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Model Details

As described in the main text, we write our model in terms of the marginal distributions for each category,

F (Yi|µ, N, ϕ) =



p (Yi = 0|µ, N, ϕ) = (1 − µi)Nϕ

p (Yi = N |µ, N, ϕ) = (1 − (1 − µi)Nϕ)
∏

j ̸=i(1 − µj)Nϕ

p (Yi = yi|0 < yi < N, µ, N, ϕ) = yκiNϕ−1 (N − y)(1−κi)Nϕ−1

NNϕ−1B (κiNϕ, (1 − κi) Nϕ) [1 − (1 − µi)Nϕ−

(1 − (1 − µi)Nϕ)
∏

j ̸=i(1 − µj)Nϕ]
where

κi = µi∑
i Iiµi

(1)

Here Ii is an indicator function that takes on a value of 1 if 0 < Yi < N and 0 otherwise. We can conceptualize
the model as a two step process in which each species is determined to be absent (Yi = 0) or comprise the
entire sample (Yi = N). Then conditioned on the categories that have observations 0 < Yi < N , each
category’s marginal distribution is a generalized beta distribution stretched over the interval (0, N) and
jointly across all the categories the observations follow a generalized Dirichlet distribution stretched over the
same interval. The final line of the equation renormalizes the µi based on the categories that are between
0 and N and ensures that

∑
i κi = 1. Thus the renormalization links all I categories into a single model

and ensures that the total sample size observed across categories is fixed (i.e. N =
∑

i Yi). While the model
describes the marginal density for a single category, this is actually a joint model for all categories (see
below).
This model utilizes a non-standard parameterization of the generalized beta distribution, using the param-
eters µ, ϕ, and N rather than the standard α, β parameterization of the beta distribution.
The above parameterization of the beta distribution can be connected using the following equalities,

αi = µiNϕ (2)
βi = (1 − µi)Nϕ (3)

and the effective sample size is αi + βi = Nϕ. Unlike other parameterizations of mixture distributions
involving the beta distribution [zero-inflated or zero- and one-inflated; Ospina and Ferrari (2012); Joseph
et al. (2016); Liu (2021)], this parameterization uses a low-rank parameterization that links the discrete
outcomes (0, N) and the continuous component using only the parameter vector µ and a single scaling term
ϕ.

Connections to multivariate distributions

Presence-absence model and the multinomial distribution

We note a strong connection between the presence-absence component of our mixture model and the multi-
nomial model. We are motivated by the multinomial pmf which can be expressed using gamma functions
as
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g(y1, y2, ..., yI ; N, µ1, µ2, ..., µI) =
Γ(
∑

i yi + 1)∏
i Γ(yi + 1)

I∏
i=1

µyi

i (4)

As above, µi is the probability of occurrence for species i and N be the known sample size. However, we
are only interested in the cases where one or more observations (yi) are zero. The marginal probability of
observing zero in category i, yi = 0 is easy to calculate by recognizing when yi = 0 the remaining categories
must sum to N and the multinomial collapses to two categories,

p(yi = 0|n, µ1, µ2, ....µI) =
Γ(
∑

i yi + 1)∏
i Γ(yi + 1)

I∏
i=1

µyi

i (5)

= Γ(N + 1)
Γ(1)Γ(N + 1)µ0

i (1 − µi)N (6)

= (1 − µi)N (7)

which has clear similarity to the marginal distribution presented above and in the main text. Simply
substitute Nϕ for N ; using the gamma function form of the multinomial, there is no requirement that the
yi take on integer values. The probability the entire sample size is in a single category in the multinomial
distribution is p (yi = N |µi, N) = µN

i , which differs from the probability in our model. Thus the model
presented in the main text and eq. S1 has a marginal probability p (Yi = 0|µi, N, ϕ) comparable to the
marginal probability of the multinomial model with equivalent µi and sample size Nϕ but a different marginal
probability for all observations occurring in a single category, p (Yi = N |µi, N, ϕ) (main text and eq. S1).
While we would prefer to use a multinomial-like model, in the following we illustrate the computational
complexities that arise from trying to use a multinomial-like structure for the two discrete outcome (Yi = 0
and Yi = N) generally but show how this structure can be implemented directly when there are relatively
few categories.

The issues with the multinomial model occur when trying to calculate the probability of all possible combi-
nations of zero observations. We know that if I − 1 categories are 0, the remaining categories observations
must sum to N . We can calculate the probability of all possible combinations of categories being present
or absent using the probability of each category being absent. We let j index the J species that are absent
j = {j1, j2, ..., jJ} so the probability of observing all J species absent conditioned on the parameters and
samples size is the sum of the probabilities for the relevant categories,

p (yj = 0|µ, N, ϕ) =

1 −
∑

j

µj

Nϕ

. (8)

This is the probability of observing all j species absent but includes all possible combinations of presence and
absence of the remaining I −J species. To calculate the probability of exactly the set of j being equal to zero
and the remaining species being non-zero, we have to enumerate and substract the probabilities associates
with one or more of the I − J remaining categories being exactly zero. We define k as the vector of elements
k = {k1, k2, ..., kI−J} such that j ∩ k = ∅. We also define an indicator matrix M where each entry contains
either a zero or one and each row is of length I − J and comprises a particular combination in which yk = 0
(M .,k = 1) or yk > 0 (M .,k = 0). Then M has L = 2I−J − 2 rows (there are two possible combinations
which are not included: the probability all categories are absent [which occurs with probability 0] and the
probability all other categories are present [the quantity of interest]).
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p (yj = 0, yk > 0|µ, N, ϕ) =

1 −
J∑

j=1
µj

Nϕ

−
L∑

l=1

(
1 −

I−J∑
m=1

M l,mµkm

)Nϕ

(9)

While explicitly calculating these probabilities is not difficult when there are only a few categories, as the
number of categories grow the number of unique combinations of presence and absence rapidly expand. It
is computationally more efficient to write the right hand side of the equation using inner products but there
are still more computations and thus slower calculations than is desirable.

Note that when there is only one category, Yk, that is non-zero (so I − J = 1) the second term on the right
hand side above is zero and

p (Yj = 0, Yk > 0|µ, N, ϕ) =

1 −
J∑

j=1
µj

Nϕ

(10)

= (1 − (1 − µk))Nϕ (11)

= µNϕ
k (12)

which matches the probability p (Yk = N |µ, N, ϕ) in the multinomial model above as it should.

As a simple worked example, imagine a situation where there are five possible categories so µ =
{µ1, µ2, µ3, µ4, µ5} and are interested in calculating the probability of an observation in which
Y = {Y1 = 0, Y2 > 0, Y3 = 0, Y4 > 0, Y5 > 0}. Then j = {1, 3} and k = {2, 4, 5} and

M =


1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1

 (13)

In this case the are only six rows in M and the subsequent calculations are trivial. When there are many
more categories, however, the computational burden in evaluating all possible combinations is prohibitive.
In practice, we have found that explicitly evaluating all of these probabilities only is practicable when there
are fewer than 20 categories. Specifically, the computations are exponential in the number of categories; it
is O(2K). In the next section we detail some potential approaches to speed calculations. We note that our
problem here is closely related to some classical probability problems (Holst 1986, O’Neill 2021) and this
literature may provide additional algorithms to speed calculations further. At present, we use the form in
the main text that treats the probability of occurrence as independent among categories and eliminates the
need to explicity calculate the probabilities described in this section. This is an approximate solution made
for computational reasons that provides reasonable performance.

Alternative methods for computing the probability of zeroes in a multinomial.

In addition to the approach described above, below we outline a potential, recursive approach to calculating
the desired probability which is O(KN2) in computational complexity rather than the O(2K) described
above. This approach would be akin to certain common calculations on hidden Markov chains (e.g., the
Baum-Welch algorithm). It involves cycling over the different components for the multinomial random
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vector, and for each one accumulating a probablity vector that gives the probability of the sum of each
component up to and including the current value.

Some new notation should help to express this. Note that, because we intend to implement this in C++ we
will index the K components of Y from 0 to K − 1 (because vectors are indexed starting with zero rather
than one in C++). First, let µ̆i denote the cell probability µi scaled so that

∑K−1
j=i = 1. Thus, we have

µ̆i = µi

(K−1∑
j=i

µj

)−1
= µi

(i−1∏
j=0

(1 − µj)
)−1

. (14)

Now, think about simulating the multinomial random vector in a sequential fashion, as a series of binomials,
each one conditioned on the results of the preceding ones. Then, for i = 0, 1, . . . , K − 1, let p(n, i) denote
the probability, after values y0, . . . , yi have been realized/simulated, that their sum is n. In other words:

p(n, i) = P

( i∑
j=0

Yj = n

)
(15)

If we further allow ourselves to condition the outcome upon the occurrence that none of the Yi = 0, then we
also have as definitions

p(0, i) ≡ 0for i = 0, 1, . . . , K − 1 (16)
p(n, i) ≡ 0if N − n < K − 1 − i (17)

The last condition simply states that the sum of the first i components of the multinomial vector cannot be
so great that there is no way for the remaining K − i components to each have at least the value of 1. This
can be rearranged to say that p(n, i) ≡ 0 whenever n > N − K + i + 1

For the initial case of i = 0 it should be clear that p(n, 0) is the probability that Y0 = n, for n > 0 and
n ≤ N − K + i + 1:

p(n, 0) = N !
n!(N − n)!µ

n
0 (1 − µ0)N−n , n = 1, . . . , N − K + 1. (18)

For all remaining cases, with i > 0, the values of p(n, i) can be found with the following recursion:

p(n, i) =
∑

Lr≤r≤Hr

p(r, i − 1)er
(N − r)!

(n − r)!(N − n)! µ̆
n−r
i (1 − µ̆i)N−n , Ln ≤ n ≤ Hn, (19)

where Ln, Hn, Lr, and Hr are defined as follows. Since we will be cycling over values of n, we will start
with the global definitions for Ln and Hn, and then we will define Lr and Hr, conditional on n.

Ln = N, if i = K − 1; i + 1, otherwise
Hn = N − K + i + 1
Lr = i

Hr = n − 1
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We can rewrite that recursion as:

p(n, i) =
∑

Lr≤r≤Hr

p(r, i − 1)B(r, n, µ̆i) , Ln ≤ n ≤ Hn, (20)

where,

B(r, n, µ̆i) = (N − r)!
(n − r)!(N − n)! µ̆

n−r
i (1 − µ̆i)N−n (21)

and the value of N is considered fixed (as it is). Note that B is simply the probability that a binomial
random variable of size N − r trials and success probability µ̆i has n − r successes.

In conclusion, this shows a way to compute the probability that all the components of a multinomial random
vector are greater than 0. It scales linearly in K, and quadratically in N . For large N , this approach may
still be too computentially intensive to incorporate in an estimation model. But, this implementation makes
it easy to calculate values to compare the approximation used in zoid to the exact value in a faster manner.
Future work to speed computation may be gained by reclaiming a constant factor by computing the binomial
probabilities recursively. Note that to be fully general to really large N and small µ, some sort of underflow
protection would also likely be important.

Non-zero components and the scaled Dirichlet distribution

The previous section discusses the mixture components that specify the probability of zero and N obser-
vations. Here, we describe the connection between the continuous component of the mixture distribution
as a scaled Dirichlet distribution. Specifically, the marginal distributions of the Dirichlet distribution are
beta distributions so the marginal beta distribution for observations 0 < Yi < N presented in the main text
correspond to a scaled Dirichlet distribution.

Let X be drawn from a Dirichlet distribution with parameter vector a = (α1, . . . , αI), and use α• to denote∑I
i=1 αi. Then, for the categories in which the observations are not zero, the vector Y can be seen to

have a scaled Dirichlet distribution. Let Y = NX. The inverse transformation is X = u(Y ) = Y /N , a
transformation whose Jacobian is an (I −1)×(I −1) matrix with diagonal elements of 1/N , and 0s elsewhere,
such that its determinant is N−(I−1). It follows that the density of Y can be written as

p(Y |a, N) = Γ(α•)N−(I−1)∏I
i=1 Γ(αi)

I∏
i=1

(yi/N)αi−1 , 0 < yi < N and
∑

yi = N,

This leads to the marginals in Equation 1 with αi = κiNϕ.

Simulation Method Details

Given mixture proportions µ, sample size N , and overdispersion ϕ, we first determine whether categories have
observations of 0 using independent Bernoulli draws, removing sets of simulated values in which all categories
are zero. Mixture observations in which only one category is non-zero necessarily represent observations of N
for the lone non-zero category. Then, for the categories that were non-zero, the proportion of N falling into
each category is determined using the stick-breaking algorithm for generating Dirichlet observations from
beta distributed marginal distributions [see Gelman et al. (2014); page 583] . Thus for all non-zero categories,
we can generate a realized proportion pi – which across all I categories follows a Dirichlet distribution –
and the observed values in each non-zero category are then yi = piN . For each simulation, this maintains a
fixed

∑
i yi = N and the appropriate marginal distributions for each category. Additional overdispersion is

incorporated into simulations by decreasing the expected sample size by some specified amount (e.g., 50%)
and subsequently increasing variability in simulated observations. The R script for simulating proportional
data is provided in the zoid package.
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Available Bias Correction

Under the basic model specification, model predicted values for the probability of 0 and N observations
are biased relative to realized frequencies of these observations from simulations. Because simulations reject
observations in which all categories are 0, observations are normalized by the probability of all categories
being 0 (

∏
i(1 − µNϕ

i )) while model expectations are not. This results in simulated frequencies of 0 obser-
vations lower than naive model expectations and higher frequencies of N observations; this effect is most
pronounced at low effective sample sizes (e.g., Nϕ<5) (Fig. S1). At high sample sizes, probabilities of 0 or
N observations become so small that the influence of this bias becomes negligible.

To address this situation-specific bias, we also provide a modified model, implemented in Stan, that nor-
malizes probabilities of 0 and N observations based on the probability of all categories being 0. Specifically,
we define category-specific values pi equal to (1 − µi)Nϕ; these represent the uncorrected probabilities of 0
observations for each category. Then, corrected probabilities are expressed as follows,

F (Yi|µi, N, ϕ) =



p (Yi = 0|µi, N, ϕ) =
pi(1 −

∏
j ̸=i pj)

(1 −
∏

i pi)

p (Yi = N |µi, N, ϕ) =
(1 − pi)

∏
j ̸=i pj)

(1 −
∏

i pi)

p (Yi = y|0 < Yi < N, µ, N, ϕ) = yκiNϕ−1 (N − y)(1−κi)Nϕ−1

NNϕ−1B (κiNϕ, (1 − κi) Nϕ) (1 −
pi(1 −

∏
j ̸=i pj)

(1 −
∏

i pi)
−

(1 − pi)
∏

j ̸=i pj)
(1 −

∏
i pi)

)

where

κi = µi∑
i Iiµi

(22)

We further demonstrate that this correction has negligible effect on model performance, compared to the
basic model, over the ranges of sample sizes considered in our model evaluation (Fig. S2).
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Tables

Table S 1: Prey types encountered and modeled from cod diet data obtained from (Magnussen 2011).

Prey ID # Scientific Name
1 Hydrozoa
2 Anthozoa
3 Scleractinia
4 Polychaeta
5 Gastropoda
6 Bivalvia
7 Loligo forbesi
8 Crustacea spp
9 Meganyctiphanes sp

10 Pandalus montagui
11 Lithodes maja
12 Munida sp
13 Galathea intermedia
14 Galathea sp
15 Galathea nexa
16 Hyas coarctatus
17 Hyas sp
18 Inachus leptochirus
19 Atelecyclus rotundatus
20 Liocarcinus holsatus
21 Liocarcinus turbeculatus
22 Ophiura sp
23 Amphiura sp
24 Pisces spp
25 Ammodytes sp
26 Ammodytes tobianus
27 Callionymus lyra
28 Pleuronectidae
29 Stones
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Figure S 1: Expected and simulated proportional occurrences of 0 and N observations with the base and bias
corrected model structures. The black line represents a 1:1 relationship between simulated and expected
values. Simulation inputs featured 1e6 iterations, 10 categories, effective sample sizes (ESS) varying from 2,
5, and 10, and category proportions equal to: (0.01,0.03,0.05,0.07,0.09,0.11,0.13,0.15,0.17,0.19).
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Figure S 2: Boxplots of root mean square percentage error (RMSPE) values calculated from simulated
mixture proportions and MCMC iteration-specific predicted values for simulation scenario #1 and varying
sample sizes for the base and bias-corrected model structures. Grey points represent outliers.
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Figure S 3: Boxplots of root mean square percentage error (RMSPE) values calculated from simulated
mixture proportions and MCMC iteration-specific predicted values for all simulation scenarios and sample
sizes. As sample size increases, RMSPE asymptotically goes toward zero. Grey points represent outliers.
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Figure S 4: Correlation between simulated and predicted values (posterior mean) for the first three simulated
datasets of simulation scenario #1 with a sample size of 10 (a-c), 100 (d-f), and 1000 (g-i) per observation;
a 1:1 reference line is shown in red.
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Figure S 5: Graphical posterior predictive checks comparing model fitting data and MCMC iteration-specific
simulated values. We present results for the first 10 MCMC iterations from the first three datasets for
simulation scenario #1 with a sample size per observation of 10 (a-c), 100 (d-f), and 1000 (g-i). y is the
density of observed (simulated) data and yrep is the density of MCMC-simulated data.
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Figure S 6: Estimated fishery mixture proportions for each combination of region, season, and year from
the mixed-stock Chinook salmon fishery in California’s coastal waters. Error bars represent 95% credible
intervals. Regions MO, SF, FB, and KC refer to the Monterey, San Francisco, Fort Bragg, and Klamath
Management Zone areas, respectively (Satterthwaite et al. 2015).

14



0 2 4 6

y
yrep

Spring−FB

0 20 40 60

y
yrep

Summer−FB

0 10 20 30 40 50

y
yrep

Fall−FB

0.0 0.5 1.0 1.5

y
yrep

Spring−KC

0 50 100 150

y
yrep

Summer−KC

0 25 50 75

y
yrep

Fall−KC

0 20 40 60

y
yrep

Spring−MO

0 50 100150200

y
yrep

Summer−MO

0 25 50 75

y
yrep

Fall−MO

0 25 50 75 100125

y
yrep

Spring−SF

0 50 100 150 200

y
yrep

Summer−SF

0 50 100 150 200

y
yrep

Fall−SF

GSI Count

D
en

si
ty

Figure S 7: Graphical posterior predictive checks comparing MCMC iteration-specific simulated values for
the first 10 MCMC iterations to genetic assignment data from the California recreational fishery on Chinook
salmon in 1999. Values y and yrep refer to the density of observed and model-simulated data.
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Figure S 8: Estimated spring coefficient values for cod diet types. Points represent mean values and lines
represent 95% credible intervals. Prey ID values correspond to scientific names provided in Table S1.
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