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Abstract
This study aims to develop a Machine Learning (ML)-based technique to infer reservoir management rules and predict

downstream discharge values. The case study is the Hackensack River Watershed in New Jersey, USA. A Long Short-Term

Memory (LSTM) model was used to predict streamflow values at the USGS station at New Milford, right downstream of

Oradell reservoir. A good agreement between observed and simulated streamflow values was obtained during the

2020–2021 testing period. An NSE value of 0.93 was determined with the 48-h precipitation lead time, suggesting that the

48-h precipitation forecast mostly drives releases Oradell reservoir. The developed model was tested during Hurricane Ida.

The analysis revealed that a similar NSE of 0.95 was obtained with a 48-h precipitation lead time followed by the 12-h lead

time model, which was based on the watershed response time. In addition, the conducted feature analysis revealed that only

four out of the seven upstream USGS stations in the watershed have a significant impact on the model’s performance. This

work implies that ML can capture reservoir management rules and predict reservoir releases using precipitation and

upstream flow data as input variables. This study lays the groundwork for a generalization of the method over the CONUS

to infer reservoirs’ operation rules for streamflow simulation.
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1 Introduction

Flooding is a natural disaster with consequences that are

particularly severe in urban areas where significant dam-

ages to infrastructure are often reported [1]. Predicting

hydrological processes in urban areas is challenging,

especially in the presence of reservoirs that are commonly

used for flood control and impact mitigation. The presence

of water reservoirs along streams, which is common in or

around urban areas, and their releases depending on

specific management rules dictated by their managers is an

example that illustrates the complexity of modeling

hydrological processes in urban areas. To accurately pre-

dict urban flooding and its risk, it is vital to account for

anthropogenic factors, especially those introduced by

streamflow regulation that alters natural streamflow

regimes through reservoir management [2, 3].

Several hydrological models have been developed to

study watershed hydrology with applications in rural and

urban areas [4, 5]. Models like SWMM, HEC-RAS [6],

TUFLOW [7], CSIRO TVD, and AutoRAPID [8] are often

used to simulate urban hydrological processes while

accounting for the combination of riverine and urban

flooding. The models are usually developed in 1D, 2D, or a

combination of 1D-2D configurations. The 1D modeling

component usually covers the streams, the subsurface

drainage network, and major drainage center lines in a

watershed. The 2D modeling component simulates the

lateral expansion of flood inundation. The 1D and 2D

components have usually coupled both ways. Introducing
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additional components like water reservoirs in such mod-

eling configurations increases the level of complexity of

the models. In addition, the management rules of reservoirs

are usually not publicly available. Water reservoirs are

managed and operated by different public and private

entities. Depending on their size and capacity, they may

have different primary functions like flood protection and/

or water supply. Reservoir operators often have to optimize

the operation of the reservoir to maximize the benefits in

terms of water supply, flood protection, and hydropower

production, which leads to complex management protocols

that are hard to infer and incorporate into hydrological and

hydraulic models. In the presence of water reservoirs in a

watershed, the performance of the models mentioned above

tends to be limited in simulating the spatial and temporal

dynamics of urban hydrological processes [9].

The optimum operation of water reservoirs is the main

challenge facing water resources managers and decision-

makers. Optimizing operational procedures is a require-

ment for the effective management and planning of com-

plex water resources systems [10, 11]. Reservoirs’

management strategies are usually defined depending on

the primary function of the reservoir as well as the pre-

vailing and future hydrological and meteorological condi-

tions. When reservoir management rules and protocols are

not available, the analysis of water releases (output vari-

able) and information on hydrological and meteorological

variables can determine the missing rules assuming con-

sistency in the management strategy. The unknown reser-

voirs’ management rules add to the uncertainty in the

model’s parameters and precipitation forecast, which dic-

tates releases in anticipation of extreme events [12, 13].

More recently, data-driven techniques of ML methods,

such as neural networks (NNs) [14], support vector

machines (SVMs) [15–18], and wavelet transform (WT)

[19, 20], have been used in streamflow forecasting studies

and acquired wide attention. Several studies demonstrated

that ML methods could capture nonlinear behavior despite

the complexity of the involved processes [20–23]. Several

researchers examined different ML techniques with a focus

on reservoir controls and their usefulness in predicting

streamflow. Allawi et al. [24] investigated the usage of the

Shark Machine Learning Algorithm (SMLA) to determine

the optimal reservoir release policy and investigated the

model’s effectiveness in terms of dam and reservoir

physical characteristics. Raman and Chandramouli [25]

employed a feedforward neural network (FFN) to formu-

late an operating rule for a single reservoir for irrigation.

Deka and Chandramouli et al. [26] trained an FFN to

estimate optimum releases from a system of three reser-

voirs. Chang et al. [27] used an adaptive network-based

fuzzy inference system to estimate the optimal water

release from a single reservoir in Taiwan. Moreover, AI

techniques like fuzzy logic, neural networks, genetic

algorithms, support vector machines, and genetic pro-

gramming have been widely used in several hydrologic

applications [24, 28]. For instance, Shiri et al. [29] devel-

oped an extreme learning machine, genetic programming,

and artificial neural network (ANN) models for predicting

water levels in Urmia Lake. Emamgholi Zadeh et al. [30]

used the ANN model for forecasting groundwater levels in

the Bastam Plain. All these studies demonstrated the

potential of using ML algorithms for hydrologic

applications.

Recently, hydrologists have started to use Long Short-

Term Memory (LSTM) in different applications. Intro-

duced by Hochreiter and Schmidhuber [31], LSTM models

are a powerful tool for solving time-series prediction

problems [32]. LSTMs are proven to capture various time

series data trends and behaviors and learn their long-range

dependencies with high performance [33]. Zhang et al. [34]

used three ML models, which are (1) the ANN, (2) support

vector regression, and (3) LSTM in simulations of reservoir

operations at the Gezhouba Dam. They reported that the

LSTM had the best overall performance. Also, Kratzert

et al. [35] built an LSTM model that describes the rainfall-

runoff behavior of a large number of complex catchments

on a daily scale. The study by Ni et al. [36] focused on

developing two hybrid models based on the traditional

LSTM model for monthly streamflow and rainfall fore-

casting. Hu et al. [37] showed that the LSTM model out-

performs the ANN model for flood forecasting up to 6 h

ahead. Chen et al. [1] proposed an LSTM neural network

model for flood forecasting where the daily discharge and

rainfall for 1-, 2-, and 3-day flowrate forecasting combi-

nations were used as input data. The same study reported

0.99, 0.95, and 0.87 Nash–Sutcliffe efficiency values

(NSE) corresponding to the three forecasting cases. An

LSTM was found to be a viable option for flood forecasting

on the Da River in Vietnam [38]. Yuan et al. [39] proposed

an LSTM neural network and an Ant Lion Optimizer

model (LSTM–ALO), which provides an effective method

for monthly runoff forecasting in the Astor River Basin for

the period between 1974 and 2009.

Overall, the previous studies demonstrated the potential

of ML, particularly the LSTM method, in hydrological

applications, especially in deducing reservoir management

rules and using them in the prediction of downstream river

discharge. The previous investigations showed a sensitivity

of ML techniques to the quality of input variables, mainly

the precipitation forecast. Releases from water reservoirs

are driven by precipitation forecasts as well as the current

conditions in the reservoir like water level and available

storage capacity and the watershed like antecedent mois-

ture conditions. In addition, the operation of reservoirs

depends on the main function of the dam, like water
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supply, hydropower production, or flood control and miti-

gation. In urban or rural areas, the reservoir’s location can

dictate different management rules as the impact of major

releases on downstream locations is not the same. The risk

is usually higher in urban areas, especially when parts of

the floodplains are developed and densely populated.

This work aims to evaluate the capability of the LSTM

model to infer reservoir operating rules and forecast river

discharge at downstream stations. The case study is the

Hackensack River watershed in northern New Jersey which

comprises the Oradell reservoir that is used for water

supply and flood protection in northern New Jersey. This

study proposes using a novel application of the LSTM

method to infer reservoir management rules. Then, down-

stream discharge values are predicted using a trained ver-

sion of the model. In addition to developing a data-driven

method to predict streamflow values, it is expected that the

feature analysis of the LSTM model reveals the input

variables that control water releases from a reservoir which

can be expanded to watersheds where reservoir manage-

ment rules are not known.

2 Methodology

2.1 Study area

The study domain covers the upstream subwatershed

within the Hackensack River Basin that comprises the

Oradell Reservoir (Fig. 1). The subwatershed includes

flood-prone areas with a dominant dense residential land

use type. The total drainage area of the reservoir located at

the Borough of Oradell, Bergen County, New Jersey, is

292. 7 square kilometers (km2). The reservoir is formed by

a hollow concrete dam completed in 1922. The overall

capacity at the spillway level is 13.275 million cubic

meters (m3) with an elevation of 7.06 ms [40]. Seven

sluice gates regulate the reservoir release.

The study period extends between November 2014 and

September 2021 and includes Hurricane Ida, which struck

the entire northeastern region and caused significant

flooding with a water elevation at the Oradell dam of

3.36 m leading to an overflow and flooding [40]. The area

can be considered an important testing ground for studying

a complex estuarine system with one of the most densely

developed floodplains on the eastern seaboard [13]. The

downstream area is considered highly urbanized, with vital

assets which were heavily damaged due to Hurricane Ida in

20 21 [13]. Critical facilities are located around the river’s

floodplain, such as the New Jersey Transit’s main storage

and maintenance facility, the Port Authority Trans-Hudson

(PATH) stations, and Teterboro Airport [41]. The coastal

location of the watershed and the tidal influence on its

streamflow add to the complexity of the modeling and

simulation of hydrological and hydraulic processes, which

requires a coupling of land and ocean models to simulate

downstream w ater levels accurately.

2.2 Datasets

One key input variable of the developed LSTM model is

rainfall over the Hackensack Watershed obtained from the

radar-based Multi Radar/Multi-Sensor (MRMS) precipita-

tion dataset [42]. In this study, a 7-year mosaic of MRMS

rainfall measurements from 2014 to 2021 was used. The

product is provided in Cartesian coordinates available

every 2 min at a 1-km spatial resolution [43]. MRMS was

deployed operationally in 2014 at the National Center for

Environmental Prediction (NCEP). The system was

developed to produce severe weather, transportation, and

precipitation products for improved decision-making

capability to improve hazardous weather forecasts and

warnings, hydrology, aviation, and numerical weather

prediction.

The upstream USGS stations included in the model are

the Oradell Reservoir at Oradell, New Jersey (Monitoring

station number 01378480), Lake Tappan at Old Tappan,

New Jersey (Monitoring station number 01376950),

Hackensack River at West Nyack New York (Monitoring

station number 01376800) Pascack Brook at Park Ridge

New Jersey (Monitoring station number 01377370),

Woodcliff Lake at Hillsdale New Jersey (Monitoring sta-

tion number 01377450), Pascack Brook at Westwood New

Jersey (Monitoring station number 01377500), and the

Hackensack River at Rivervale New Jersey (Monitoring

station number 01377000) (Fig. 1). Information on the

USGS stations can be obtained from [40]. Having a total

drainage area of 76.6 km2, the Pascack Brook at West-

wood, New Jersey, is in the Westwood Borough, Bergen

County, New Jersey, on the right bank, 22.9 m upstream

from the bridge on Harrington Avenue in Westwood,

152.4 m downstream from Musquapsink Brook, and

3.70 km upstream from the mouth. Its flow is regulated by

Woodcliff Lake, 4.8 km above the station. As for the

Hackensack River at Rivervale New Jersey sta tion, it is in

the River Vale Township, Bergen County, New Jersey, on

the right bank upstream of the bridge on Westwood Ave-

nue in Rivervale, 2.4 km upstream from Pascack Brook,

6.59 km downstream of Lake Tappan, and 7.4 km

upstream from Oradell Dam having a total drainage area of

150.2 km2. The flow of the station is regulated by Deforest

Lake and Lake Tappan. Lake Tappan is an earthen dam

with the Old Tappan station for the measuring stage. The

reservoir’s total capacity is 79,500 m3 with an elevation of

16.8 m. The Woodcliff Lake at Hillsdale reservoir is an

earthen dam with a drainage area of 50.2 km2, a total
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capacity of 3.3 million m3, and an elevation of 29 m. The

Pascack Brook at Park Ridge is a continuous recording

discharge station covering a drainage area of 34.7 km2.

Finally, the Hackensack River at West Nyack station

covers a drainage area of 30.7 km2. Its flow is regulated by

Deforest Lake. When the discharge at the station is higher

than 42.5 m3/s, an overflow is reported due to an over-

topping of the Klein Avenue Levee 480 m upstream of the

gauge [40].

The downstream station that records releases from the

Oradell Reservoir is the Hackensack River at New Milford

(01 378 500). The station has a total drainage area of 292.7

Fig. 1 Oradell reservoir and used USGS stations (with their labels)
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km2. The developed LSTM model will be verified down-

stream of the reservoir at the New Milford station site. It is

worth noting that there is another USGS station down-

stream of New Milford on the Hackensack River in

Hackensack. The flow at the Hackensack USGS station is

tidally influenced, and streamflow is not reported at that

station. The New Milford Station is the first downstream

station on the Hackensack River where the discharge is

reported. Immediately downstream of the New Milford

station on the Hackensack River, one can find the Teter-

boro airport, an airport in the New York City area that is

managed by the Port Authority of New York and New

Jersey, which also reports precipitation continuously.

The dataset is divided into three parts: training set,

validation set (holdout set), and testing set. These three sets

are essential to avoid overfitting and model selection bias.

Figure 2 illustrates the selection of data for the output

variable. In the training set, which represents a sample of

data used to fit the model, approximately 70% of the period

from November 2014 to March 2019 was included. As for

the validation set, the data between March 2019 and June

2020 is used. The goal of the validation set is to track

progress through validation loss and accuracy. Finally, for

the test data, which is the sample data used to provide an

unbiased evaluation of a final model fit on the training

dataset, data from June 2020 to the second week of

September 2021 is selected.

2.3 ML configuration

The Recurrent Neural Network (RNN) is one class of

ANNs that uses a recursive approach and can be used on

sequential data. One key feature of this type of network is

the network delay recursion which allows the description

of a system’s dynamic performance [44]. As shown in

Fig. 3a, the network’s output at time t is the result of the

signal delay recursion, which associates both the input at

time t and the recursive signals before the input at time t.

Despite its ability to analyze short-term sequential data, the

RNN has a drawback when learning long-range depen-

dencies, which is critical for some time series forecasting

problems, such as those considered in this study. To

overcome this flaw, LSTM models were introduced as the

long-term dependencies’ saver in time series data thanks to

their purpose-built memory cell [45]. In addition, LSTM

models introduce a solution to the vanishing gradient

problem related to long-term context memorization [31] as

their architecture trims the gradients in the network using

continuous error flows through constant error carousels

within special multiplicative units [44]

The cells are composed of a sigmoid neural net layer

and a multiplication operation, as depicted in Fig. 3b [44].

An input at time step t is (Xt), the hidden state from the

previous time step that is introduced to the LSTM block

(Ht), then the hidden state (St) is computed as follows:

1. The forget gate (f t) will decide which information will

be excluded from the cell state.

ft ¼ r XtU
f þ St�1W

f þ bf
� �

ð1Þ

2. Decide which new information will be saved in the cell

state. The input gate (it) first decides which values are

to be updated. Then, a tanh layer creates a vector of

new candidate values Ct.

it ¼ r XtU
i þ St�1W

i þ bi
� �

ð2Þ

fCt ¼ tanh XtU
c þ St�1W

c þ bcð Þ ð3Þ

3. Update the old cell state (Ct�1) into the new state Ct:

Fig. 2 Temporal distribution of

Hackensack River discharge

observation at New Milford

used for training, validation, and

test
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Ct ¼ Ct�1 � ft þ it �fCt ð4Þ

4. Decide what is going to be produced as output. The

output gate (ot) decides what parts of the cell state will

be produced as output. Then, the cell state goes through

the tanh layer (to push the values to be between -1 and

1) and multiplies by the output gate.

ot ¼ r XtU
o þ St�1W

o þ boð Þ ð5Þ
St ¼ ot � tanh Ctð Þ

where (Uf ;Ui;Uo;UcÞ, (Wf ;Wi;Wo;WcÞ,
and (bf ; bi; bo; bcÞ are input weights, recurrent weights, and
biases, respectively. Xt, St and Ct are input, hidden, and

cell state at time step t, respectively. St�1 and Ct�1 are the

hidden and cell state at time step t - 1, respec-

tively. � , � and r are pointwise multiplication, point-

wise addition, and sigmoid activation, respectively.

This study uses an LSTM model with a sequence input

single-output (SISO) configuration. The sigmoid function

calculates the output values of the hidden layer and the

output layer, while the Adam algorithm is used for model

training. Adam’s optimization algorithm was used to cor-

rect model performance. The optimizer combines the best

properties of the AdaGrad and RMSProp algorithms and

can resolve sparse gradients on noisy problems such as

ours. The NSE metric is taken as the objective function.

The performance of the LSTM model depends on its

configuration parameters. For instance, the window size is

crucial for the model’s best performance and counts as an

additional hyperparameter that requires tuning. The risk of

losing long-term precipitation information and the long-

term impact cannot be captured inside the time window.

The input variables comprise MRMS rainfall values that

correspond to varying lead times, ranging from none, 6, 12,

18, 24, 30, 36, 42, 48, 54, 60, 66, and 72 h. The MRMS

rainfall data product is quality controlled, and biases are

mitigated using rain gauge corrections. MRMS is used in

this study with the introduced lag times to mimic the

quantitative precipitation forecasts and infer reservoir

management rules without the bias that uncertainty in

rainfall prediction could introduce. The interest in this

study is to determine the most relevant lead times of pre-

cipitation forecasts that are driving discharge releases and

not necessarily quantifying the impact of uncertainty in the

precipitation forecasts and their impact on decision-mak-

ing. Using the bias-corrected, high-resolution MRMS

product minimizes the possible contribution of uncertainty

in quantitative precipitation forecasts. It is worth noting

that the use of actual precipitation forecasts from coarser

and mid-range products like the Global Forecast System

(GFS) model, which the reservoir operators usually use, is

not supposed to change the determined reservoir manage-

ment rules dramatically. Their bias with respect to MRMS,

if any, should not lead to a significant change in the sim-

ulated streamflow and the reservoir inflow, especially

during extreme events, which are usually well predicted

days in advance. In addition, the LSTM input variables

Fig. 3 a Processing of time

sequence in RNN and b LSTM

block, where f t, it, ot are forget,
input, and output gates,

respectively, adapted from [44]
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include the water level in the reservoir as a proxy for water

storage held by the Oradell dam.

A feature analysis that includes the various lead times

should reveal the specific lead time that is more influential

in deciding the reservoir releases. This is conducted by

analyzing features’ importance and their weights in the

LSTM model. It is expected that the relationship between

the lead time of the predicted rainfall event and the deci-

sion to release water from the reservoir varies depending

on the magnitude of the rainfall event. This analysis should

reveal which precipitation forecast lead time drives the

release of streamflow and, therefore, how early the reser-

voir manager decides to release water ahead of predicted

events. Heavy rainfall events can appear in the forecast

days in advance. However, the decision to release water

from the reservoir to leave room for the resulting inflow

should be taken by the operator prior to the occurrence of

the event. Reservoir operators must manage competing

requirements. On the one hand, they have to minimize the

lead time to reduce the uncertainty of the precipitation

forecast. On the other hand, they need to leave enough time

to partially empty the reservoir, which requires time. This

is especially true in the case of consecutive events with

short intervals separating them and operational constraints

that limit the evacuation of water volume. The operators of

the reservoirs balance these two competing requirements

and determine the optimum timing to perform a release.

In order to tune the LSTM models, four primary

hyperparameters and model structure parameters were

used: (1) The batch size, which refers to the number of

training examples utilized in one iteration, (2) the epoch,

which indicates the number of passes of the entire training

dataset the ML algorithm has completed, (3) the number of

units, which means the dimension of the inner cells in

LSTM and (4) the dropout, which is a regularization

technique for reducing overfitting in ANNs by preventing

complex co-adaptations on training data. In order to

determine the LSTM weights, the values are discovered via

the ADAM (Adaptive Moment Estimation) optimization

procedure. The algorithm can be used instead of the clas-

sical stochastic gradient descent procedure to update the

weights iteratively based on training data by calculating an

exponential moving average of the gradient and squared

gradient. To control the amount of the updated weights, the

learning rate is set to 0.001.

2.4 Model validation metrics

In this study, different statistical metrics were used to

evaluate the performance of the proposed model. Table 1

presents the metrics employed in this study. Observed and

simulated streamflow data are represented by O and S,

respectively.

3 Results and discussion

The performance of the LSTM model with respect to dif-

ferent lead times is summarized in Table 2. The perfor-

mance metrics of the test datasets reported in Table 2

correspond to the testing period from June 2020 through

September 2021. The results reported in Table 2 show that

the best performances of the model were obtained with the

12- and 48-h lead times, with slightly better performance in

the case of the 48-h lead time. The other models that use

different lead time values also showed an accept-

able agreement between the simulated streamflow values

and the observed ones, but they still underperform com-

pared to the 48-h lead time case.

The higher performance with some specific lead times

may be dictated by the magnitude of rainfall event in the

forecast, which drives the decision to release water from

the reservoir or not. Major and high magnitude rainfall

events often have strong signals and can be forecast days in

advance. The information on the magnitude of the event in

the forecast is also compounded with the available storage

in the reservoir. Releasing water from the reservoir to

increase the active storage capacity may take hours to a

few days. This is usually required when the available

storage capacity is insufficient to store the predicted total

runoff.

An examination of the feature impact graph provided in

Fig. 4 suggests that the Hackensack River discharge value

at Rivervale, the station right upstream of the reservoir, is

among the most influential variables that affect the deter-

mination of New Milford station discharge using the

LSTM, followed by the Hackensack River West Nyack,

Pascack Brook Westwood, Oradell water level, and the

48-h lead time precipitation values. In order to gain a

deeper understanding of how precipitation lead times affect

output, the weight importance of all 13 lead time precipi-

tation values was evaluated. Figure 4 summarizes the

results of the feature analysis using the SHapley Additive

exPlanations (SHAP), which can be defined as a game-

theoretic approach that explains the output of any machine

learning model by connecting optimal credit allocation

with local explanations based on the traditional Shapley

values from game theory and their related extensions [46].

The results show that the 48-h lead time rainfall accumu-

lations have the highest weight importance, followed by the

12-h lead time.

The tuning of the LSTM model hyperparameters using

Adam optimized to determine the following optimum

values for batch, epoch, units, and dropout, which corre-

spond to 4096, 300, 200, and 0.2, respectively. Figure 5

summarizes the models’ average loss value and its envel-

ope versus the number of epochs. All models converge to
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Table 1 Model evaluation

metrics
Metric Acronym Equation

Peak ratio PR Max Oð Þ�Max Sð Þ
MaxðOÞ

Mean absolute error MAE
Pn

i
Si�Oij j
n

Coefficient of determination R2

1�
P

i
Oi�bO
� �2

P
i

Oi�Oð Þ2

Mean squared error squared MSE2
1
n

P
i Oi � Sið Þ2

� �2

Mean squared error MSE 1
n

P
i Oi � Sið Þ2

Nash–Sutcliffe model efficiency coefficient NSE
1�

P
i
Oi�Sið Þ2

P
i

Oi�Oð Þ2

Kling-Gupta efficiency KGE
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R� 1ð Þ2 þ O
stdðOÞ

� �2

þ S
stdðSÞ

� �2
r

Correlation coefficient R
P

ðS�SÞðO�OÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
S�Sð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
O�Oð Þ2

q

Linear regression Alpha, Beta O ¼ Alpha� Sþ Beta

Table 2 Performance of the

LSTM models
Time Test data PR MAE R2 MSE2 MSE NSE KGE R Alpha Beta

0 Hurricane Ida 1.05 9.28 0.94 428.75 20.71 0.89 0.77 0.97 0.87 0.76

Testing period 1.09 2.22 0.92 29.40 5.42 0.86 0.72 0.96 0.69 1.13

6 Hurricane Ida 0.92 11.38 0.93 490.49 22.15 0.84 0.70 0.96 0.84 0.68

Testing period 0.89 2.76 0.92 50.29 7.09 0.76 0.55 0.96 0.56 1.33

12 Hurricane Ida 0.97 11.67 0.96 609.03 24.68 0.9 0.72 0.98 0.83 0.68

Testing period 0.96 1.39 0.93 20.42 4.52 0.9 0.7 0.97 0.9 0.64

18 Hurricane Ida 0.77 9.69 0.94 411.76 20.29 0.88 0.84 0.97 0.89 0.84

Testing period 0.8 3.29 0.92 31.61 5.62 0.84 0.76 0.96 0.8 - 0.14

24 Hurricane Ida 0.63 12.10 0.95 784.43 28.01 0.87 0.74 0.97 0.71 0.67

Testing period 0.54 1.51 0.91 26.86 5.18 0.87 0.73 0.96 0.78 0.83

30 Hurricane Ida 0.85 11.88 0.92 524.57 22.90 0.90 0.77 0.96 0.94 0.73

Testing period 0.88 1.86 0.91 21.50 4.64 0.89 0.57 0.95 0.82 0.4

36 Hurricane Ida 0.92 10.70 0.94 444.81 21.09 0.87 0.73 0.97 1.01 0.81

Testing period 0.88 2.93 0.90 37.24 6.10 0.82 0.55 0.95 0.77 0.02

42 Hurricane Ida 0.79 13.75 0.92 641.67 25.33 0.88 0.75 0.96 0.92 0.68

Testing period 0.65 2.03 0.91 26.38 5.14 0.87 0.63 0.96 0.87 0.36

48 Hurricane Ida 1.02 8.59 0.95 344.32 18.56 0.92 0.85 0.97 0.95 0.83

Testing period 1.07 1.28 0.94 17.76 4.21 0.91 0.73 0.97 0.86 0.68

54 Hurricane Ida 1.09 11.28 0.94 687.71 26.22 0.91 0.68 0.97 0.71 0.72

Testing period 1.14 2.08 0.92 24.03 4.90 0.88 0.50 0.96 0.86 0.36

60 Hurricane Ida 0.71 8.83 0.92 419.23 20.48 0.90 0.76 0.96 0.83 0.76

Testing period 0.79 1.34 0.90 23.56 4.85 0.88 0.77 0.95 1.01 0.74

66 Hurricane Ida 1.15 19.14 0.92 1532.16 39.14 0.88 0.67 0.96 0.6 0.67

Testing period 1.3 3.03 0.88 30.94 5.56 0.85 0.61 0.94 0.83 1.46

72 Hurricane Ida 0.92 10.06 0.90 456.87 21.37 0.89 0.67 0.95 0.87 0.83

Testing period 0.89 2.76 0.87 31.63 5.62 0.85 0.62 0.93 0.91 0.09
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their minimums from epoch 120 to stabilize throughout

epoch 300.

Figure 6 shows a comparison between the simulated

streamflow at the New Milford station for each of the lead

times and the observed streamflow for the 2020 and 2021

testing periods, excluding Hurricane Ida, which will be

assessed separately in the subsequent section. The com-

parison corroborates the performance metrics reported in

Table 2 and discussed above. Overall, the simulated

streamflow and the observed one are in agreement. The

analysis of the ten rainfall events in the figure showed that

the 48-h lead time event performs better than the other

models whenever there is a significant accumulation of rain

(in three cases, the accumulation of rain exceeded 10 mm).

During low streamflow periods, the LSTM model captured

the small variability of observed flow, which should cor-

respond to releases due to frequent rainfall events and

operation rules to maintain targeted live storage in the

reservoir. The LSTM model was able to simulate the peaks

of streamflow for events (i.e., reservoir releases) of dif-

ferent magnitudes during the test period (peak ratios for

models respectively 0 h, 6 h, 12 h, 18 h, 24 h, 30 h, 36 h,

Fig. 4 Feature importance

analysis

Fig. 5 Validation loss vs.

epochs envelope for all 13

LSTM models
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42 h, 48 h, 54 h, 60 h, 66 h, 72 h lead times: 1.09, 0.89,

0.96, 0.8, 0.54, 0.88, 0.88, 0.65, 1.07, 1.14, 0.79, 1.3, 0.89).

The model seems to perform better during more frequent

events (lower magnitude) that correspond to streamflow

peaks lower than ten m3/s, possibly due to an abundance of

similar events in the training sample, which can lead to

better training of the LSTM and, therefore, better perfor-

mance. At the same time, the performance of the LSTM

model during major events is preeminent as it nearly pre-

dicted the exact value of the discharge value with an

average peak ratio of 0.9.

All 13 models with a 6-h lead time difference captured

the variability of the New Milford discharge value with

some biases that can be attributed to the models’ training

and parameterization. For instance, all models exhibited a

bias in the prediction of peak flow, as shown in Table 2.

The 48-h scenario, considered the best-performing model,

has a peak ratio of 1.07. The rest of the models slightly

overestimated or underestimated the peak flow. The tem-

poral evolution of the discharge time series is in agreement

with all models’ simulations. The 12- and 48-h lead time

models had NSE scores of 0.91 and 0.92, MAE values of

1.39 and 1.27 m3/s, and RMSE values of 4.52 and 4.21 m3/

s, respectively, over the testing data between 06/2020 and

09/2021.

The Hackensack watershed and the entire northeast

region in the US were impacted significantly by Hurricane

Ida on September 1st and 2nd, 2021. It is essential to

investigate the performance of the developed LSTM model

during this extreme event. Hurricane Ida caused significant

flooding, which led to considerable human and economic

losses. The total rainfall event over the watershed reached

177 mm in certain regions (Fig. 7). The spatial distribution

of the total rainfall over the watershed from the MRMS

records (Fig. 7) showed that most of the rainfall impacted

the southeastern and downstream parts of the watershed.

The concentration of heaviest rainfall records in MRMS

around the watershed outlet fosters a rapid hydrologic

response compared to other events with evenly distributed

rainfall or with heavier rain over upstream locations of the

watersheds.

On the other hand, the lowest precipitation occurred in

the northwestern part of the watershed, with values varying

between 94 and 115 mm. A rain gauge observation at

Teterboro airport (Fig. 7) recorded a total rainfall of

172 mm over the same record period between 3 pm on

September 1st, 2021, and 3 am on September 2nd, 2021,

retrieved from MRMS observation. The results showed a

good agreement between remote sensing-based measure-

ments and in situ observations. According to NOAA Atlas

14 Point Precipitation Frequency Estimates (https://hdsc.

nws.noaa.gov/hdsc/pfds/pfds_map_cont.html), the total

rainfall of 12-h duration (matching with Ida event) in the

southwestern part of the watershed that experienced a total

rainfall of 177 mm, has a 100-year return period. In con-

trast, the northwestern part of the watershed that recorded a

total rainfall of 94 mm during 12-h has a 5-year return

period.

Figure 8 displays the observed streamflow values

upstream and downstream of the reservoir at New Milford

station and the reported rainfall in the MRMS product

(with zero lag) during the hurricane. The New Milford

station discharge increased 36 h prior to Ida to levels

ranging between 1.05 and 3.2 m3/s. The same goes for the

other stations, especially the Pascack and Rivervale sta-

tions which also showed a steady increase in streamflow

prior to Hurricane Ida, suggesting a start of a release to

augment the reservoir’s active storage capacity ahead of

the hurricane. Twelve hours prior to the start of the rain, the

early release rose to around four m3/s and continued for

Fig. 6 Time series of simulated

and observed discharge during

the testing period excluding

Hurricane Ida
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Fig. 7 Spatial distribution of MRMS precipitation during Hurricane Ida in the Hackensack Watershed

Fig. 8 Plot of upstream and downstream discharge and precipitation time series (MRMS), the water level in Oradell (before and after the rain),

and predicted rain for Hurricane Ida
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around 12 h which corresponds to a total volume of

172,800 m3. The inflow to Oradell Reservoir from

upstream stations over the same time was steady as well,

around 1.41 m3/s which corresponds to a total volume of

61,000 m3. The incoming volume to the reservoir is smaller

than the releases suggesting a decrease in water storage in

the reservoir ahead of Hurricane Ida. As rainfall intensity

increases from 18 to 85 mm/h on average over the study

area, discharge from the reservoir and upstream stations

progressively increases to control the water level in the

reservoir and mitigate flood damage.

The peak discharge values at the same station occurred

approximately 12 h after the peak precipitation values over

the watershed (Fig. 8), which can explain the high per-

formance of the model in the case of the 12-h lead time,

which is comparable to the performance of the 48-h lead

time models. The severity of Hurricane Ida and the con-

centration of the heavy rainfall around the outlet triggered

a rapid response of the watershed, around 12 h. The testing

period includes events that are less significant than Ida,

with rainfall events that are not necessarily centered around

the outlet but more distributed over the watershed. The

response time of the watershed tends to be longer in such

conditions, and therefore, the 48-h lead time was slightly

better performing during the testing period. In both cases,

the LSTM model seems to be driven by the watershed

response time as it properly captures its change depending

on the magnitude of the event.

Figure 9 compares the observed streamflow at New

Milford to the simulated ones for each considered scenario.

The early increase in the discharge on August 31st that

corresponds to planned releases in preparation for the

predicted event was partially captured by the LSTM

models. All LSTM models showed a start of an increase in

the discharge toward the end of the day, around midnight,

which comes after the actual start in the observed data.

However, it is prior to the start of the rainfall event sug-

gesting that the models may have captured the proactive

management of the reservoir. The steady release prior to

Ida was lower than the peak flow of the extreme event but

steady enough over more than 24 h to be correctly captured

by the LSTM models. Nevertheless, all the developed

models were able to capture the rapid increase in the dis-

charge value as a result of the incoming runoff to the

reservoir. Although all models performed well, the 48-h

lead time model was the closest to predicting the actual

discharge. This implies that the LSTM model was able to

reproduce the reservoir operations and the releases prior to

the event and the rainfall-runoff transformation to eventu-

ally simulate the total hydrograph at New Milford station.

The analysis of the simulated discharge value of the

New Milford station during Hurricane Ida shows that most

models performed well as NSE varied between 0.9 and

0.95 (Table 2). The best models that captured the stream-

flow variability during Hurricane Ida were the 12- and 48-h

lead time LSTM models. Overall, the validation metrics for

Ida simulations showed better performance than during the

testing period (Fig. 10).

This implies that streamflow at New Milford station and

releases from Oradell Reservoir is mostly driven by 48-h

lead time, especially in the case of frequent events which

are not as severe as Hurricane Ida. The findings suggest

that same-day precipitation records do not significantly

influence the reservoir releases from the Oradell reservoir

and that its releases are conducted in anticipation of pre-

dicted precipitation 48-h in advance unless it is an extreme

event where the 12-h lead time seems to be more influen-

tial, especially when most of the rainfall occurs near the

outlet as it was the case during Hurricane Ida. This is

common, especially in reservoirs used for flood protection,

Fig. 9 Time series of simulated

and observed discharge during

Hurricane Ida
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which are usually operated based on rainfall forecast and

where releases are planned, depending on predicted events.

The prediction of rainfall provides forecasters and man-

agers with the amount of the expected rainfall as well as its

spatial distribution over the watershed. These are two key

pieces of information that reservoir managers use to plan

their releases ahead of upcoming events. The lead time of

the predicted rainfall that drives the decision of water

release should be site-specific. In the case of the Oradell

Reservoir, the 48-h one seems to have more influence

overall on the releases compared to other lead times with

comparable performance with the 12-h lead time during

Hurricane Ida. Hence, the managers of Oradell reservoir

seem to rely mostly on a 48-h precipitation forecast to

guide their release strategy as the best agreement was

obtained with this lead time that mimics a 48-h precipita-

tion forecast. The determining lead times are site-specific

and cannot be applied to other watersheds and reservoirs

without proper training in the LSTM model. Nevertheless,

the technique is expandable to other sites where discharge

observations are available, but reservoir management rules

are unknown.

4 Conclusions

This study uses a deep learning approach to predict

streamflow and infer reservoir operating rules. An LSTM

model was used to forecast discharge values at the New

Milford USGS station downstream of the Oradell Reservoir

in northern New Jersey. The model was trained on the

discharge value of the upstream USGS stations and the

MRMS precipitation data to predict the downstream dis-

charge value at the New Milford station, right downstream

of the Oradell reservoir. A set of precipitation lead times

were introduced as a proxy for the forecast times that drive

the decision to release streamflow from the reservoir. The

streamflow simulation obtained from the LSTM model

showed better performance, mostly with the 48-h lead time

and the 12-h lead time, especially in the case of Hurricane

Ida. The obtained results showed high performance with an

R2 of 0.94 and 0.93 at the 48- and 12-h lead times,

respectively. The results were consistent with those

obtained during Hurricane Ida, an extreme event that

impacted the Northeast in 2021, which was used as a val-

idation event. The obtained determination coefficients (R2)

in the case of Hurricane Ida were 0.95 and 0.96 for the 48-

and 12-h lead times, respectively.

This higher performance with these specific lead times

implies that discharge releases from the Oradell reservoir

are mostly influenced and therefore driven by a 48-h pre-

cipitation forecast. The 12-h lead time seems to prevail in

the case of extreme events. In addition, during the case of

hurricane Ida where the heavy rainfall was mostly con-

centrated near the outlet, the 12-h lead time matched with

the watershed lag time, also known as the response time.

During Ida, most of the heavy rainfall was recorded in the

southern part of the watershed, near the outlet, which

fostered a shorter response time. This suggests that future

work should account for the spatial pattern of rainfall over

a watershed as an additional input variable that may

influence the predicted discharge downstream. The pro-

posed method can be integrated into decision support

systems focused on managing water resources in

Fig. 10 Evaluation of the LSTM model performance with respect to precipitation lag: the dashed black lines and the dashed grey lines represent

the test period validation metrics and hurricane Ida validation metrics, respectively
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watersheds with unknown reservoir management rules. In

future work, the study can be expanded geographically to

integrate other reservoirs used in CONUS-wide models like

the NOAA National Water Model [47] or apply the method

to ungauged watersheds where streamflow observations

and knowledge of reservoirs’ operation rules are scarce.
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