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SUPPLEMENTAL FIGURES 
 

 
Figure S1 | Machine learning performance for microbially-related metabolites, highlighting 
which environments are most often confused. Data are from 20 iterations. The candidate 
confusion matrix shown in Fig. 5b of the main text is that in the first row, fifth column. 
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Figure S2 | Machine learning performance for microbial taxa, highlighting which 
environments are most often confused. Data are from 20 iterations. The candidate confusion 
matrix shown in Fig. 5b of the main text is that in the first row, third column. 
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Figure S3 | Machine learning performance for microbial functions, highlighting which 
environments are most often confused. Data are from 20 iterations. The candidate confusion 
matrix shown in Fig. 5b of the main text is that in the first row, fourth column.  
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Figure S4 | Summary of shotgun metagenomics read mapping for microbial functional 
profiling. a, Comparison of read counts among raw reads, reads mapped using PRROMenade, 
and reads mapped using Woltka. b, Relationship between counts of raw reads and those mapped 
to using PRROMenade. The gray, dashed line indicates y = x. c, Relationship between counts of 
reads mapped using Woltka and those mapped using PRROMenade. The dashed line indicates y 
= x. d, Comparison of counts of raw reads among environments (based on EMPO 4). The two-
dashed line indicates our expectation of 1 million reads from gut samples. e, Comparison of 
counts of reads mapped to using PRROMenade among environments. f, Comparison of the 
proportion of raw reads that were mapped using PRROMenade among environments. For panels 
d-e, the dashed line indicates the global mean and the dotted line indicates the global median. 
For all panels, note the respective y-axis transformation used. Colors and shapes are described in 
the legend in panel b. Boxplots are in the style of Tukey, where the center line indicates the 
median, lower and upper hinges the first- and third quartiles, respectively, and each whisker 1.5 
x the interquartile range (IQR) from its respective hinge. 
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Figure S5 | Comparison of alpha- and beta-diversity with and without removal of features 
that were not placed during fragment insertion (SEPP) for 16S data. a, Spearman correlation 
in alpha-diversity (sOTU richness) between datasets, showing a high correlation across all 
environments. b, Mantel spearman correlation (999 permutations) in beta-diversity (sample-
sample robust Aitchison distances) between datasets, showing a high correlation across all 
environments.  
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Figure S6 | Summary of shotgun metagenomics read mapping for microbial taxonomic 
profiling. a, Comparison of read counts among raw reads, reads mapped to NCBI’s Rep200, and 
reads mapped to the Web of Life (WoL). b, Relationship between counts of raw reads and those 
mapped to the WoL. The gray, dashed line indicates y = x. c, Relationship between counts of 
reads mapped to NCBI’s Rep200 and those mapped to the WoL. The dashed line indicates y = x. 
d, Comparison of counts of raw reads among environments (based on EMPO 4). The two-dashed 
line indicates our expectation of 1 million reads from gut samples. e, Comparison of counts of 
reads mapped to the WoL among environments. f, Comparison of the proportion of raw reads 
that were mapped to the WoL among environments. For panels d-e, the dashed line indicates the 
global mean and the dotted line indicates the global median. For all panels, note the respective y-
axis transformation used. Colors and shapes are described in the legend in panel b. Boxplots are 
in the style of Tukey, where the center line indicates the median, lower and upper hinges the 
first- and third quartiles, respectively, and each whisker 1.5 x the interquartile range (IQR) from 
its respective hinge. 
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SUPPLEMENTARY DISCUSSION 

Here, we produced as a resource a novel, multi-omics dataset comprising 880 samples that span 

19 major environments, contributed by 34 principal investigators for the EMP500 (Fig. 1, Table 

S1). To foster additional sampling that we hope generalize our findings to additional 

environments and geographic locations, we expanded upon the widely-adopted set of the EMP’s 

standardized protocols for guiding microbiome research – from sample collection to data release 
1 – with new protocols for performing untargeted metabolomics and shotgun metagenomics 

across a diversity of sample types (Fig. 1a; Online Methods). 

Across all 880 samples, we generated eight layers of data, including untargeted 

metabolomics and shotgun metagenomics (Table S2), providing a valuable resource for both 

multi-omics and meta-analyses of microbiome data. As expected, sample dropout in any one data 

layer was non-negligible (Table S2), reducing the number of samples in any one layer to at most 

roughly 500 samples (hence the EMP500). For future similar studies, we note that considering 

multi-omics applications during the experimental design and/or sample collection phases of 

studies is crucial, in part because certain metabolomics approaches are not amenable to samples 

stored in particular storage solutions commonly used for metagenomics (e.g., RNAlater). 

We also included an example of how to apply this dataset towards addressing important 

questions in microbial ecological research, by describing the Earth's microbial metabolome using 

an integrated ‘omics approach (Extended Data Fig. 1). We first explored whether every 

metabolite is everywhere, but the environment selects (i.e., the Baas Becking hypothesis 2,3, but 

for microbially-related metabolites). Our results confirm that all major groups (e.g., pathways) of 

metabolites are present in each environment 4, but additionally demonstrate that their relative 

abundances (i.e., intensity) can be limited- or enriched across environments (Fig. 2, Fig. 3a,c, 

Table S3). Considering the relative intensities of secondary metabolites vs. presence/absence 

alone drastically strengthens differences in metabolite profiles across environments for many 

metabolite groups including apocarotenoids, fatty acids and conjugates, glycerolipids, steroids, 

and polyketides (Fig. 2c,d, Fig. 3a). Interestingly, the groups of metabolites that exhibited the 

most obvious changes in representation were those that appeared in the fewest samples (i.e., 

those at low prevalence from a presence/absence perspective; e.g., carbohydrates [excluding 

glycosides], alkaloids) (Fig. 2a,b). Further, the environments with the most unannotated 
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metabolites include terrestrial animal cadavers, bioreactors that mimic the rumen of cows, 

freshwater, and the ocean (Fig. 2b). Similarly, environments with the most unannotated shotgun 

metagenomic reads for microbial functions (i.e., enzymes) included animal cadavers, marine 

animal secretions, terrestrial plants, and fungi (Fig. S4f). These environments merit further 

attention with respect to feature description, and represent valuable opportunities for the 

discovery of novel metabolites and functional products. 

Next, we explored whether the richness and composition of metabolites in any given 

sample reflect those of co-occurring microbial communities. We compared alpha-diversity 

between metabolites and microbes, and found strong positive relationships across all samples 

and for many environments (Fig. 3b, Table S6). As unannotated features are included in these 

metrics, reference database coverage does not influence the results. Similarly, whereas estimates 

may be influenced by our use of rarefaction to normalize sampling effort, estimating diversity in 

absence of such an approach has been shown to be problematic 5. Further, we avoided marrying 

estimates of alpha-diversity from our 16S vs. metagenomic data, as taxonomic profiling used a 

distinct reference database curated specifically for its respective data type. Future similar studies 

should consider the development of a reference combining both 16S and shotgun metagenomic 

data from bacteria and archaea. Similarly, the absence of a relationship between metabolite and 

microbial richness for other environments may be due to low sample representation as two lowly 

sampled environments, marine plant surfaces and sediments, both exhibited trends (Table S6) .  

We note that although input sample volumes were normalized as best as possible, the volume of 

sample processed may influence estimates of alpha-diversity, and that the values reported here 

likely exhibit some error in part due to that. In absence of technical variation, unique community 

carrying capacities for metabolite vs. microbes across environments may also skew trends, and 

we recognize that certain environments simply may not exhibit clear or underlying relationships. 

Still, when ranking environments based on alpha-diversity, certain patterns are clear. For 

example, in addition to confirming previous observations that marine sediments are one of the 

most microbially diverse environments on Earth 6, we showed that marine sediments are also the 

most metabolically diverse (Fig. 3b). To our knowledge, this is the first assessment of the 

metabolic alpha-diversity in marine sediments as it relates to microbial diversity in those samples 

in a context including other diverse environments. Although not the most lacking with respect to 
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annotation rates for metabolites, the high diversity in marine sediments merits further exploration 

of those molecules. 

We also found a strong correlation in sample–sample distances between metabolite and 

microbial datasets (Table 1), and significant turnover of features across environments (Fig. 3c,d). 

For both metabolites and microbial taxa, the effect of host-association was much stronger than 

salinity in explaining variation in community composition (Fig. 3c,d). We also observed a much 

weaker influence of salinity in separating samples based on metabolites vs. microbes (Fig. 3c,d). 

Together, these findings support recognizing host-association as EMPO 1, and confirm our 

prediction that environmental similarity between datasets may be distinct when based on one 

dataset vs. the other. This may indicate that although microbial cells respond strongly to salinity 

gradients, the taxa they represent can have similar metabolic profiles. Our hypothesis is 

supported by our observation that co-occurrences with metabolites appear to be more structured 

by environment than phylogeny for microbial taxa (Extended Data Fig. 9). Additional support 

lies in our finding that the differential intensities of important pathways and superclasses are 

highly similar between freshwater and marine environments (Fig. 3a), and that the same groups 

of metabolites can occur in both habitats yet are associated with distinct microbes within each 

(Fig. 5e,f).  

The lack of complete turnover in metabolites vs. microbes with respect to the 

environment generated unique patterns of nestedness between datasets (Extended Data Fig. 5, 

Extended Data Fig. 6). Whereas nestedness patterns among environments with respect to 

microbial taxon profiles matched our expectations based on assembly dynamics and dispersal 

patterns (e.g., host-associated communities are a subset of free-living ones), as well as previous 

observations based on 16S data 6, those based on metabolite profiles were more weakly 

correlated with our description of environments based on EMPO. This may be in part due to the 

weaker effect of salinity on sample beta-diversity for metabolites (Extended Data Fig. 5a, 

Extended Data Fig. 6a), and similarity in metabolite profiles among microbes from disparate 

environments (Fig. 5d-f). It may also indicate that microbially-related metabolites assembly and 

structure uniquely from the microbes that produce them in nature. Nevertheless, future efforts to 

expand database coverage for metabolites should consider this, as the expectation that diversity 

will continue to increase with sampling of these distinct environments may not be realized.  



Shaffer-Nothias-Thompson et al. Metabolite-microbe profiles are shaped by the environment 
 
 

11 
 

 
 

 Given that profiles for metabolites and microbes were habitat-specific, we used machine-

learning to identify several metabolites, microbial taxa, and microbial functions that could 

accurately classify samples among environments (Fig. 4, Extended Data Fig. 7a, Table S7). 

Overall accuracy for each dataset was ≥88% (Fig. 4, Extended Data Fig. 7a), confirming our 

prediction that certain features could distinguish among environments. Although infrequent 

among 20 iterations, certain environments were occasionally confused (Extended Data Fig. 7b, 

Figs. S1-S3). For example, when based on metabolites, marine animal proximal gut was once 

misclassified as seawater, marine sediment was once misclassified as non-saline animal distal 

gut, freshwater was twice misclassified as seawater, and seawater was once misclassified as 

marine animal secretion (i.e., during a single iteration) (Extended Data Fig. 7b). We note that the 

majority of misclassifications were between compositionally similar environments (Extended 

Data Fig. 7b, Figs. S1-S3). Features identified here as important for classification should prove 

useful as indicators of particular environments (Fig. 4, Table S7), which can be used for 

applications such as source tracking 7 and forensics 8. When considering the twenty most highly 

ranked metabolites regarding impacting classification performance, metabolites classified to the 

pathways amino acids and peptides were not present (Fig. 4a), although metabolites from this 

pathway were differentially abundant across samples (Fig. 3c, Table S3, Table S4). Rather, the 

most abundant and highly ranked pathway among those highly predictive metabolites was for 

terpenoids, highlighting the importance of this group of metabolites in distinguishing Earth’s 

environments (Fig. 4a, Table S7). Terpenoids are the largest class of natural products recognized 

to date, and are known to be the most prevalent secondary metabolites in nature 9, which we also 

showed with our presence/absence data (Fig. 2a). Although known most commonly from plants, 

recent work has described a diversity of terpenoids produced by microbes, which range in 

activity from stress responses to signaling and communication 9. Future work should aim to 

further characterize the terpenoids discovered in this dataset. 

 We also identified metabolite–microbe co-occurrences, and as a first step towards 

characterizing them as salient features of the environment, showed that these relationships can be 

specific to certain habitats (Fig. 5, Extended Data Fig. 4). We view strongly co-occurring 

metabolite–microbe pairs as features of the environment that in part can be grappled for further 

exploration, for example as predictors in models of environmental change 10. We demonstrated 
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that both distinct metabolite pathways (e.g., carbohydrates vs. terpenoids) and metabolites within 

the same pathway (e.g., two groups of fatty acids), can be used to distinguish environments 

based on their co-occurrences with microbes (Fig. 6c-f, Extended Data Fig. 4f-j). Similarly, we 

showed that certain metabolites and microbes have an especially high number of strong co-

occurrences with one another (Extended Data Fig. 8, Extended Data Fig. 9). We hypothesize that 

microbes co-occurring with relatively many metabolites represent ‘chemically-talented’ taxa that 

may be useful for discovery of novel compounds. Further culture-based studies should continue 

to explore and characterize the metabolic diversity among these microbes. 

Our results highlight the advantages of using standardized methods to interpret and 

predict the contributions of microbes and their environments to chemical profiles in nature. 

Standardization of methods is of utmost importance, as no single lab can sample everything, and 

because a multitude of methods for performing a microbiome study exist 11-13. Due to inherent 

biases among distinct methods such as towards describing particular taxa 13,14, such lack of 

standardization prevents robust meta-analysis 6,15,16. Issues surrounding such bias extend from 

sequencing to metabolomics, which may be subject to greater technical variation due in part to 

unavoidable batch effects and use of extraction methods unique to particular sample types 17. The 

EMP500 overcomes these challenges by using standardized approaches, allowing for robust 

tracking of microbes and metabolites that permits the description of features that distinguish one 

habitat from another. This insight fosters understanding of the processes that make each habitat 

unique, and that may be vital to the functional diversity in the environment. By using 

standardized methods for sample processing and data analysis, the EMP500 allows for additional 

contributions, further expanding our insight into these communities. 

We argue that using only sequence-based approaches to interpret functional potential can 

be misleading, as the presence of genomic loci and/or transcripts does not equate to the presence 

of a functional product in the environment. Using our presence/absence data for metabolites, we 

observed a trend in the uniform distribution of metabolite pathways across environments (Fig. 

2a,c). However, when taking into account the relative intensities of metabolites – to date only 

possible using metabolomics – we observed significant differences in the distribution of 

particular groups of metabolites across the Earth’s environments (Fig. 2b,d, Fig. 3a). This 

emphasizes the utility and importance of directly measuring functional products in the 



Shaffer-Nothias-Thompson et al. Metabolite-microbe profiles are shaped by the environment 
 
 

13 
 

 
 

environment, rather than estimating their potential from underlying genomic elements. We note 

that the uniform distributions of metabolite pathways and superclasses across environments 

based on presence/absence data (Fig. 2a,c) are similar to previous observations based on BGC 

annotation of a global dataset of MAGs 4. It could be that abundance/intensity data for the 

products of BGCs may provide a different view, as they have here. We also recognize that using 

only metabolomics-based approaches can make the detection of certain molecules difficult, as 

some metabolites have relatively short lifespans, are consumed rapidly, and/or are cycled 

between members of the community therefore escaping detection 18,19. 

Beyond the important ecological questions explored here, several others such as those 

surrounding host-microbe interactions, microbial ecology in a changing world, and 

environmental processes merit future exploration 20. In some cases, addressing these questions 

will only be feasible following the collection of additional samples that span additional 

environments and/or geographic locations. For example, although we explored turnover and 

nestedness, one major question is whether these communities conform to the same biogeographic 

and ecological principles as in other types of communities, such as those of animals or plants 20-

22. For example, we were unable to explore whether our features follow the latitudinal diversity 

gradient. The increase in species richness towards lower latitudes is apparent in many 

populations including those of several animals and plant species, but also planktonic marine 

bacteria 23 and soilborne Streptomyces 24. This trend has been less-explored at the community 

level, outside of soils 25,26. Although highly host-specific groups such as ectomycorrhizal fungi 

do not follow this gradient due to the distributions of their host populations 27, it is unclear what 

pattern metabolites and microbes exhibit, and whether there is variation among all of the 

environments recognized here. As another example, we did not explicitly explore the importance 

of rare features with respect to differences among environments. In addition to rare features 

serving as potential indicators of particular interactions 28 or ecological trends 29,30, little is 

known regarding the relationships between rare features from distinct data layers (e.g., 

metabolites and microbial taxa). Although we might expect metabolites produced by rare 

microbes to also be rare in the environment, the suite of community interactions acting on those 

metabolites may alter distributions in context-dependent ways. 
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