep the simulated population from growing indefinitely, the nonWF
model makes use of a carrying capacity (K), rescaling absolute fitness downward by the ratio of
K/N when N>K. This rescaling can also optionally be used to model the effects of relaxed
selection (e.g., due to reduced intraspecific competition) when N<K; however, by default we
conservatively do not allow for this upwards rescaling of fitness (see Fitness rescaling based on
density dependence in simulations for more details).

Each year in the nonWF model consists of separate reproduction and viability selection
stages (Fig. 3A). At the start of each year, every reproductive-age female (>4 years) has a 75%
probability of reproducing with a randomly-selected reproductive-age male (>4 years). This 75%
probability was used to enforce a 1.5-year calving interval, given uncertainty in whether vaquitas
calve annually or every two years (/7). To examine the potential impacts of this uncertainty, we
also ran simulations assuming calving intervals of one and two years. To model the effects of
inbreeding depression on reproduction, we further scaled the probability of reproduction by the
absolute fitness of the mother. For example, an adult female with absolute fitness 0.97 has a
0.75*0.97 = 0.73 probability of mating each year assuming a 1.5-year calving interval. Each
successful mating produces one offspring, with no cap on the number of reproductions per year
for adult males. Following reproduction, viability selection occurs, in which each individual
survives with a probability determined by its absolute fitness multiplied by any scaling factors
for age or density dependence. In cases where mothers with newborn calves died, we also
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enforced mortality for the calf, as newborn calves are dependent on their mothers for survival.
To enforce age-related increases in mortality rates, fitness was rescaled by a factor of 0.6 for
newborn individuals, 0.95 for yearlings, 0.9 for individuals aged 15-19, 0.2 for individuals aged
20-25, and 0.0 for individuals aged 25 (i.e., all individuals die after age 25). Note that these
rescaling factors are multiplied by the absolute fitness of each individual, which also varies as a
function of age (i.e., older individuals tend to have higher fitness given that they have survived
many years of viability selection). These values were chosen such that the survivorship curves in
this model reflect those of the closely-related harbor porpoise, as such information does not exist
for the vaquita (fig. S11; (82)).

Our model assumes random mating and that individuals can find mates (no Allee effects),
which is justified given the small size of the vaquita range. Virtually all vaquita detections are
within a 12x24km area, which can be traversed within a day by a vaquita. Moreover, given the
acoustic behavior of vaquitas, the remaining ~10 individuals are likely aware of each other.
Finally, there is ample evidence for ongoing reproduction in the remaining vaquita individuals.
Specifically, in 2019, three of the remaining ~10 individuals were calves, suggesting that
reproductive effort is high.

Our aim in setting the genomic parameters was to model a vaquita exome with a
combination of neutral and recessive deleterious mutations, given that these mutations are most
likely responsible for inbreeding depression (3, 22). To do this, we modeled 18,173 genes, each
of length 1,760 bp (the average length of coding sequence in a gene in the vaquita assembly,
giving ~32 Mb of total coding sequence), with the number of genes on each chromosome taken
from the vaquita genome assembly (/2). We assumed no recombination within genes and a
recombination rate of 1x10- between genes, reflecting the effective rate of crossing over in 100
kb noncoding regions between each gene, assuming a recombination rate of 1x10-8 per site per
generation (83). These genes accumulated a combination of neutral and (partially) recessive
deleterious mutations at our estimated rate of 5.8x10 per site per generation (see above), with
the ratio of deleterious to neutral mutations set at 2.31:1 (79). Our model does not include
heterozygote advantage, given that its impacts on inbreeding depression are likely to be small (3,
84). We also ran a subset of simulations with a lower estimated mutation rate of 2.2x10° and a
higher rate of 1.08x108, as estimated by (50). Importantly, we also rescaled the simulated
demographic parameters according to the assumed mutation rate (i.e., K = 5,200 when assuming
u =5.8x107 was rescaled to K = 5.8/2.2%¥5200 = 13,709 when assuming x4 = 2.2x107). Finally, to
examine sensitivity to the assumed deleterious mutation target size, we increased gene length by
50% to 2,640 bp, yielding a total sequence length of ~48 Mb. This analysis was intended to
capture potential effects of both underestimating coding sequence length as well as not modeling
functional noncoding variation, as we have no knowledge of how noncoding variation
contributes to inbreeding depression and what the distribution of selection or dominance
coefficients in these regions might be.

Selection coefficients (s) for deleterious mutations were drawn from a gamma
distribution estimated using the genomic data (see Inference of the distribution of selection
coefficients) with mean = -0.0257 and shape parameter = 0.1314. For sensitivity analyses
varying the mutation rate, we used the parameters inferred under the respective mutation rate
(mean = -0.00971 and shape = 0.1316 for 4 = 2.2x10° and mean = -0.0476 and shape = 0.1315
for u = 1.08x10%; fig. S13). Note that this parameterization of the distribution of selection
coefficients differs from that of fitdadi, as fitdadi assumes a homozygous fitness of 1+2s
whereas SLiM assumes a homozygous fitness of 1+s. In addition, to convert these per-generation

12



selection coefficients to per-year selection coefficients, we divided by the generation time (11.9
years), but only for more weakly deleterious mutations (s > -0.01; see Converting selection
coefficients from per generation to per year in simulations for more details). For dominance
coefficients (1), we assumed an inverse relationship between 4 and s (ks relationship) with & =
0.0 for very strongly deleterious mutations (s < -0.1), £ =0.01 for strongly deleterious mutations
(-0.1 =5 <-0.01), h =0.1 for moderately deleterious mutations (-0.01 <s <-0.001),and 2 =04
for weakly deleterious mutations (s > -0.001). To explore the sensitivity of our results to our
assumed #s relationship (which is not estimated from data), we also ran simulations with an
alternative hs relationship (hs-alt) of A =0.01,2=0.05,/h=0.25,and h =0.5 for the same
categories of mutations above, respectively, as well as with all mutations assumed to be fully
recessive (h = 0) and fully additive (h = 0.5). To examine the sensitivity of our results to the
assumed distribution of s, we also ran simulations using a distribution inferred for humans with
mean -0.0131 and shape = 0.186 (80). In addition, given concerns that molecular-based estimates
of this distribution may underestimate the presence of large-effect mutations (85), we ran
simulations where we added a fraction of lethal mutations occurring at rates of either 1.0% or
5.0% of new nonsynonymous mutations. These percentages were chosen to yield a number of
lethal mutations that is roughly consistent with estimates observed in humans of ~0.6 recessive
lethals per diploid genome (86) (table S6). Finally, we also ran simulations under the selection
and dominance parameters from Kardos et al. 2021 (85), which includes a distribution of
selection coefficients with mean = -0.05, shape = 0.5, augmented with an additional 5% of
mutations being recessive lethal, and a distribution of dominance coefficients following the
relationship 4 = 0.5*exp(-13s) (presented in fig. S21 as the “Kardos” model). To maintain
computational tractability, we approximated this relationship by partitioning this distribution as
follows: h =048 fors>-0.01,Ah=0.31for-0.1 <5<-001,2h=007for-04=<s<-0.1,h=
0.001 for-1.0<s5<-04,and 2 = 0.0 for s = -1.0. For all simulations, mutations that became
fixed in the simulated population were retained, such that fitness progressively declines with
increasing numbers of fixed mutations.

We set the historical population size parameters of our simulations using our best-fit two-
epoch demographic model (see Demographic inference). Specifically, this model consists of a
historical population size of N, = 4,485 followed by a decline to N, = 2,807 for 25,727 years. To
convert these effective population size estimates to carrying capacities (which here can be
thought of as census sizes), we first estimated the ratio of N, to K in our simulation model based
on neutral heterozygosity at equilibrium under our default life-history parameters. From this
estimate of N,/K = 0.54, we obtained carrying capacities of K; = 8,300 (4485/0.54) and K, =
5,200 (2807/0.54). For all simulations, we ran burn-ins at K; for 50,000 years followed by K, for
26,000 years. This duration at K; was long enough for the inbreeding load to reach equilibrium,
however it was not long enough for neutral heterozygosity to reach equilibrium (which takes
~350,000 years; fig. S17). Because neutral mutations do not impact fitness and therefore do not
impact extinction dynamics, we used these shorter burn-ins to maintain computational feasibility.
We also include a comparison of results when assuming burn-ins at K; of 100,000 and 350,000
years to demonstrate that this choice does not impact model results (fig. S18). Due to the high
computational load of simulations where we increased the historical population size by a factor
of 20, we only ran the second epoch of 26,000 years with K, = 104,000. Importantly, however,
this burn-in duration was still long enough for the simulated inbreeding load to reach equilibrium
(fig. S20).
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Following these historical population dynamics, we initiated a decline by introducing
stochastic bycatch mortality at a rate that matched observed patterns of decline (see Estimation
of recent vaquita abundance) (fig. S19). To match this rate of decline in our simulations, we
used a bycatch mortality probability of 0.15 per individual until the population declined below
250 individuals, after which we increased this mortality probability to 0.34, reflecting the more
rapid pace of decline starting in 2011 due to the resurgence of the totoaba (Totoaba macdonaldi)
fishery (see The impact of gillnet fishing on vaquitas). Bycatch mortalities were enforced by
changing individual absolute fitness to 0.0 following reproduction, ensuring that those
individuals died during the viability selection step. We maintained this rate of bycatch mortality
of 0.34 until the population declined to a threshold of 5, 10, or 20 individuals or fewer, reflecting
a plausible range of the current abundance (see (4) for discussion of census estimates). Recovery
was initiated by reducing the bycatch mortality rate to 0.0, 0.034, or 0.068, a decline in mortality
rates relative to 0.34 of 100%, 90%, and 80%, respectively. Simulations were run for 50 years
following the start of recovery, or until the population went extinct. We ran 100 simulation
replicates for all parameter combinations. We note that these recovery scenarios are greatly
simplified as we do not expect a constant rate of bycatch mortality over the next 50 years, nor do
we expect bycatch mortality rates to be immediately reduced to zero. However, we take this
approach to maintain ease of interpretation of our results, with the general aim of demonstrating
the influence of bycatch mortality rates in our model.

During our simulations, we kept track of several quantities relevant to the state of the
population: mean absolute fitness (calculated multiplicatively across sites), mean inbreeding
coefficient (here measured as Fpgp tracing back to the grandparent generation, chosen to capture
inbreeding due to mating among close relatives), mean inbreeding load, and the mean number of
strongly deleterious alleles (s < -0.01), very strongly deleterious alleles (s < -0.1), and lethal
alleles (s < -0.5) per individual. These quantities were estimated using a sample size of 60
individuals (or from the entire population if N < 60) every 1,000 years during the historical
demographic trajectory, and every year following the initiation of the decline. In table S6, we
report these quantities for each combination of simulation parameters following the conclusion
of the burn-in. Simulation scripts are available at (28).

Converting selection coefficients from per generation to per year in simulations

The distribution of selection coefficients we estimate for vaquitas is inferred under a
Wright-Fisher model, where selection occurs each generation, and selection coefficients are
therefore scaled per generation. However, selection in the nonWF model occurs each year,
meaning that selection coefficients should be scaled per year. To rescale these selection
coefficients, we can simply divide them by the generation time (87). However, it is not clear that
this rescaling should also apply to strongly deleterious mutations, which might express their
effects in development or early age, and therefore do not operate over multiple years. Our
solution was to rescale selection coefficients (s = -0.01) by the vaquita generation time (11.9;
(13)), but not strongly deleterious mutations (s < -0.01). To test the sensitivity of our model to
this assumption, we also ran simulations with no rescaling and with all mutations rescaled (fig.
S21). We find negligible differences in extinction rates between the case with no scaling and the
case with strongly deleterious mutations scaled, however we observe much lower extinction rates
in the case where all mutations are scaled. Overall, we conclude that these considerations appear
not to impact our model projections substantially, and, if anything, suggest that our projections
may be conservative.
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Fitness rescaling based on density dependence in simulations
To maintain a population near its carrying capacity (K), the SLiM nonWF model rescales

fitness each generation by the ratio of K/N (i.e., if N<K, each individual’s fitness is rescaled
upward, and if N>K, fitness is rescaled downward). This rescaling is meant to model the effects
of a relative abundance of resources and reduced intraspecific competition when N<K, and a
relative scarcity of resources and increased intraspecific competition when N>K. By default, this
rescaling occurs both in the case of N<K and N>K, with no cap on the magnitude of the rescaling
(though absolute fitness remains bounded by 0 and 1). Thus, in the case of our simulations,
where a population decline occurs due to stochastic mortality that results in N<<K (i.e., N
declines to <20 while K stays fixed at 5,200), the default behavior of the model would be to
rescale fitness upward, resulting in absolute fitness being rescaled to 1.0 for all individuals given
the large ratio of K/N. As a consequence, viability selection would not occur, given that all
individuals would have a 100% chance of survival with fitness of 1.0. To avoid this biologically
unrealistic behavior, and ensure that the impacts of inbreeding depression were expressed in our
model, we conservatively assumed that no upwards rescaling of fitness could occur (i.e., fitness
rescaling was given by min(K/N, 1.0)). We explored sensitivity to this assumption by also
running simulations with upwards fitness rescaling capped at 5%. Here, we find much lower
extinction rates, with only 10% of replicates going extinct compared to 27% when assuming no
upwards rescaling of fitness (fig. S21). Thus, if inbreeding depression in vaquitas is at all
buffered by the impacts of reduced intraspecific competition due to the very small vaquita
population size, recovery potential may be further increased relative to our model projections.
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Supplementary Text
The impact of gillnet fishing on vaquitas

Only three years after vaquitas were described as a new species in 1958, Norris &
Prescott (88) reported the incidental mortality of vaquita in gillnets of totoaba, sharks, and rays.
In 1975, the International Whaling Commission (IWC) Scientific Committee expressed concerns
about incidental mortality in shark and totoaba fishery in the published report of the first meeting
of the Small Cetaceans Subcommittee (89). At least 128 vaquita were killed in fishing gear
between 1985 and early 1992, 65% of which were killed in totoaba fishery (90). D’ Agrosa et al.
(91) monitored fishing effort and incidental catch by El Golfo fishermen from January 1993 to
January 1995 and using data collected by observers and fisherman interviews estimated the
mortality of vaquita in 39 (95% CI 14-93) individuals from one fishing community and roughly
double that for both communities adjacent to the vaquita’s range. Once there was a full
abundance estimate (37) and data on reproductive rate (92), it was clear that the gillnet mortality
rate was unsustainable. The rate of decline between 1997 and 2008 was compatible with
estimated rates of mortality only from gillnet entanglement (93). For a review of evidence of
gillnet entanglement see (94). The recent catastrophic decline documented using vaquita acoustic
data occurred when illegal fishing for totoaba resurged (4). Gulland et al. (/8) examined nine
vaquita carcasses from 2016-2018 when rapid decline was taking place and established the cause
of death was bycatch in gillnets. In summary, the impact of gillnet fishing on the vaquita is well
documented, with extensive evidence demonstrating that it has driven the decline of the species.

Simulating the ratio of heterozygosity at nonsynonymous to synonymous sites

Our empirical analysis of deleterious mutations in vaquitas demonstrate that vaquitas
have the highest ratio of heterozygosity at nonsynonymous to synonymous sites of all surveyed
cetaceans (Fig. 2), suggesting relaxed purifying selection. However, it is possible that this high
ratio in vaquitas has been influenced by the recent bottleneck, rather than being a consequence of
their small historical population size (6/). To investigate this issue, we estimated this ratio during
the bottleneck in 10 simulation replicates, using the same simulation framework described above.
We observe only minimal change in this ratio during the bottleneck, with an average value of
~0.34 at the start of the bottleneck and ~0.35 at the end (fig. S9). Thus, these results confirm that
the elevated ratio of deleterious alleles in vaquitas is largely due to relaxed selection as a result
of historically low N,, rather than more recent demographic processes.

The impact of fixed mutations on vaquita recovery

Much emphasis in conservation genetics has been placed on the role of fixed weakly
deleterious mutations as drivers of extinction in small populations via a process termed
“mutational meltdown” (14, 95, 96). In small populations, the accumulation of these fixed
mutations can contribute to reduced fitness, resulting in an elevated “drift load”. This process
may be relevant to vaquita recovery potential, given that weakly deleterious mutations are likely
to have drifted to fixation in the small historical vaquita population.

To investigate the impact of fixed mutations in our SLiM nonWF simulation model, we
tracked the quantity and total effect on fitness (drift load) of fixed mutations in 10 simulation
replicates with 350,000 year burn-in durations (long enough for neutral mutations to reach
equilibrium). At the end of the burn-in, we observe an average of 787 fixed deleterious mutations
in each simulated population. However, the mean selection coefficient of these fixed mutations
is -2.4x107, resulting in a drift load of -0.19% (note that these selection coefficients are scaled
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per year; fig. S15). Thus, although hundreds of weakly deleterious mutations become fixed, they
have a relatively minor cumulative impact on fitness. This result helps explain why we do not
see differences in extinction rates when running much shorter 50,000 year burn-ins (fig. S18),
which only differ in the quantity of fixed mutations (7.8 deleterious mutations fixed on average,
with a cumulative impact on absolute fitness of -2.25x10). Note that our aim is not to match the
number of fixed deleterious mutations in the sequenced vaquita genomes, but to explore the
impacts of these mutations on extinction dynamics through simulations.

As another approach to investigate the impact of fixed mutations in our model, we ran
simulations with a burn-in duration of 50,000 years where mutations were removed after fixation
(i.e., their impact on fitness was not allowed to accumulate). Here, we observe negligible
differences in extinction rates in this model compared to simulations where fixed mutations were
retained (26% vs 27% extinction rates, respectively; fig. S16).
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Fig. S1.

Genome-wide heterozygosity in vaquitas. Bar plots showing per-site heterozygosity in non-
overlapping 1-Mb windows across the autosomes. Sex and sampling year are indicated next to
sample names in parentheses. A peak of heterozygosity in the last window of Chromosome 2
extends beyond the plot in eight individuals to ~1.16x10. This peak contains a number of highly
paralogous genes, and may be due to technical artifacts (see Materials and Methods).
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Fig. S2.

Comparison of ROH identification methods. Summed ROH lengths obtained from three different
ROH calling methods were highly similar to one another. We provided variant sites only for
running Bcftools (42) and Vcftools (41), and all sites (including invariant) for Plink (40). Plink
and Vcftools were run with default parameters. Bceftools was run with option -G 30 and allele
frequencies estimated from 15 unrelated vaquitas (see Materials and Methods).
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Fig. S3.

Genetic distance and relatedness between vaquitas. (A) Heatmap and hierarchical clustering
based on identity by state (IBS) calculated from 59,420 SNPs pruned for linkage disequilibrium
in SNPRelate (45). Sample year is indicated along with the sample name. Sample names in bold
indicate known mother-fetus pairs. Two additional first-degree relationship pairs are evident:
70004390/z0004394 and z0183496/z0185383. Figure generated with the heatmap.2 function in
gplots (97). (B) Pairwise IBS values were used to estimate kinship coefficients with the KING-
homo method (44) implemented in SNPRelate. X-axis values indicate the probability that two
individuals share zero alleles identical by descent (IBD). Four kinship coefficients close to 0.25
(mean = 0.23) indicate four first-degree relationships, including the two known mother-fetus
pairs. The next highest kinship coefficient is between samples z0004382 and z0004380 (kinship
coefficient = 0.079), indicating a potential third-degree relationship.
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(fsc2) (dadi)

1-epoch 2-epoch

4-epoch
(dadi)

Fig. S4.

Graphical representation of the different demographic models tested. “1-epoch” represents a
model with no population size change. “2-epoch” represents a model with one size change event.
“3-epoch” represents a model with two size change events. “4-epoch” represents a model with
three size change events. Population size parameters (Nuuc, Noors Nyec, Newr) TEPresent the
population size in diploid individuals. Time parameters (7', Tyo, Trec, Tour) represent the number of
generations before the present day in which population size changes occurred (see Materials and
Methods for the full description of the parameters). The size changes and time representations
are not to scale, they are only approximations according to the inferred demographic scenario.
See table S2 for detailed parameter and uncertainty estimates. For 1- and 2-epoch models, the
representation applies for both dadi and fastsimcoal2 inference, while for the 3- and 4-epoch
models the representation is different for both methods because the parameters estimated were
substantially distinct.
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Fit of each demographic model with folded proportional site frequency spectrum (SFES).
Comparison of the SFS from each demographic model (1- to 4-epoch) obtained from dadi (A)
and fastsimcoal2 (B) inference with the SFS from the empirical data (denoted “Observed”).
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Fig. S6.

Cetacean phylogeny used in phylogenetic generalized least squares (PGLS) regression. The
Indo-Pacific finless porpoise does not have an assembled genome and was therefore excluded.
Maximum likelihood tree inferred with IQ-TREE (65) from 2,459 single copy orthologs present
in all twelve species. All branches have 100% support from 1,000 bootstrap replicates (72). Scale
bar represents genetic distance (average number of substitutions per site). See table S1 for
cetacean genome information.
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Ratios and counts of protein-coding and conserved noncoding variants in vaquitas. X-axis
represents the sample year (table S1). Grey lines show linear regressions. There are no apparent
trends with regard to sampling year, and none of the regressions are statistically significant (p >>
0.05). (A-C) Ratios of tolerated nonsynonymous, deleterious nonsynonymous, and LOF
heterozygotes to synonymous heterozygotes. (D-F) Ratios of tolerated nonsynonymous,
deleterious nonsynonymous, and LOF homozygotes to synonymous homozygotes. (G-K)

Numbers of tolerated nonsynonymous, deleterious nonsynonymous, LOF, synonymous, and

conserved noncoding heterozygotes.
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Fig. S8.

Genome-wide heterozygosity and the ratio of nonsynonymous and LOF homozygotes to
synonymous homozygotes. (A) The relative proportion of deleterious nonsynonymous
homozygotes is significantly negatively correlated with genome-wide heterozygosity (per bp,
log-scaled) (phylogenetic generalized least squares regression (PGLS) p =2.95x107). (B) A
negative correlation appears to exist for LOF homozygotes also, but the relationship is not
significant (PGLS p = 0.124). (C) The correlation for tolerated nonsynonymous variants appears
slightly positive but is not significant (PGLS p = 0.350). Grey lines show phylogeny-corrected
regressions (excluding the Indo-Pacific finless porpoise; see Materials and Methods). Variants
were identified by alignment to an outgroup reference genome (blue whale). In order to mitigate
the effects of reference bias, only the vaquita and species with approximately equivalent
divergence from the reference are included (porpoises, monodontids, delphinids).
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Fig. S9.

The ratio of nonsynonymous to synonymous heterozygosity is largely unaffected by a recent
population bottleneck in simulations. (top) The change in population size in the simulations over
time. (bottom) The ratio of nonsynonymous heterozygosity to synonymous heterozygosity,
sampling individuals at different time-points in the simulations. Note the minimal increase in the
ratio, which only starts to occur during the most recent portion of the bottleneck. Thus, the high
ratio observed empirically for vaquitas (Fig. 2A, B) appears to be primarily due to an
accumulation of nonsynonymous variants in the ancestral vaquita population and not driven by
the recent bottleneck. Results are shown for 10 simulation replicates.
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Fig. S10.

Genome-wide heterozygosity and the number of heterozygotes in protein-coding and conserved
noncoding regions. The numbers of heterozygous synonymous (A), tolerated missense (B), and
conserved noncoding (C) variants are significantly positively correlated with genome-wide
heterozygosity (per bp). Grey lines show phylogeny-corrected regressions (excluding the Indo-
Pacific finless porpoise; see Materials and Methods). All relationships are significant (PGLS
regression; synonymous p = 2.12x108, tolerated nonsynonymous p = 9.14x10%, conserved
noncoding p = 1.13x10-'").
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Survivorship curves for the simulation model. Age-specific fitness rescaling was employed such
that vaquita survivorship closely matched empirical estimates of survivorship from the closely-
related harbor porpoise. See Fig. 2A in (82) for comparison.
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Range of estimated mutation rates in vaquitas based on divergence from other porpoise species.
We used divergence time (7) estimates from a recent study of complete mitochondrial genomes in
porpoises (53), as well as median estimated divergence times from TimeTree.org to estimate
mutation rates () from genome-wide divergence (d,,). Open symbols show the estimates for y =
d.,/2t, and filled symbols show the estimates for u = (d,,-7)/2t, where 7t is genome-wide
heterozygosity in the harbor or finless porpoise genome.
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Inference of the distribution of selection coefficients. (A) The folded and projected site
frequency spectra from coding regions (synonymous and nonsynonymous sites) show a skew

toward low-frequency variants relative to the SFS from neutral sites far from genes. The skew is

largest for nonsynonymous variants, consistent with the action of purifying selection removing
deleterious amino-acid changing alleles. The skew for synonymous variants likely reflects
background selection. (B) The distribution of selection coefficients of new mutations (also
known as the distribution of fitness effects) for different vaquita mutation rates. The strongly-
deleterious category (102 < Isl) is most affected by the assumed mutation rate. A distribution of

selection coefficients inferred for humans (80) is shown in gray for comparison. (C) Comparison

of the empirical vaquita nonsynonymous SFS (gray), the expected nonsynonymous SFS under
the vaquita distribution of selection coefficients (blue), and the expected nonsynonymous SFS

under the human distribution of selection coefficients (80) and rescaled by vaquita ancestral size

and VaqUita Qnonsynonymous (red).
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Comparison of the distribution of selection coefficients for new, segregating, and fixed
nonsynonymous mutations in simulations. Note that a lower fraction of strongly and moderately
deleterious mutations segregate compared to the fraction that enter the population, due to the
effects of purifying selection. This effect increases during the contemporary bottleneck, as
increased genetic drift and purifying selection against these mutations leads to their relative loss
compared to weakly deleterious mutations. In addition, only weakly deleterious and neutral
mutations become fixed, both before and after the bottleneck. Finally, note that the distribution
of s for new mutations here differs from that presented in fig. S13, due to differences in
parameterization between fitdadi and SLiM (see Materials and Methods).
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Fig. S15.

Total quantity and impact on fitness of fixed mutations during the simulated bottleneck. Top row
depicts population sizes; middle row depicts total count of fixed mutations in the simulated
population; bottom row depicts total sum of s mutations that became fixed until that timepoint.
Note that although nearly 1,000 mutations fix by the end of the simulation, their cumulative
impact on fitness remains relatively small (on the order of -0.2%, with a mean s for fixed
mutations of -2.4x10~). Each line represents 1 of 10 simulation replicates, each with a burn-in
duration of 350,000 years.
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Fig. S16.

Comparison of simulation results when retaining vs. removing fixed mutations. Both sets of
simulations assume a 90% reduction in bycatch mortality and threshold population size of 10.
Note the highly similar extinction rates, suggesting that fixed weakly deleterious mutations do
not greatly impact model behavior.
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Fig.S17.

Simulation dynamics during a burn-in of 350,000 years. The population size, mean
heterozygosity, mean fitness, and mean inbreeding load (2B) are shown as a function of time in
the simulations. Statistics were recorded every 1,000 years from a sample of 60 individuals. The
dotted line denotes 50,000 years, the duration of burn-in that was used for all simulation
replicates. Note that, although heterozygosity does not reach equilibrium by 50,000 years, fitness
and inbreeding load have stabilized by that time. See fig. S18 for a comparison of extinction
dynamics with burn-in durations of 50,000 vs 350,000 years.
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Fig. S18.

Comparison of extinction rates and recovery trajectories using 50,000 year burn-in (A) vs a
350,000 year burn-in (B). Plotted is the size, average inbreeding coefficient, and average fitness
of the simulated population across 100 simulation replicates. Replicates that persisted after 50
years are colored blue, whereas those that went extinct are colored red. Note the similar trends
for (A) and (B), as well as the identical extinction rates.
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Comparison of simulated and empirical bottleneck dynamics. Empirical population size
trajectory is based on a model informed by census records (see Materials and Methods). Note the
increase in the rate of decline starting in 2012.
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Fig. S20.

Burn-in dynamics for simulations with the historical population size increased by a factor of 20.
The population size, mean heterozygosity, mean fitness, and mean inbreeding load (2B) during a
26,000 year burn-in are shown as a function of time in the simulations. Statistics were recorded
every 1,000 years from a sample of 60 individuals. Note that, although heterozygosity does not
reach equilibrium by 26,000 years, fitness and inbreeding load have stabilized by that time.
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Fig. S21.

Sensitivity analysis of model parameters. (A) Extinction rates with calving intervals of 1, 1.5, or
2 years. (B) Extinction rates with varying mutation rates of 2.2x10, 5.8x10”, or 1.08x10®
mutations/site/generation. (C) Extinction rates under varying models of dominance. Under the
recessive model, all mutations are assumed to be fully recessive, and under the additive model,
all mutations are assumed to be fully additive. See Materials and Methods for details on the As
and As-alt models. (D) Extinction rates under varying distributions of selection coefficients. The
“human” distribution is based on results from (80) and the “Kardos” distribution is based on
(85). Note that the “Kardos” distribution also includes a different distribution of dominance
coefficients (see Materials and Methods). (E) Extinction rates under different scaling of selection
coefficients to convert from per-generation to per-year selection coefficients. For “wk. del./11.9”
only weakly deleterious mutations (s > -0.01) were scaled by the generation time (11.9 years),
whereas for “DFE/11.9” the mean of the entire DFE was divided by the generation time. (F)
Extinction rates under varying impacts of density-dependent fitness rescaling. For “1.0”, no
upward rescaling of fitness was allowed when N<K, and for “1.05”, up to a 5% upward rescaling
of fitness was allowed when N<K. (G) Extinction rates when adding a small fraction of recessive
lethal mutations (1.0% or 5.0%) to the nonsynonymous distribution of selection coefficients. (H)
Extinction rates when increasing the deleterious mutation target size from ~32 Mb to ~48 Mb.
For all results, the empirically-inferred demographic parameters were used and we assumed a
reduction in bycatch mortality rates of 90% and a threshold population size of 10. In each panel,
the default model presented in the main text is denoted with an asterisk.

39



Table S1.

Vaquita sample information. We generated whole genome sequence data from 19 vaquitas and
incorporated previously generated sequence data from a single individual (z0186935) (12).
Genomic DNA libraries were prepared using one of two approaches: the Swift Biosciences Inc.
Accel-NGS single-strand 1S DNA Library Kit or a blunt-end ligation method with double
indexing (M&K) (30, 31). The library for the previously sequenced individual was generated
with a 10X Genomics Chromium linked-reads library kit (/2).

Library
Depth of preparation
Sample Year Sex coverage (X) method SRA accession Notes
z0000703 1985 F 533 Swift Biosciences SRR15435925
70001649 1993 M 96.0 M&K SRR15435924,
SRR15435913
70001654 1992 F 95.8 M&K SRR 15435900,
SRR 15435899
z0001660 1993 F 48.5 Swift Biosciences SRR15435902 Fetus of z0001663
70001663 1993 F 64.2 M&K SRR15435897, Mother of z0001660
SRR 15435896
70004379 1990 F 41.8 Swift Biosciences SRR 15435898
70004380 1990 F 453 M&K SRR 15435895 Mother of 0004393
70004381 1990 M 453 M&K SRR15435921
70004382 1990 M 96.7 M&K SRR15435923,
SRR 15435922
70004390 1991 F 103.0 M&K SRR15435919,
SRR15435918
70004393 1990 M 48.8 M&K SRR 15435920 Fetus of z0004380
70004394 1991 M 470 Swift Biosciences SRR15435917
70183496 2016 M 453 M&K SRR15435914
70184983 2004 F 474 M&K SRR15435910
70184984 2004 F 46.9 M&K SRR 15435907
70185383 2017 M 61.6 M&K SRR15435916,
SRR15435915
70185384 2017 F 240 M&K SRR15435912,
SRR15435911
70185385 2017 F 84.8 M&K SRR 15435909,
SRR 15435908
70186934 2017 F 44.5 M&K SRR 15435906 Live-caught
individual; calf
z0186935 2017 F 61.3 10X Genomics SRR 15435905, Individual used to
Chromium SRR 15435904, generate reference
SRR15435903, genome (/2)
SRR 15435901
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Table S2.

Summary of parameter estimates and confidence intervals for each demographic model inferred
with dadi and fastsimcoal2. The population size parameter values represent numbers of diploids,
while the time parameters represent numbers of generations. For time parameters estimated with
0adi for the 3- and 4-epoch models, the raw values were added to convert them to the total time
elapsed from present to the time of the demographic event, for better comparison with
fastsimcoal? results. All times are presented forward in time. See fig. S4 for model illustrations.
The 1- and 2-epoch models show high consistency in the parameter values estimated with both
methods, while the 3- and 4-epoch models show greater discordance.

dadi fastsimcoal2
Model Parameter Estimate 95% CI Estimate 95% CI
1-epoch Nanc 3675 NA 3665 3589 — 3692
2-epoch Nanc 4485 3468 — 5503 4439 4342 — 4536
Ncur 2807 1832 — 3982 2784 2727 - 2841
T 2162 0 - 5965 2045 1842 — 2248
3-epoch Nanc 4336 3815 - 4857 4344 4279 — 4409
Nbot 294 181 —429 2253 1921 — 2584
Ncur 3034 2131 -4085 3131 2826 — 3435
Thot 710 67 — 1504 1124 964 — 1283
Tcur 668 46 — 1437 264 176 - 351
4-epoch Nanc 3798 2934 — 4662 5360 4958 — 5762
Nbot 10747 0-29081 1674 1074 — 2273
Nrec 95 49 - 156 2982 2895 — 3068
Ncur 3044 1949 — 4376 398 39 -1756
Thot 3541 0- 10562 4170 3968 — 4371
Trec 863 12 - 2654 3520 3254 -3785
Tcur 830 0-2591 2 0.6-3
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Table S3.
Performance of the best run for each demographic model under each inference method. K: the
number of estimated parameters; Data Log-likelihood: the best possible log-likelihood derived
from the data site frequency spectrum; Log-likelihood: the best log-likelihood estimated for the
model; AIC: The Akaike information criterion, calculated using equation AIC = 2*K — 2*Log-
likelihood. The convergence of parameters and log-likelihood is reported.

0adi fastsimcoal2
Data Log- Data Log-
Model K likelihood Log-likelihood AIC Converged K  likelihood  Log-likelihood AIC Converged
l-epoch 0 -71.984 -1297.820 2595.641 Yes 1 -774592.691 -775127.249 1550256.498 Yes
2-epoch 2 -71.984 -94.761 193.521 Yes 3 -774592.691 -774600.596 1549207.192 Yes
3-epoch 4 -71.984 -89.958 187.915 Partial 5  -774592.691 -774599 411 1549208.822 Partial
4-epoch 6 -71.984 -88.047 188.094 Partial 7 -774592.691 -774602.510 1549219.02 Partial
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Table S4.

Likelihood-ratio test (LRT) statistics between nested demographic models. The LRT was
computed as: -2*[log-likelihood(simple) — log-likelihood(complex)]. We only compared nested
models with the closest complex model, that is, with the one that differed by only two more
parameters. The LRT values and their significance are shown above the diagonal for dadi
models and below the diagonal for fastsimcoal2 models. For both methods, the 2-epoch model
has significantly better log-likelihood than the 1-epoch model, while the 3-epoch model log-
likelihood is marginally significant only for dadi. Significance level: ** < 0.001, * < 0.01, the
absence of asterisk represents non-significant values. The negative LRT statistic for the 3- and 4
epoch fastsimcoal2 comparison is likely due to variance in the simulations used to calculate the
likelihood combined with the partial convergence of the optimization. In any case, this does not
suggest an improvement in fit of the 4-epoch model over the 3-epoch model.

Model 1-epoch 2-epoch 3-epoch 4-epoch
1-epoch - 2406.119%*

2-epoch 1053.306%** - 9.606383*

3-epoch 2.37 - 3.8209
4-epoch -7.698 -
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Table S5.

Cetacean genome information. Species with publicly available annotated reference genomes and
short read resequencing data from at least one individual in the SRA were obtained for
comparisons with the vaquita. All assemblies and reads are available without restriction from
NCBI. Except for the Yangtze finless porpoise, reads from each species were aligned to a

reference genome from the same species.

Reference genome Resequencing
o >, % = < o =
= ] = 3 Q= 1) S
g S R= £ 8 g = Se8E  § % 8
gE: Sit g s g . gz=Ef , 2_ % 5
a8 &S%E < & & S REZHE R O < &
Beluga Delphinapterus ~ GCF_002288925.2_ (98) SAMNO06217832 Churchill, MB, No (daughter F 33.9 SRR5197962 (98)
whale leucas ASM228892v3 Canada of reference
individual)
Blue whale Balaenoptera GCF_0098732452_ * SAMNO07201754 California, USA No M 37.0 SRR5665644 (99)
musculus mBalMusl1 .pri.v3
Bottlenose  Tursiops truncatus GCF_011762595.1_ A SAMNO02192671 Captive No M 38.2 SRR940825 (52)
dolphin mTurTrul.mat.Y
Indo-Pacific Neophocaena GCF_003031525.1_ (100) SAMNO02192673 South Korea No ? 27.1 SRR940959 52)
finless phocaenoides Neophocaena_asiae
porpoise orientalis_V1
Orca/killer  Orcinus orca GCF_000331955.2_ (101) SAMNO1180276 Alaska, USA Yes F 163 SRR1164379 (102)
whale Oorc_1.1
Long-finned Globicephala GCF_006547405.1_ # SAMN11083132 PEI, Canada Yes M 32.5 SRR8867567 #
pilot whale melas ASM654740v1
Minke whale Balaenoptera GCF_000493695.1_ (52) SAMNO02192644 South Korea No F 28.7 SRR924087 52)
acutorostrata BalAcul.0
scammoni
Narwhal Monodon GCF_005190385.1_ (103) SAMNI10519625 Greenland No F 104.8 SRR8284577, (103)
monoceros NGI_Narwhal_1 SRR8284578,
SRR8284579
Pacific Lagenorhynchus ~ GCF_003676395.1_ # SAMNO09386610 Canada Yes F 33.3 SRR7345555 #
white-sided obliquidens ASM367639v1
dolphin
Sperm whale Physeter GCF_002837175.2_ (104) SAMNO06187414 Pacific Ocean No ? 232 SRR5136492, (105)
macrocephalus ASM283717v2 SRR5136494,
SRR5136498
Yangtze Neophocaena GCF_003031525.1_ (100) SAMNO08512128 Hubei, China No M 213 SRR6923837 (106)
finless asiaeorientalis Neophocaena_asiae
porpoise asiaeorientalis orientalis_V1

*Provided by Yury Bukhman and the Vertebrate Genomes Project.
AProvided by the Vertebrate Genomes Project.
#Provided by the Canseq150 program supported by CGEn and its partners.
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Table S6.

Impact of genetic parameters on inbreeding load and extinction rates. Each row represents a
different combination of simulation parameters, including a dominance model, carrying capacity
during the second historical epoch (K3), mutation rate, distribution of selection coefficients, and
deleterious mutation target size. For each combination of parameters, we report the resulting
levels of strongly deleterious mutations (s < -0.01) per individual, very strongly deleterious
mutations (s < -0.1) per individual, lethals per individual (s < -0.5), inbreeding load (2B), and
percent of replicates going extinct within 50 years of recovery initiation assuming a 90%
reduction in bycatch mortality and threshold population size of 10. See Materials and Methods
for details on the different simulation parameters. Note that, across different distributions of
selection coefficients and dominance effects, the percent of replicates going extinct for the small
carrying capacity (K> = 5,200) is <50% in all cases, and for many parameter combinations, is
<30%. Thus, these results suggest that extinction of the vaquita due to inbreeding depression is
not certain.

Dominance Mutation  Dist. of sel. Target size avg # muts avg # muts  avg # muts
model K, rate coeff. (Mb) s <-0.01 s<-0.1 s<-0.5 2B % extinct
hs 5200 5.80E-09 vaquita 316 123 3 0.14 0.95 27
hs 104000  5.80E-09 vaquita 316 30.1 13.1 0.6 332 52
recessive 5200 5.80E-09 vaquita 316 17.7 3.1 0.14 1.28 32
additive 5200 5.80E-09 vaquita 316 04 0.02 0 0016 11
hs-alt 5200 5.80E-09 vaquita 316 4.38 0.87 0014 0.26 16
hs 13709 2.20E-09 vaquita* 316 4.63 046 0 0.19 9
hs 2793 1.08E-08 vaquita* 316 20.86 6.74 0.92 24 55
hs 5200 5.80E-09 human 316 123 1.03 0 05 28
hs-kardos 5200 5.80E-09 kardos 316 35 2.12 1.83 19 17
vaquita +
hs 5200 5.80E-09  1.0% lethals 316 12.65 335 0.51 1.31 25
vaquita +
hs 5200 5.80E-09  5.0% lethals 316 13.6 4.64 1.85 2.64 32
hs 5200 5.80E-09 vaquita 48 18.5 4.5 0.21 1.44 39

*Using the vaquita distribution of selection coefficients inferred under the respective assumed
mutation rate (fig. S13)

45



	Title: The critically endangered vaquita is not doomed to extinction by inbreeding depression
	Abstract
	Main Text
	References and Notes
	Acknowledgments
	Figure Legends
	Figures
	Supplementary Materials for The vaquita is not doomed to extinction by inbreeding depression
	Materials and Methods
	Supplementary Text
	Supplementary Figures
	Supplementary Tables



