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ABSTRACT: The National Hurricane Center (NHC) uses a variety of guidance models for its operational tropical cy-
clone track, intensity, and wind structure forecasts, and as baselines for the evaluation of forecast skill. A set of the simpler
models, collectively known as the NHC guidance suite, is maintained by NHC. The models comprising the guidance suite
are briefly described and evaluated, with details provided for those that have not been documented previously. Decay-
SHIFOR is a modified version of the Statistical Hurricane Intensity Forecast (SHIFOR) model that includes decay over land;
this modification improves the SHIFOR forecasts through about 96 h. T-CLIPER, a climatology and persistence model that
predicts track and intensity using a trajectory approach, has error characteristics similar to those of CLIPER and
D-SHIFOR but can be run to any forecast length. The Trajectory and Beta model (TAB), another trajectory track model,
applies a gridpoint spatial filter to smooth winds from the National Centers for Environmental Prediction (NCEP) Global
Forecast System (GFS) model. TAB model errors were 10%–15% lower than those of the Beta and Advection model (BAM),
the model it replaced in 2017. Optimizing TAB’s vertical weights shows that the lower troposphere’s environmental flow
provides a better match to observed tropical cyclone motion than does the upper troposphere’s, and that the optimal steer-
ing layer is shallower for higher-latitude and weaker tropical cyclones. The advantages and disadvantages of the D-SHIFOR,
T-CLIPER, and TABmodels relative to their earlier counterparts are discussed.

SIGNIFICANCE STATEMENT: This paper provides a comprehensive summary and evaluation of a set of simpler
forecast models used as guidance for NHC’s operational tropical cyclone forecasts, and as baselines for the evaluation
of forecast skill; these include newer techniques that extend forecasts to 7 days and beyond.
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1. Introduction

The National Hurricane Center (NHC) and Central Pacific
Hurricane Center (CPHC) use a variety of models as guidance
for their operational tropical cyclone (TC) track, intensity, and
wind structure forecasts, and as baselines for evaluation of fore-
cast skill. These range in complexity from simple statistical track
and intensity models based on climatology and persistence, to
nested ocean–atmosphere–coupled dynamical models such as
the Hurricane Weather Research and Forecasting (HWRF)
Model (Tallapragada et al. 2014). The more complex dynami-
cal modeling systems are supported by other agencies such as
the National Centers for Environmental Prediction (NCEP)

Environmental Modeling Center, while the simpler models are
maintained and updated by NHC; this latter set of simpler
models is collectively known as the NHC guidance suite.

In this paper we describe the models comprising the 2021
version of the NHC guidance suite, with particular emphasis
on those models that have not been documented previously,
such as Decay-SHIFOR, a modified version of the Statistical
Hurricane Intensity Forecast (SHIFOR) model that includes
decay over land, and a new Trajectory Climatology and
Persistence model (T-CLIPER) that predicts track and inten-
sity using a trajectory approach.

One traditional member of the NHC guidance suite was the
Beta and Advection Model (BAM), a simple trajectory track
model based on a theoretical development by Holland (1983)
and adapted for operational use by Marks (1992). In the
BAM, a TC follows a trajectory from the NCEP Global Fore-
casting System (GFS), modified by a poleward and westward
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displacement to account for beta drift. The steering flow that
defined the trajectories was calculated by smoothing the global
model wind fields using a T25 spherical harmonic truncation
and then recreating corresponding horizontal wind vectors. The
smoothed winds were then averaged in the vertical. Shallow, me-
dium, and deep versions of BAM were run with vertical aver-
ages over 850–700 hPa (BAMS), 850–400 hPa (BAMM), and
850–200 hPa (BAMD), respectively. Although the BAM mod-
els were not as skillful as the global and regional dynamical
models, they still provided useful information about shear in
the steering flow and required trivial computational resources.
The BAMM model also provided a convenient alternative
track for certain statistical intensity models (e.g., SHIPS) when
an official forecast from NHC was unavailable.

The dynamical core of the NCEP GFS was converted from
a spectral model to the finite volume model in 2019 (https://
www.gfdl.noaa.gov/fv3/, Harris et al. 2021), and with that tran-
sition the spectral coefficient files were no longer available
as drivers for BAM. This motivated the development of the
Trajectory and Beta model (TAB), a modified version of the
BAM that uses a gridpoint smoother to determine the steering
flow. The TAB and BAM models were run in parallel in 2016,
and BAM was replaced by TAB in 2017.

NHC also runs two statistical postprocessing models as
guidance for its operational TC genesis forecasts (Dunion
et al. 2019; Halperin et al. 2017). These techniques are still
considered experimental but may be added to the operational
guidance suite in the future.

In section 2 we review the models currently comprising the
NHC guidance suite. Section 3 describes the D-SHIFOR,
T-CLIPER, and TAB model developments, including the adap-
tation of T-CLIPER for the western North Pacific, Indian
Ocean, and Southern Hemisphere for use by the Joint Typhoon
Warning Center (JTWC). Verification results for D-SHIFOR,
T-CLIPER, and TAB are presented in section 4, along with the
evaluation of a method for determining an optimal steering layer
for TAB. Conclusions are provided in section 5.

2. The NHC guidance suite

NHC has a long history of developing and running statisti-
cal guidance models (DeMaria and Gross 2003). In 2014,
NHC’s models were transitioned to the Weather and Climate
Operational Supercomputer System (WCOSS), and NCEP
Central Operations (NCO) assumed responsibility for run-
ning the real-time NHC guidance suite. Prior to that time the
models were run by NHC on a variety of computer systems.
The suite is run for all TCs in NHC’s areas of responsibility
(AORs) in the North Atlantic and eastern North Pacific to
1408W, as well as for TCs in the CPHC AOR (the North
Pacific from 1408W to the international date line). Real-time
model outputs are copied from WCOSS to the Automated
Tropical Cyclone Forecast (ATCF) system (Sampson and
Schrader 2000) for operational use by NHC and CPHC forecast-
ers. There are two types of runs on WCOSS, production and
quasi-production. Production runs are managed by NCO and
updates are generally made only once per year, although emer-
gency bug fixes are possible through a request for change (RFC)
process. Quasi-production runs are managed by NHC and are
used to evaluate models before they are moved to production.
Both types of runs are available to forecasters in real time.

Table 1 summarizes the models comprising the 2021 guidance
suite. In the ATCF, each model has a unique four-character
identifier; these are denoted by “Tech ID” in Table 1 and for
brevity will be used to identify models in some of the figures
and tables below (a full list of acronyms and their expansions
are given in the appendix). The ATCF supports several dif-
ferent file types for each storm: deterministic forecasts appear
in what is known as the a-deck, probabilistic forecasts reside
in the e-deck, while a TC’s official history (the “best track”)
used for verification is in the storm’s b-deck.

The models in Table 1 are listed in rough order of increasing
complexity. XTRP is simply an extrapolation of the current ob-
served storm motion through 7 days to provide a reference for
track changes. The Climatology and Persistence model (CLIPER)

TABLE 1. Summary of models comprising the 2021 NHC guidance suite. For the WCOSS type, “P” indicates production and “QP”
indicates quasi-production. Intensity refers to the maximum sustained (1-min mean) wind. Bold font indicates models discussed in
detail in this paper.

Model ATCF tech ID WCOSS type Forecast parameters Model type

Extrapolation XTRP P Track Statistical
CLIPER5 CLP5 and OCD5 P Track Statistical
SHIFOR5 SHF5 P Intensity Statistical
D-SHIFOR OCD5 P Intensity Statistical
T-CLIPER TCLP P Track, intensity Statistical
TAB (GFS) TABS, TABM, TABD P Track Dynamical
TAB (ECMWF) TBSE, TBME, TBDE P Track Dynamical
SHIPS SHIP P Intensity Statistical–dynamical
D-SHIPS DSHP P Intensity Statistical–dynamical
LGEM LGEM P Intensity Statistical–dynamical
DSWR DSWR QP Wind radii Statistical–dynamical
SHIPS-RII RIOB, RIOD, RIOL, RIOC P Probability of rapid intensification Statistical–dynamical
DTOPS DTOP P Probability of rapid intensification Statistical–dynamical
HCCA HCCA QP Track, intensity Statistical–dynamical
NNIB NNIB P Intensity Statistical–dynamical
NNIC NNIC P Intensity Machine learning
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forecasts TC track using the initial latitude, longitude, maximum
sustained wind (intensity), the time tendencies of position and in-
tensity, and the Julian day. The original version (Neumann 1972)
provided forecasts to 72 h and was later updated to provide
120-h forecasts (CLIPER5, Aberson 1998). CLIPER was first
developed as an explicit forecast tool, but its direct use dimin-
ished by the 1980s as more accurate track prediction models
became available (DeMaria and Gross 2003). However,
CLIPER5 remains useful as a method to account for annual
forecast difficulty (through its mean track errors, Cangialosi
2021) and as a benchmark to measure track forecast skill.

The Statistical Hurricane Intensity Forecast model (SHIFOR)
was developed using an approach analogous to CLIPER’s to pre-
dict a TC’s maximum sustained winds out to 72 h (Jarvinen and
Neumann 1979). An updated version that extended the forecasts
to 120 h (SHIFOR5) was developed by Knaff et al. (2003). An
important limitation of SHIFOR5, however, was that it presumed
a TC would remain over water. A more useful version, known as
Decay-SHIFOR (D-SHIFOR), was developed in 2007; this ver-
sion assumes a forecast track given by CLIPER5 and applies a cli-
matological intensity decay rate for the overland portions of that
track. For convenience, the 120-h D-SHIFOR intensity forecasts
are combined with the CLIPER5 track forecasts into a single aid
in the ATCF designated OCD5. D-SHIFOR is described in more
detail in sections 3 and 4, along with the next two models in
Table 1, T-CLIPER and TAB.

The remaining models in Table 1 are statistical–dynamical
models, meaning that they use output from dynamical models
as predictors in statistical algorithms. The Statistical Hurri-
cane Intensity Prediction Scheme (SHIPS) and Logistic
Growth Equation Model (LGEM) are described by DeMaria
et al. (2005) and DeMaria (2009), respectively. D-SHIPS is a
version of SHIPS that accounts for the decrease in maximum
wind when a TC moves over land.

SHIPS and LGEM have been updated several times since
the models were described by DeMaria (2010). In 2011, the
700–850-hPa layer-mean temperature advection was added as
a predictor to reflect the impact of baroclinic interactions on
forecasts at higher latitudes. Klein et al. (2000) had shown
that interaction of a TC with preexisting baroclinic zones pro-
vides an alternate energy source for the system during extra-
tropical transition. In SHIPS and LGEM, the temperature
advection is calculated from the 0–600-km-averaged TC envi-
ronmental horizontal winds, and the geostrophic thermal
wind is used to estimate the horizontal temperature gradient.

Another change to SHIPS and LGEMwas made in 2016; prior
to that year the vortex-removal procedure included winds but not
temperature, which tended to cause a low intensity forecast bias
as the global model representation of the upper-level warm core
of the TC improved. This low bias was caused by the contribution
of the vortex warm anomaly to the environmental upper-level
temperature predictor, which artificially increased the vertical sta-
bility. To account for that, the 200-hPa temperature anomaly as-
sociated with the symmetric vortex averaged from a radius of
0–1000 km was added as a new predictor. The starting point for
the calculation of the temperature anomaly is the symmetric tan-
gential wind at each pressure level, which is calculated from 0- to
1000-km radius. Assuming the symmetric tangential wind is in

gradient and hydrostatic balance, the gradient thermal wind equa-
tion provides an estimate of the radial temperature gradient asso-
ciated with the symmetric vortex. That gradient at 200 hPa is
integrated inward from 1000 to 0 km to provide the temperature
anomaly associated with the vortex as a function of radius. By in-
cluding a measure of the TC’s own upper-level temperature
anomaly as an explicit predictor, the negative impact of that
anomaly on the inferred vertical stability can be overcome.

To improve the performance of SHIPS and LGEM for TCs
undergoing rapid intensification (RI), in 2016 the probability
of RI for the 30 kt (24 h)21 (1 kt ≈ 0.51 m s21) threshold was
added as a predictor, based on a stand-alone version of the
SHIPS-RII (RIOD, see below). This predictor was replaced
by the RI probability for the 55 kt (48 h)21 threshold in 2018,
and by the 35 kt (36 h)21 probability in 2019. The perfor-
mance of SHIPS and LGEM for RI cases has improved since
the RI predictors were added (DeMaria et al. 2021).

In 2014 the ocean heat content (OHC) estimated from
satellite altimetry (Mainelli et al. 2008) was replaced by the
Navy’s Coupled Ocean Data Assimilation (NCODA; Cummings
2005) OHC, which is calculated at NHC from the full three-
dimensional temperature fields obtained from the Fleet
Numerical Meteorology and Oceanography Center. In 2017,
the weekly Reynolds sea surface temperature (SST) analyses
(Reynolds and Smith 1994) were replaced by the daily Reynolds
SST analyses (Banzon et al. 2020). During the 2018 season, the
daily Reynolds SSTs had unrealistic cold anomalies in parts
of the eastern Pacific, so the weekly Reynolds SSTs were
again used for the second half of that season. The weekly
Reynolds SSTs also showed unrealistic anomalies in parts of
the Atlantic in the latter part of 2018, so the NCODA SSTs
were used beginning in 2019, a change that also made the
surface and subsurface ocean inputs consistent.

Perhaps most significantly, in 2020 the SHIPS and LGEM
forecasts were extended from 120 to 168 h (7 days). Retro-
spective runs from 2013 to 2019 showed that beyond 5 days,
the 144- and 168-h forecasts were skillful relative to T-CLIPER.

DSWR (D-SHIPS Wind Radii) is a statistical–dynamical
model for predicting the radial extent of 34-, 50- and 64-kt
winds outward from the TC’s center using a subset of the
SHIPS predictors and the D-SHIPS intensity forecast. Details
can be found in Knaff et al. (2017).

The guidance suite includes four models that use a subset
of predictors from SHIPS to estimate the probability of rapid
intensification in the next 12–72 h: the RI Operational Dis-
criminate Analysis (RIOD), RI Operational Bayesian
(RIOB), RI Operational Logistic Regression (RIOL), and
the RI Operational Consensus (RIOC). A different approach
is taken by the Deterministic to Probabilistic Statistical
(DTOPS) model, which estimates RI probabilities using de-
terministic intensity model forecasts as input. These RI mod-
els are described in DeMaria et al. (2021).

The Hurricane Forecast Improvement Project (HFIP)
Corrected Consensus Approach (HCCA) is a consensus track
and intensity model that uses optimized weights of several
input models, where the weights are determined by multiple
linear regression with input from the previous few hurricane
seasons (Simon et al. 2018).
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The Neural Network Intensity Consensus (NNIC) model is
NHC’s first attempt at using machine learning techniques to
forecast TC intensity change. It uses input from four deter-
ministic models and a few storm environment parameters,
such as vertical shear, to predict intensity changes using a
three-layer neural network. The Neural Network Intensity
Baseline (NNIB) is just the equally weighted average of the
four models used as input to NNIC. Details on NNIB and
NNIC can be found in DeMaria (2021).

3. Model development

D-SHIFOR, T-CLIPER, and TAB are not well docu-
mented, so further details are presented here. In the discus-
sion that follows, ATL refers to the North Atlantic basin
while EP/CP refers to a combination of the eastern North
Pacific and central North Pacific basins.

a. D-SHIFOR

As noted in section 1, the 72-h versions of the CLIPER and
SHIFOR models have been run operationally at NHC for
several decades, and the 120-h versions (CLIPER5 and
SHIFOR5) have been run since 2003. However, SHIFOR5
has limited utility as a skill baseline for intensity because it
does not include the effects of land. To address that limita-
tion, the methodology developed to include land effects in
SHIPS was applied to SHIFOR5, as described below.

In SHIPS, an initial forecast is obtained that ignores the
presence of land. A postprocessing step is then applied, in
which the most recent NHC official forecast track is linearly
interpolated to 1-h intervals, and the points for which the TC
center is over land are identified. The inland decay models de-
veloped by Kaplan and DeMaria (1995) for TCs south of
358N, and by Kaplan and DeMaria (2001) for TCs north of
408N, are applied to reduce the forecast intensity for the por-
tion of the track over land. (For locations from 358 to 408N
the decay rate is linearly interpolated from the two decay
models.) When the center is over land, but some portion of
the area within 111 km (18 latitude) of the center is still over
water, the decay rate is reduced by the fraction of that area
that is over water, as described by DeMaria et al. (2006). If
the TC moves back over water, the time tendency of the in-
tensity forecast for the remainder of the track is set to that
from the SHIPS forecast without the land interaction.

A similar procedure was applied to the SHIFOR5 intensity
forecast to produce D-SHIFOR, a climatology/persistence
model that accounts for TC decay over land. In this case, how-
ever, the CLIPER5 track forecast was used instead of the
NHC official forecast to determine which parts of the track
are over land.

It should be noted that climatology/persistence models can
generally be run in one of two modes, depending on the appli-
cation. In forecast applications and for the remainder of this
paper, operational estimates of storm parameters (e.g., motion,
intensity, etc.) have been used. For certain applications, such as
long-term historical analyses when operational estimates may
not be available, it is possible to run climatology/persistence
models using storm positions and intensities taken from the

final best track determined from all available observations
after the storm is over. Because best track data are more
accurate than operational data, errors from climatology/
persistence models are generally smaller when run in best
track mode.

b. T-CLIPER

The T-CLIPER model development required a climatology
of TC tracks and intensities, which were obtained from NHC
best tracks (Landsea and Franklin 2013) for the ATL sample
and from the combined NHC and CPHC best tracks for the
EP/CP sample. The best track data for the initial development
of T-CLIPER included all TC cases from 1982 to 2011. To en-
sure adequate coverage over areas where TCs are rare, the
entirety of a storm’s best track was used, including any data
from a storm’s extratropical stage. Unnamed depressions (i.e.,
those that did not go on to become tropical storms) were in-
cluded in the developmental sample only from 1989 to 2011.
Unnamed depressions in the best tracks prior to 1989 were
not included because the procedures for identifying these
cases were very different before that time, resulting in a much
larger number of unnamed depressions, many of which were
short lived. To increase coverage outside of hurricane season,
all TC cases from December through April were included
back to 1946 (the start of the aircraft reconnaissance era). In a
subsequent update of T-CLIPER for the 2020 season, best
track data from 2012 to 2018 were added to the developmen-
tal sample. For the JTWC version of T-CLIPER, the develop-
mental data were the best tracks from 1982 to 2015.

Part of the motivation for the development of T-CLIPER
was the need for a 7-day skill baseline to support evaluations
of NHC’s experimental 7-day forecasts and longer-range dy-
namical models. Extending the CLIPER5 and SHIFOR5
models from 120 to 168 h was impractical because the models’
multiple-regression method required TC track and intensity
changes over the full forecast interval, and 7-day lifetimes
were too scarce. Figure 1 shows that only about 27% (21%)
of the ATL (EP/CP) TC best track points still had an ongoing
TC or post-tropical cyclone in the best track 7 days later, and
only about 13% (8%) did so 10 days later. Such a sample was
simply too small to yield a robust result.

To overcome the sample size problem, T-CLIPER was devel-
oped using a trajectory approach based on the following equations:

dk
dt

5
1
a
cos u(wupup 1 wusus 1 cos ubx), (1a)

du
dt

5
1
a
(wypyp 1 wysys 1 cos uby), (1b)

where k is longitude; u is latitude; t is time; a is Earth’s radius;
up and yp are the zonal and meridional components of the ini-
tial storm motion vector, respectively; us and ys are the zonal
and meridional components of the steering flow, respectively;
bx and by are the eastward and poleward contributions to storm
motion due to the beta effect, respectively; and wup, wus, wyp,
and wys are time-dependent weights. Given an initial latitude
and longitude, Eqs. (1a) and (1b) were solved numerically with a
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second-order Adams–Bashforth time differencing scheme with a
1-h time step. T-CLIPER forecasts were run to 10 days or for as
long as the TC center remained in the computational domain
(08–608N, 1708–108E).

The components of the initial storm motion vector (up and yp)
were determined from the initial and 12-h-old storm positions
and were held constant during the time integration. The compo-
nents of the steering flow (us and ys) represent the climatological
motion vector as a function of latitude and longitude and were
determined from the best track positions. To obtain the climato-
logical motion vectors, single-pass Barnes (1964) objective analy-
ses of storm motion components were performed over the
computational domain for each month from May to December
using the combined best track data from the Atlantic, eastern
Pacific, and central Pacific basins. Due to the lack of TCs in the
off-season, all motion vectors from January to April were com-
bined to form a single climatology for those months. The
Barnes analysis used an e-folding radius of 1500 km and an in-
fluence radius of 4000 km to provide the storm motion fields
on the latitude/longitude grid. The beta terms in Eq. (1) were
set to zero because the initial and climatological motion vec-
tors were determined from observed storm motions, which
are presumed to already include any beta drift. The monthly
means were linearly interpolated to the day of the forecast
for the T-CLIPER forecasts.

The weights in Eq. (1) determine the relative importance of
the persistence and climatological motion vector components.
To estimate an optimal weighting, a lag correlation analysis
was performed for the combined basin developmental sample.
Figure 2 shows that the correlation between the initial and
time-lagged motion vector components drops off quickly at
first, and then more slowly after a day or two, suggestive of an
exponential decay behavior. The figure also shows that the
correlation of the zonal component decreases more slowly

than the meridional component. Based on the correlation
analysis, the persistence weights were assumed to be given by

wup 5 Auexp 2
t

tefu

( )
, (2a)

wyp 5 Ayexp 2
t
tefy

( )
, (2b)

where tefu and tefy are the e-folding times of the persistence
weighting functions, and Au and Ay are factors between 0
and 1 that determine the initial weight of the initial motion
vector. Once the persistence weights are calculated, the weights
on the steering wind components are given by

wus 5 1 2 wup, (3a)

wy s 5 1 2 wyp: (3b)

It was assumed that the short-term TC motion would follow
the current motion vector, so Au and Ay were set to 1.

With the above formulation, the weights in Eq. (1) can be calcu-
lated at any forecast time once the two e-folding values in Eq. (2)
are specified. These were determined by running the T-CLIPER
forecasts for the developmental sample for a range of e-folding
times and choosing the values that minimized the sample-mean
track errors averaged through 10 days. That analysis resulted in
values of 76 and 40 h for tefu and tefy, respectively. The larger value
for the zonal component is consistent with the slower decrease of
the correlation with time for the zonal component in Fig. 2.

Even with the 30-yr hurricane season sample and 66-yr off-
season sample, there were still some areas of the analysis do-
main with sparse coverage. As noted above, T-CLIPER was
updated for the 2020 season by adding cases from 2012 to
2018; for this update the weighting parameters were also
reevaluated. The added years improved the data coverage,
but there were still portions of the analysis domain with

FIG. 1. The percentage of TC best track points that were still on-
going as a tropical or post-tropical cyclone at the indicated times
into the future. The sample comprises best track data, from 1982 to
2018 for the in-season months of May–November, and 1946–2018
for the out-season months December–April. The ATL (EP/CP)
samples consists of 16 104 (20 296) best track points.

FIG. 2. Lag correlation of the zonal and meridional components
of the storm motion vector and the maximum-wind growth rate
from the combined ATL and EP/CP best track data used for Fig. 1.
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sparse data, and the 4000-km influence radius of the Barnes
analysis was still needed to obtain a smooth motion vector
field. T-CLIPER parameters for the original and updated ver-
sions of the model can be found in Table 2.

In principle, the approach used for the track component of
T-CLIPER could also be applied to intensity, by calculating
the climatological and persistence components of the maxi-
mum wind tendency dV/dt and integrating that with time.
However, a TC’s intensity is bounded by zero and a maximum
potential intensity (MPI) determined by the thermodynamic
environment (e.g., Bister and Emanuel 2002). Simply integrat-
ing the climatological maximum wind tendency could result
in negative intensity values or values greater than the MPI.
Also, the model would be more useful if decay over land were
included. For these reasons, the predictive equation for the
LGEM (DeMaria 2009) was adapted for the intensity portion
of T-CLIPER, where the LGEM model parameters were de-
termined from climatology and persistence.

The prediction equation for LGEM is given by

dV
dt

5 kV 2 b
V

Vmpi

( )n
V, (4)

where t is time, V is the maximum wind, Vmpi is the maximum
potential intensity, b and n are empirical constants that deter-
mine the rate at which the solution relaxes toward Vmpi, and k

is the maximum-wind growth rate. This equation bounds the
solution for V to lie between zero and a fraction of Vmpi so
that the T-CLIPER maximum-wind prediction cannot be-
come negative or unrealistically large. The constants b and n
in Eq. (4) used for T-CLIPER were set to the same values
used in the operational version of LGEM (1/24 h21 and 2.5,
respectively). Theoretical studies (e.g., Bister and Emanuel
2002) show that Vmpi is a function of the SST and the temper-
ature and moisture structure in the storm environment. How-
ever, the operational LGEM uses an empirical formula that
only depends on SST and the storm translation speed to cal-
culate Vmpi. That same approach was used for T-CLIPER, ex-
cept that a climatological SST was used in place of the
observed SST. The time tendency dV/dt and Vmpi were
calculated for each point in the best track developmental
dataset, and with b and n specified, the value of k was
calculated from Eq. (4). The Barnes analysis described
previously was used to provide climatological monthly gridded
values of k.

The climatological SST for T-CLIPER was derived from
the global Reynolds weekly SST analyses version 2 (Reynolds
and Smith 1994), averaged to provide monthly means. For the
initial version of T-CLIPER, SST data from 1982 to 2011 on a
18 latitude–longitude grid were used to calculate the monthly
means; SST analyses through 2018 were added to the climato-
logical fields for the 2020 model update. The climatological
values are linearly interpolated to the position and day of a
particular storm case for T-CLIPER.

For the T-CLIPER intensity prediction, k was assumed to
be given by a weighted mean of the persistence and climato-
logical components, similar to that for the motion vector in
Eq. (2), using

k 5 wkpkp 1 wkckc, (5)

where kp is the initial growth rate value determined from the
initial and 12-h-old intensity, kc is the climatological growth
rate, and wkp and wkc are time-dependent weights. Figure 2
shows the time-lag analysis for k; the correlation has an expo-
nential decay behavior for the first day or two, leading to a
persistence weight given by

wkp 5 exp 2
t

tefk

( )
, (6)

where tefk is the e-folding time of the initial growth rate, and a
climatology weight given by

wkc 5 1 2 wkp: (7)

The e-folding time in Eq. (6) was determined empirically
for the developmental sample by integrating Eq. (5) to 240 h
along the portion of the T-CLIPER tracks that were over
water and choosing the value that minimized the 240-h intensity
error. An e-folding time tefk of 8 h provided the most accurate
T-CLIPER intensity forecasts for the developmental sample.
When the T-CLIPER track crossed land, the empirical inland
decay model described by DeMaria et al. (2006) was used to
determine the intensity tendency dV/dt.

The behavior of T-CLIPER for track and intensity can be
understood from Eqs. (1) and (4). The short-term forecast
motion and intensification rate will be governed mainly by
persistence. In the longer term (after 48–72 h when t exceeds
the e-folding times in the weights) the motion will be deter-
mined by the climatological motion vector analysis. When the

TABLE 2. The parameters used in the T-CLIPER and TAB models. N/A indicates a parameter is not applicable to that model.
The first two T-CLIPER lines are for the NHC/CPHC versions, and the second two T-CLIPER lines are for the 2018 JTWC
Northern and Southern Hemisphere versions.

Model Apu Apv tefu (h) tefy (h) tefk (h) bx (m s21) by (m s21) Ravg (km)

T-CLIPER (2013) 1.0 1.0 76 40 8 0 0 N/A
T-CLIPER (2020) 1.0 1.0 48 40 12 0 0 N/A
T-CLIPER (J-North) 1.0 1.0 70 46 31 0 0 N/A
T-CLIPER (J-South) 1.0 1.0 63 42 32 0 0 N/A
TAB (2016) 0.85 0.85 6 6 N/A 20.33 0.25 350
TAB (2018) 0.85 0.85 6 6 N/A 20.33 0.25 400
TAB (2019) 0.85 0.85 6 6 N/A 20.33 0.25 600
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growth rate k and Vmpi vary slowly, as is the case when they
are determined from climatological analyses, Eq. (4) has a
steady-state solution for V given by

Vs 5 Vmpi
k

b

( )1/n
: (8)

Once the influence of persistence becomes small (when t
exceeds the e-folding time of 8 h), the intensity will approach
the steady-state intensity given by Eq. (8). Figure 3 shows ex-
amples of the climatological motion vectors and steady-state
maximum wind for early, peak, and late months of the hurri-
cane season. The seasonal variations can be seen in Fig. 3,
with Atlantic TCs much more likely to recurve late in the
season than at other times, and peak steady-state intensities
occurring in July for the eastern Pacific and in September for
the tropical Atlantic.

In 2016, T-CLIPER was adapted to JTWC’s AORs, which
comprise the western North Pacific, Indian Ocean, and

Southern Hemisphere. Two computational domains were
used for JTWC; the J-North domain covers 08–708N,
308E–1408W and the J-South domain covers 08N–508S,
208E–1408W. The analysis of the climatological motion vec-
tors, growth rates, and the persistence time weights largely
followed that for the NHC basins but with a few modifica-
tions. A two-pass Barnes analysis was performed instead of a
one-pass analysis, with a large radius of influence and e-fold-
ing radius on the first pass and smaller values on the second
pass; this was necessary to ensure coverage over the large
JTWC domains. The radii of influence and e-folding distances
for trajectory and growth-rate components are provided in
Table 3. It was also found that better performance was ob-
tained by modifying the n and b parameters in the LGEM
Eq. (8), based on verifications of real-time runs from 2016 to
2017. The n parameter was reduced to 2.1 for both the J-
North and J-South domains (compared with 2.5 for NHC),
and the b parameter was increased to 1/18 h21 for the J-South
domain. The zonal motion was also increased by 5% in the J-
North domain to correct a slow bias, and the e-folding persis-
tence time weights were adjusted. The 2018 JTWC T-
CLIPER parameter values are shown in Table 2, and only
that version will be considered in the remainder of the paper.
Figure 4 shows examples of the climatological motion vectors
and growth rate for the J-North and J-South domains. This
figure shows the scale of the spatial variability of the climato-
logical motion vector and intensity growth-rate fields.

c. TAB

Equation (1), used for T-CLIPER, is also used for the TAB
model, but where the steering vector components us and ys
are determined by horizontally and vertically averaged winds
from a parent dynamical model, the beta-drift terms are not
assumed to be zero, and the initial persistence weights Au and
Ay are not assumed to be equal to 1. The horizontal area
for averaging the steering components is a circle of radius
Ravg. Thus, the use of Eq. (1) for the TAB model requires
the estimation of the seven parameters Ravg, bx, by, tefu, tefy,
Au, and Ay.

The steering winds for TAB are obtained from GFS or
European Centre for Medium-Range Weather Forecasts
(ECMWF) horizontal wind fields with 18 latitude–longitude
resolution at mandatory pressure levels. Although higher hor-
izontal and vertical resolution data are available, the smooth-
ing applied by the TAB model makes higher-resolution
inputs unnecessary.

The specific values of the seven TAB parameters were cho-
sen by minimizing the average track errors out to 7 days for

FIG. 3. The climatological storm motion vector field (kt; full barb
equals 10 kt) and steady-state intensity (shading; kt) for (top) July,
(middle) September, and (bottom) November used in the 2020 ver-
sion of the T-CLIPER model.

TABLE 3. Radii of influence (RoI) and e-folding distances (EFD) used for the two-pass Barnes analysis of climatological trajectory
and growth rate components for the J-North and J-South T-CLIPER model developments.

Model First RoI (km) Second RoI (km) First EFD (km) Second EFD (km)

J-North trajectory 6250 1875 3375 1250
J-South trajectory 12 500 1875 2500 675
J-North growth rate 3750 1875 750 375
J-South growth rate 12 500 1875 2500 375
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the ATL and EP/CP forecasts from 2010 to 2015. Three ver-
sions of TAB were run using the same vertical layer averages
as for the BAMmodel described earlier. These are designated
as TABS, TABM, and TABD, where S, M, and D designate
shallow, medium, and deep, respectively. The ranges of pa-
rameter values to test were determined from physical reason-
ing. Some additional guidance on the range for Ravg was
determined by comparing the T25 spectral truncation used in
the BAMmodel to a gridpoint smoother based on an area av-
erage used in the TAB model. Sardeshmukh and Hoskins
(1984) showed that a triangular truncation results in uniform
resolution on the sphere, which is consistent with a circular
averaging area for TAB. With 25 waves at the equator, that
corresponds to a wavelength of 1600 km. A simple horizontal
average can be interpreted as a low-pass filter, and it can be
shown that a filter with a half-power wavelength of 1600 km
corresponds to a horizontal average over an area with a radius
R ∼430 km. That provided some guidance on how to choose
the radius of the averaging area to roughly correspond to a
T25 truncation. Several values around 430 km were tested
and it was found that of all the model parameters, the track
errors were most sensitive to Ravg, and the optimal value var-
ied somewhat across the two basins and the three vertical
layers. However, the differences were not large enough to jus-
tify the complication of using varying values of Ravg.

Table 2 shows the final parameters used for the 2016 opera-
tional version of TAB, based on the optimizations from the
2010 to 2015 developmental sample. The optimal value of
Ravg (350 km) is close to the 430-km estimate based on the
correspondence between an area average and spectral trunca-
tion. The e-folding times of the persistence weights are much

smaller for TAB than for T-CLIPER}an expected result
since global model forecasts provide a much more accurate
steering flow than climatology. The beta terms indicate a
poleward and westward drift, which is consistent with beta-
drift theory (e.g., Holland 1983). However, the diagnosed op-
timal beta drift is only ∼0.4 m s21, which is much less than the
1–4 m s21 found in idealized modeling studies as summarized
by Shan and Yu (2020). This too is unsurprising, because the
beta effect modifies the storm environment and so would be
largely already captured in the steering flow from the GFS or
ECMWF, minimizing the need for an explicit correction.

Operational forecasts from 2016 showed that TAB forecast
tracks sometimes had unrealistic cyclonic oscillations with pe-
riods of about 12–48 h, due to inadequate removal of the
global model representation of the TC. This was especially
prominent with TABS. To help with that problem, Ravg was
increased to 400 km in 2018. For the 2019 version of TAB, a
more systematic analysis was performed, examining the dis-
tance traveled in the forecast compared with that in the ob-
served tracks (since the spurious cyclonic oscillations result in
a high bias in distance traveled). Optimization using the
2010–18 cases showed that an Ravg value of 600 km greatly re-
duces the oscillations with only a small increase in forecast er-
ror. That value has been used in all three TAB models since
2019.

d. Optimal steering layer analysis

As part of the SHIPS intensity model, a method was devel-
oped to identify vertical weights of the horizontal winds from
global models that provided the best match to the observed
storm motion vector. It was found that TCs steered by deep

FIG. 4. Climatological motion vectors (kt; full barb equals 10 kt) and growth rates (shading;
day21) for (top) September in the J-North domain and (bottom) in February for the J-South do-
main. Note that the J-North plot was extended to the east of the J-North domain for consistency
with the J-South plot.
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layers were more likely to intensify (DeMaria 2010), so the
center of mass of the optimal steering layer was added as a
predictor to SHIPS and LGEM. A similar analysis was per-
formed to provide insight into which version of TAB is the
most appropriate for a given forecast situation and the physi-
cal factors that determine the steering layer, such as TC inten-
sity and tropopause height.

The steering flow is determined by weighting area-averaged
horizontal winds given by ui, yi at N vertical levels. The opti-
mal weights wi are found by minimizing the error function E
given by

E 5
∑i5N

i51

wiui

( )
2 cx

[ ]2
1

∑i5N

i51

wiyi

( )
2 cy

[ ]2

1 a
∑i5N

i51

wi 2 mi

mi

( )2
, (9)

subject to the constraint

∑i5N

i51

wi 5 1: (10)

In Eq. (9), cx and cy are the eastward and northward com-
ponents of the storm-motion vector, a is a parameter that
controls the weight of a constraint term that ensures a unique
solution for the optimal weights, andmi are the weights based
on a mass-weighted average. The first two terms on the right
side of Eq. (9) measure the difference between the vertical av-
erage of the steering flow and the observed storm motion, and
the third is a penalty term that measures how far the optimal
weights are from the mass weights. The optimal weights are
found by using Eq. (10) to eliminate one of the weights in
Eq. (9), and then setting the derivative of Eq. (9) with respect to
the remaining weights wi to zero. That gives a symmetric linear
system that can be solved for wi from i 5 1 to N 2 1, with the
last weight determined from Eq. (10). The penalty term in
Eq. (9) is needed to prevent the linear system from being singu-
lar. For example, the matrix would be singular if the winds at all
levels were the same, in which case there is no unique solution
for the weights. From experimentation it was found that a of
0.4 kt22 gives reasonable results. The optimal weights were not
too sensitive to the choice of a because the wind profile usually
has enough vertical variability to provide a unique solution.

Once the optimal weights are determined, the center of
mass of the optimal steering layer [pressure of the steering
layer (PSLO)] is given by

PSLo 5
∑i5N

i51
wiPi, (11)

where the Pi are the pressures of each vertical level. With the
mass-weighted average, the pressure of the steering layer
(PSLM) is just the average of the pressure at the top and bot-
tom levels included in the vertical average. The PSLM values
for TABS, TABM, and TABD are 775, 625, and 525 hPa, re-
spectively. Comparing PSLO to the PSLM values for the three

TAB models provides guidance on which TAB model is best.
Examples are presented in section 4c.

4. Verification results

Table 4 shows the years included in the D-SHIFOR,
T-CLIPER, and TAB verifications presented in this section.
D-SHIFOR was first run operationally in 2013, but its fore-
casts had been generated poststorm for use as a skill baseline
by NHC beginning in 2006. During the preparation of this
paper, it was discovered that the operational D-SHIFOR
model from 2013 to 2019 had a bug for forecasts crossing the
international date line; therefore, all the runs evaluated here
were regenerated using the 2020 operational version of
D-SHIFOR. The regenerated sample starts in 2001, the first
year NHC made experimental 5-day forecasts, although it
should be noted that the years 2001–04 are part of the
CLIPER5 model’s developmental dataset. The T-CLIPER
and TAB forecasts evaluated here are the operationally
available runs.

We follow here the standard NHC verification rules, in
which the track and intensity forecasts are compared with the
final NHC or CPHC best track, including only those cases
when the system was classified as a tropical or subtropical cy-
clone at both the initial and verifying times. When comparing
errors between models, a standard two-tailed statistical test is
applied to determine statistical significance. Serial correlation
is accounted for using the method described in Franklin and
DeMaria (1992), but with 18 h used as the time between inde-
pendent observations rather than 30 h; that change was made
based on NHC’s more recent unpublished assessment of the
serial correlation between forecasts. Unless otherwise indi-
cated, the 95% level was used as the threshold for statistical
significance.

a. D-SHIFOR

Figure 5 shows the D-SHIFOR mean absolute errors for
the ATL and EP/CP samples. The intensity errors increase at
a fairly steady rate with forecast time through about 60 h and
then begin to level off. The errors for the EP/CP are a little
larger than for the ATL except at 120 h, but the behavior with
time is very similar. Figure 5 also shows the percentage of
cases when the D-SHIFOR forecasts differed from the
SHIFOR5 forecasts, which occurs when the CLIPER5 track
crosses land during the forecast period. By 120 h about 28%
of the Atlantic cases included a land decay, but only about
9% of the Pacific cases did so. This is not surprising since

TABLE 4. Years included in the verification of the D-
SHIFOR, T-CLIPER, and TAB models for the ATL, EP/CP,
and JTWC AORs. The JTWC AORs comprise the western
North Pacific, Indian Ocean, and Southern Hemisphere.

Model ATL EP/CP JTWC AORs

D-SHIFOR 2001–20 2001–20
T-CLIPER 2012–20 2012–20 2018–20
TAB (GFS) 2016–20 2016–20
TAB (ECMWF) 2018–20 2018–20
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most eastern Pacific TCs move away from the Mexican coast,
and in the central Pacific the Hawaiian Islands do not pose a
very large target for the few TCs that do not dissipate before
reaching them.

Figure 6 shows the improvement of D-SHIFOR over
SHIFOR5 for the total sample and for the subsamples that
only include cases when the forecasts are different (i.e., when-
ever the land-decay adjustment is invoked for D-SHIFOR).
For the total sample, the inclusion of the inland decay based
on the CLIPER5 track produces a modest error reduction for
the ATL through 72 h and little change in the EP/CP. By
120 h, the inclusion of land effects slightly degrades the intensity
forecasts, likely because the inaccuracy of the longer-term
CLIPER5 track forecasts tends to poorly represent when a land
decay correction is appropriate. When the D-SHIFOR and
SHIFOR5 forecasts are different, however, Fig. 6 shows
that the D-SHIFOR forecasts are much improved over
SHIFOR5, through at least 72 h. It is also seen that improve-
ments due to land decay are larger in the ATL than the EP/CP.
This is probably because the EP/CP results are more sensitive
to small errors in CLIPER5 tracks (because the Hawaiian
Islands are small targets, and eastern Pacific TCs sometimes
move close and parallel to the west coast of Mexico). For
the subsamples, the differences between D-SHIFOR and
SHIFOR5 are statistically significant at the 95% level at 12–72 h
for the ATL and EP/CP, but the degradations at 120 h are not
statistically significant. Collectively, these results indicate that
D-SHIFOR is a better baseline than SHIFOR5 for assessing
intensity forecast skill.

b. T-CLIPER

T-CLIPER was developed using data through 2011 so our
verification period begins with 2012. There have been two
model updates since 2012; the treatment of persistence in
2013, and an update of the developmental sample in 2020. To
obtain a consistent and independent dataset for evaluation

here, the 2013 version of T-CLIPER was rerun for the period
2012–20.

Figure 7 shows the T-CLIPER track errors through 120 h
and the skill relative to CLIPER5 for the 2012–20 sample.
The T-CLIPER errors are larger for the ATL than the EP/CP
at all forecast times, which is also true for CLIPER5 track er-
rors (not shown). For the EP/CP, the T-CLIPER mean track
errors are within about 1% of those from CLIPER5, and
none of the differences are statistically significant at the 95%
level. For the AL, the T-CLIPER errors are about 5% larger
than those from CLIPER5, and the differences through 72 h
are statistically significant. If T-CLIPER were used as a re-
placement for CLIPER5 as a track skill baseline, there would
be an apparent (artificial) skill improvement in tested forecast

FIG. 5. Mean D-SHIFOR intensity errors for the ATL and
EP/CP samples (solid lines) and the percentage of the cases
where the D-SHIFOR and SHIFOR5 forecasts were different
(dashed lines). The samples consist of cases from 2001 to 2020.

FIG. 6. Improvement of D-SHIFOR over SHIFOR5 for total
2001–20 ATL and EP/CP samples (solid lines) and for the sub-
samples that include only those cases when the D-SHIFOR and
SHIFOR5 forecasts are different (dashed lines).

FIG. 7. T-CLIPER track forecast errors for 2012–20 (solid lines)
and the skill (percent improvement relative to CLIPER5, dashed
lines) for the ATL and EP/CP samples.
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models or methods of a few percent just due to the slightly
larger errors of the T-CLIPER model.

Figure 8 shows the mean T-CLIPER intensity errors and
T-CLIPER skill relative to D-SHIFOR. Comparison with
Fig. 5 shows that T-CLIPER behaves similarly to D-SHIFOR,
in that EP/CP errors are larger than ATL errors initially but
converge by 120 h. T-CLIPER intensity errors also level off
with time, although perhaps not quite as quickly as with
D-SHIFOR. The T-CLIPER skill relative to D-SHIFOR is
less than 63% for the ATL sample, and none of the differ-
ences between the two models were statistically significant.
For EP/CP, T-CLIPER errors are about 13% larger than
D-SHIFOR at 48 h and by smaller amounts at other fore-
cast times. The differences between the T-CLIPER and
D-SHIFOR errors for the EP/CP sample are statistically signif-
icant at 24–48 h. As noted above for track, if D-SHIFOR were
replaced by T-CLIPER as the intensity skill baseline, there
would be an apparent increase in forecast skill in tested fore-
cast models or methods just due to the larger T-CLIPER
errors, especially for shorter-range eastern Pacific forecasts.

T-CLIPER was updated for the 2020 season by adding
cases from 2012 to 2018 to the developmental data, and re-
analyzing the climatological motion and intensity growth-
rate fields. Table 2 shows that with the larger dataset, the
e-folding time of the zonal component of motion decreased,
while the e-folding time of the intensity growth rate in-
creased. Results of dependent tests for cases from 2013 to
2019 showed that the new version did improve the perfor-
mance relative to CLIPER5 and D-SHIFOR by a few per-
cent. A comparison of the 2013 and 2020 versions of
T-CLIPER for the 2020 season showed that the newer ver-
sion improved track and intensity forecasts at most times,
although the sample sizes were not large enough to show
statistical significance. Several more years of independent
cases will be needed to fully evaluate the performance of
the updated version.

NHC has traditionally used CLIPER5 and D-SHIFOR as
skill benchmarks for the evaluation of the more complex
models and the official NHC forecasts (e.g., Cangialosi 2021).
For example, a season with more storms in the deep tropics,
where the environmental steering flow is relatively uniform, is
typically associated with lower NHC official track forecast er-
rors than a season that features TCs in the more complicated
environments of the midlatitudes. Seasons that are active in
the deep tropics also tend to be associated with relatively low
CLIPER5 errors. To the extent that erratic or aclimatological
behavior is difficult to anticipate by a forecaster or a model,
the seasonal variations in CLIPER5 errors offer a convenient,
if imperfect, way to normalize seasonal errors for forecast dif-
ficulty. This in turn is helpful to elucidate longer-term trends
in forecast accuracy.

To determine if T-CLIPER can similarly be used as a
measure of forecast difficulty, the annual average intensity
and track errors were correlated with those from the NHC
official forecasts and compared with the same correlations for
D-SHIFOR and CLIPER5. Figure 9 shows that correlations
with the NHC official forecast errors are positive at most fore-
cast times in both basins, indicating that for this limited period
the baseline model errors are indicators of annual track
and intensity forecast difficulty (at least as experienced by
NHC forecasters). There is some variability in the strength
of the correlation for T-CLIPER compared with D-SHIFOR
or CLIPER5, but overall, the results are comparable. It is in-
teresting that the correlations are higher at the early and
later forecast times, with minima near 48–72 h.

The cases with very low or negative correlations in Fig. 9
were examined in more detail and tended to be caused by an
outlier point in a single year out of the nine years in each sam-
ple. To reduce the noise in the correlation analysis due to the
small sample sizes, the data from all five forecast time periods
(24, 48, 72, 96, and 120 h) were combined. Because the OFCL
and baseline model errors tend to increase with forecast time,
the correlation will be artificially inflated when the times are
combined. To correct for that problem, the forecast errors for
each model at each forecast time were standardized by sub-
tracting the mean and dividing by the standard deviation
before the forecast times were combined. The correlation co-
efficients between the OFCL and CLIPER5 or T-CLIPER
for track and OFCL and D-SHIFOR or T-CLIPER for inten-
sity were all positive for both basins with the combined sam-
ples. The correlation coefficients ranged from 0.22 to 0.72 and
were fairly similar for OFCL versus CLIPER5 or T-CLIPER
and OFCL versus D-SHIFOR or T-CLIPER. This result indi-
cates that T-CLIPER can be used to assess forecast difficulty
in a manner similar to CLIPER5 or D-SHIFOR.

NHC began experimental in-house 7-day track and inten-
sity forecasts in 2012 and continued those through 2022, with
a one-year break in 2017. Figure 9 shows that correlations of
the NHC extended-range errors against T-CLIPER errors are
comparable to those through 120 h for both basins. These re-
sults indicate that T-CLIPER accounts for annual forecast dif-
ficulty in a way that is similar to D-SHIFOR and CLIPER5
through 120 h, and that those relationships hold through
168 h. Thus, even though the average T-CLIPER errors are a

FIG. 8. T-CLIPER intensity forecast errors for 2012–20 (solid
lines) and the skill (percent improvement relative to D-SHIFOR,
dashed lines) for the ATL and EP/CP samples.
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little larger than those of D-SHIFOR and CLIPER5 at some
forecast times as described above, the availability of a con-
sistent measure of forecast difficulty for time periods beyond
5 days is a significant advantage.

To get a feel for whether T-CLIPER could be used as a
skill baseline at even longer lead times, Fig. 10 shows the
T-CLIPER track and intensity errors through 240 h. The er-
ror evolution from 168 to 240 h is generally consistent with
the errors at earlier leads, suggesting that it could be used as a
baseline for extended-range forecast models. The track errors
continue to increase at a roughly linear rate through 240 h, al-
though the ATL sample becomes somewhat noisy by that
time. The EP/CP intensity errors peak at 96 h and then slowly
decrease after that. The ATL intensity errors start to level off
after 48 h but then increase at a slightly faster rate around

144 h, with the peak errors at ∼200 h. The difference in the
intensity error behavior between the ATL and the EP/CP
samples may be related to TCs that intensify after recurva-
ture, which is much more common in the Atlantic.

The T-CLIPER model for the JTWC basins was first run in
real-time in 2016, but a significant change was implemented
for 2018. Therefore, the T-CLIPER verification for the JTWC
basins is restricted to 2018–20 using the real-time runs.
J-North and J-South T-CLIPER forecast tracks are compared
with the C120 model, the 120-h track climatology/persistence
model for the western North Pacific (Aberson and Sampson
2003), and CLIP, the 72-h climatology/persistence model based
on Neumann (1972) for the Southern Hemisphere. Similarly,
J-North and J-South T-CLIPER intensity forecasts are com-
pared with ST5D, the (Knaff et al. 2003) 120-h implementation
of SHIFOR.

Figure 11 (top panel) shows the track verification results
for the JTWC versions of T-CLIPER. The track errors
are very similar for the J-North and J-South domains. The
T-CLIPER track skill for J-North relative to the C120 model
is close to zero, indicating that the newer model is a suitable
replacement. The T-CLIPER track skill for the J-South do-
main is 20%–40% better than the much older CLIPER (CLIP)
model through 72 h. Thus, the differences in T-CLIPER track
skill between the two domains is an artifact of evaluating the skill
relative to two different baselines. If T-CLIPER replaced
CLIPER as a baseline for track skill for the J-South domain,
there would be a considerable (apparent) loss of skill in tested
forecast models or methods due to the smaller T-CLIPER track
errors.

Figure 11 (bottom panel) shows the intensity verification
results for the JTWC versions of T-CLIPER. Model errors in
the J-North domain are larger than in J-South, and the errors
for both domains level off after about 72 h. For the J-North
domain, the T-CLIPER intensity errors relative to ST5D are
close to zero at all forecast times, indicating that it could be
used as a replacement baseline model for measuring intensity

FIG. 9. Correlations of the 2012–20 annual-average NHC OFCL
forecast errors against errors from T-CLIPER, CLIPER5, and
D-SHIFOR, for the (top) ATL and (bottom) EP/CP samples.
Track error correlations are shown with solid lines, and intensity
error correlations are shown in dashed lines. Correlations against
T-CLIPER are in orange, while correlations against CLIPER5 and
D-SHIFOR are in purple.

FIG. 10. T-CLIPER track (solid lines) and intensity (dashed lines)
forecast errors through 240 h.
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forecast skill with little impact. In contrast, T-CLIPER inten-
sity errors for the J-South domain are comparable to or a little
smaller than ST5D through 36 h, but are larger by as much as
18% by 120 h. This indicates that there would be an apparent
increase in skill in the longer-range forecasts if T-CLIPER re-
placed ST5D as the intensity skill baseline for the J-South
domain.

The differences in the performance of T-CLIPER relative
to ST5D in the J-South domain compared with the J-North
domain in Fig. 11 (bottom panel) for the longer-range fore-
casts may be due to the interaction with strong SST gradients
and land interaction. The SST gradients in the north Indian
Ocean and western part of the western North Pacific basin
where most of the TCs recurve, are much weaker than in the
J-South domain. Thus, T-CLIPER track errors in the J-South
domain would lead to a larger error in the estimate of the

climatological growth rate than in the J-North domain. At the
longer lead times, the use of the very inaccurate T-CLIPER
tracks to estimate the J-South growth rate may be worse than
only including the initial position as a predictor as in ST5D.
This result is similar to the difference between D-SHIFOR
and SHIFOR in Fig. 6, where the use of a CLIPER track in
D-SHIFOR to determine the interaction with land de-
grades the intensity forecast after ∼108 h compared with
not including the CLIPER track forecast information in
SHIFOR.

Beyond 120 h (not shown), T-CLIPER track errors con-
tinue to increase at a linear rate to about 700 and 800 n mi
(1 n mi 5 1.852 km) by 168 h in the J-North and J-South
domains, respectively. T-CLIPER intensity errors for the
J-North domain decrease slightly to about 20 kt by 168 h,
while the J-South intensity errors remain roughly constant
from 120 to 168 h.

c. TAB

The TAB model driven with GFS input was first run as part
of the guidance suite in 2016. Here we report on the verifica-
tion of the real-time TAB forecasts as recorded in the ATCF
a-decks for the period 2016–20.

A comparison of TAB track forecasts with BAM is shown
in Fig. 12. Because the BAM model was discontinued early in
the 2017 season, there is just a little over one full season of di-
rect comparisons between the two models. Figure 12 shows
the percent improvement of TAB relative to BAM for the
deep, medium, and shallow versions of each model for the
ATL and EP/CP samples. TAB forecasts show improvement
over BAM at almost all forecast times in both basins, with im-
provements as high as 35%, a result consistent with the
2010–15 cases that were used to select the TAB parameters.
Because the samples in Fig. 12 are small, only the TABS

FIG. 11. (top) Track and (bottom) intensity verification of the
J-North and J-South versions of T-CLIPER developed for the
JTWC. Solid lines are the mean T-CLIPER errors and dashed lines
show the percent improvement of T-CLIPER relative to JTWC’s
prior baseline models for track (C120 for J-North and CLIP for
J-South) and intensity (ST5D). Note that CLIP only runs through
72 h, so the homogeneous comparison with T-CLIPER only
extends to that time period.

FIG. 12. The track forecast improvement of the TAB model over
the BAM model for the three versions of each (shallow, medium,
and deep) for the 2016 season and the first TC of 2017. The TAB
errors for each version are relative to the corresponding version of
BAM (e.g., TABS is compared to BAMS, etc.).
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improvements for the ATL sample at 48–72 h are statistically
significant at the 95% level. However, the differences at sev-
eral other forecast times for TABD and TABM satisfy the
90% significance level. These results suggest that TAB likely
could replace BAM with no loss of accuracy. Although not
shown, the TAB model also demonstrates a similar diver-
gence of tracks among its three versions in sheared environ-
ments as typically occurs with the three versions of BAM.

Figure 13 shows TAB errors through 168 h for operational
runs for the period 2016–20. T-CLIPER and operationally
available GFS track errors (GFSI) are also shown for refer-
ence. ATL errors are larger than those for EP/CP with each
version of TAB, but the relative performances are similar
across the basins. TABD errors are much larger than those of
TABM and TABS, with TABM being the best of the three at
nearly all forecast times. All versions of TAB perform much
better than T-CLIPER, indicating positive forecast skill. As a
group, the TAB errors are larger than the GFSI errors, which

is to be expected given the simplicity of the TAB model and
its assumption of a fixed steering layer throughout the fore-
cast. Surprisingly, however, the TABM errors are not much
larger than GFSI on average, which confirms that the substi-
tution of TABM as input for the statistical intensity models
when the NHC official forecast is not available is a reasonable
choice. The following section on the analysis of steering layers
offers some insight on the relative performance of the three
TAB models.

Versions of TAB driven by ECMWF wind fields (Table 1)
were added in 2018. Operational ECMWF-based TAB fore-
casts for the 2018–20 seasons were also verified and compared
with the GFS versions. The ECMWF TAB errors (not shown)
were generally similar to those from the GFS version, with
the medium version (TBME) being the best model at most
forecast times in both basins, and all versions having skill rela-
tive to T-CLIPER. The primary difference between the GFS
and ECMWF versions of TAB was that TBDE had lower er-
rors than TABD in both basins, especially at the longer
ranges where the TBDE errors were up to 30% smaller than
the TABD errors by day 7. However, the errors of the me-
dium versions of TAB for the GFS and ECMWF were com-
parable (within 15% or less of each other), with the TABM
being better for the EP/CP sample and TBME being better
for the ATL sample.

d. Steering layer analysis

As mentioned above, one of the purposes of TAB is to pro-
vide forecasters with an estimate of the vertical shear in the
steering flow by comparing the tracks using three different
layers. Having versions with different vertical layers also pro-
vides forecasters with guidance on how the track might differ
depending on the depth of the TC’s circulation.

To provide more insight into how various factors might af-
fect TC steering, Eqs. (9) and (10) were used to find the opti-
mal weights for the ATL and EP/CP samples for all cases in
the SHIPS developmental database for 1982–2020; the results
were then stratified by TC intensity, latitude, and basin. The
environmental wind components at the mandatory pressure
levels from 1000 to 100 hPa, ui and yi, were determined from
the GFS analyses averaged from 0 to 500 km from the TC
center, and the storm motion vectors were computed from
best track data. The calculation did not include the 925-hPa
level since the SHIPS GFS database does not include that
level for some of the early years.

Figure 14 (left panel) shows the optimal weights for each
basin and the weights for the standard mass-weighted average
for the total samples. The optimal weights for ATL and
EP/CP are qualitatively similar, with values lower than the
mass-weighted versions from 100 to about 500 hPa and larger
values from 500 to 1000 hPa. Part of the reason for the higher
weights in the lower levels is because the pressure layers are
thicker. Normalizing the optimal weights by the mass weights
adjusts for the differences in thickness, so the weights at all
levels are directly comparable, as shown in the right panel of
Fig. 14. It is seen that the 850-hPa (700-hPa) level contributes
the most to the ATL (EP/CP) steering and the upper levels

FIG. 13. TAB model track errors for the 2016–20 operational
forecasts for the (top) ATL and (bottom) EP/CP samples. The
T-CLIPER track errors and those from the GFS (GFSI) are also
included for reference.
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contribute much less to the steering than the lower levels in
both basins. These results are generally consistent with those
from previous studies of TC steering levels (e.g., Velden and
Leslie 1991), but the formulation in Eqs. (9) and (10) does not
require calculating the steering from arbitrary levels and
layers and then comparing the results. The lesser contribution
to the steering from the upper levels helps to explain why
TABM had lower track errors than TABD and TABS.

Equation (11) provides a way to combine the optimal
weights into a single parameter to allow for easy comparison
with TAB model results and compare subsets of cases stratified
by physical parameters. Generally speaking, PSLO is larger
when the steering is from shallower layers. Applying Eq. (11)
to the optimal steering weights shows that PSLO is 627 and 591
hPa for the ATL and EP/CP samples, respectively. Those are
closest to the PSLM value of 625 hPa for TABM. That result is
again consistent with Fig. 13, which shows that TABM had the
smallest errors at most forecast times.

To examine the spatial variability of PSLO, the Barnes
objective analysis was performed for the combined ATL
and EP/CP PSLO sample. Figure 15 shows that PSLO is clos-
est to the TABM value over most of the domain, but there
is some variability. The PSLO value is lower in the deep
tropics, indicating that the upper levels contribute more
to the steering in that region, which is consistent with a
higher tropopause than in higher latitudes. The environ-
mental vertical shear is also usually less in lower latitudes,
which would allow TCs to have deeper cyclonic circulations
and be steered more by the higher levels. The largest PSLO

values, indicating the shallowest steering layer, are in the
eastern and central Pacific north of about 208N. The SSTs in
that region are very cold, and TCs are often in the dissipat-
ing stage after they move through the strong SST gradient
that normally is present from 158 to 208N between the west
coast of Mexico and Hawaii. Figure 15 suggests that an im-
proved version of TAB could be developed if the weights

FIG. 14. Vertical weights for the 1000–100-hPa levels for a mass-weighted mean and the optimal values that best
match the observed TC motion for (left) the ATL and EP/CP samples and (right) the weights normalized by the mass
weights. The optimal values were determined for the average of all the cases in the SHIPS developmental database
from 1982 to 2020.

FIG. 15. Spatial variability of the average steering layer pressure for the combined 1982–2020
ATL and EP/CP samples. There was little data north of about 308N for longitudes between
about 1008 and 1408W, so the values there are mostly based on extrapolation from lower
latitudes.
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were a function of location, but that is left as a topic for
future study.

The optimal steering weights and corresponding steering
layer pressures PSLO were calculated for ATL and EP/CP
subsamples stratified by maximum wind. For the EP/CP
sample, PSLO showed a fairly linear decrease from a value of
613 hPa for TCs with a maximum wind of 30 kt or less, to a
value of 558 hPa for TCs with maximum winds greater than
110 kt. For the Atlantic sample, the decrease was more grad-
ual, with an average PSLO value of 617 hPa for TCs with max-
imum winds of 30 kt or less, to a value of 598 hPa for TCs
with maximum winds of greater than 110 kt. Also, for the
ATL sample, the average PSLO value was nearly constant for
TCs with maximum winds from 20 to 100 kt. Thus, stronger
TCs tend to be steered by a deeper layer, especially in the
EP/CP, but that variation is less than the variability with lati-
tude seen in Fig. 15. The dependence on the increase in the
depth of the best steering layer with increasing intensity is
generally consistent with the results of Velden and Leslie
(1991) for the Australian region, but the nearly constant
optimal steering layer for ATL cases with maximum winds of
20–100 kt indicates that other factors, such as convective ac-
tivity, may be just as important in determining the steering
layer.

5. Conclusions

NHC and CPHC use a variety of models as guidance for
their operational TC track, intensity, and wind structure fore-
casts and as baselines for evaluation of forecast skill. A subset
of the simpler models, maintained and updated by NHC and
collectively referred to as the guidance suite, has been described
here. Three members of the guidance suite}D-SHIFOR,
T-CLIPER, and TAB}were described in detail since those
have not been documented elsewhere in the refereed literature.

D-SHIFOR adds a correction for landfall to the simple sta-
tistical intensity model SHIFOR using the CLIPER5 track
and a climatological inland decay rate. D-SHIFOR improved
on SHIFOR for forecasts through about 96 h for the ATL
and EP/CP basins. By 120 h there was no improvement be-
cause of the inaccuracy of the CLIPER5 tracks for determin-
ing when the TC center is over land. Thus, D-SHIFOR is a
suitable replacement for SHIFOR that can be used for TCs
over land or water.

T-CLIPER was developed to extend the CLIPER5 and
D-SHIFOR baseline models beyond 120 h. A trajectory ap-
proach was used, in which shorter-range forecasts are primar-
ily determined by persistence of the initial motion or intensity
tendency, while the longer-range forecasts are primarily de-
termined from climatological motion or intensity tendencies.
T-CLIPER track and intensity errors were generally similar
to those from the older track and intensity baseline models,
with a few exceptions. For the ATL, T-CLIPER track errors
were a few percent larger than those from CLIPER5 at most
times out to 120 h. For the EP/CP the T-CLIPER intensity er-
rors were up to 13% larger than the D-SHIFOR errors through
36 h but were comparable after that time. The T-CLIPERmodel
was updated for the 2020 season, which should help to make it

more comparable to CLIPER5 and D-SHIFOR, and it could
potentially be updated again after a few more years of develop-
mental data are available.

T-CLIPER was also developed for JTWC’s AORs. It pro-
vides a 7-day baseline for track and intensity, a particularly
important capability improvement for Southern Hemisphere
TCs. However, in the 3-yr verification, T-CLIPER intensity
errors were much larger than those from the older ST5D
errors for JTWC’s Southern Hemisphere forecasts. This
may be due to the strong SST gradients over most of the
Southern Hemisphere TC basin, which makes T-CLIPER
intensity forecasts more sensitive to errors in the T-CLIPER
track forecasts.

The main advantage of T-CLIPER is that it can be run to
any forecast length and the error characteristics were found
to be reasonable through at least 10 days. It was also shown
that the correlations of annual-average T-CLIPER errors
with NHC official forecast errors was similar to those of
CLIPER5 and D-SHIFOR, meaning that T-CLIPER can be
used as a measure of annual forecast difficulty in the same
way as the older baseline models but extended beyond 120 h.
The correlation of the T-CLIPER annual mean errors with
the NHC forecast errors persists through 168 h, confirming its
applicability as an extended range baseline.

The TAB model replaced the BAM track forecast model,
both of which follow a trajectory from a global forecast model
with a small correction for the beta effect. TAB uses a grid-
point method for the horizontal smoothing to determine the
steering flow, rather than a spherical harmonic truncation.
Like BAM, three versions of TAB are run with deep, medium
and shallow vertical layers used to estimate the steering flow.
Both models were run in 2016 and early 2017 and results
showed that TABM had track errors after about 36 h that
were 20%–30% smaller than those for BAMM. These results
showed that TAB was a suitable replacement for BAM. The
TAB model track forecasts have considerable skill com-
pared with T-CLIPER and require nearly trivial computation
resources.

To provide insight into the vertical steering layers, a
method to determine optimal vertical weights that minimize
the difference between the steering estimated from GFS
model analyses and the current storm motion was developed.
Results show the optimal steering is obtained by weighting
the lower troposphere much more than the upper tropo-
sphere. The steering layer also tends to be deeper for low-
latitude TCs and stronger TCs. However, the dependence of
the steering layer on the maximum wind is weak for Atlantic
TCs with maximum winds below 100 kt. These results echo
those from previous studies of TC steering, but with the new
formulation, it is not necessary to compare results from steer-
ing calculated over arbitrary layers and the weights can devi-
ate from mass-weighted values.

The NHC guidance suite will continue to evolve. For exam-
ple, TAB could be improved by adjusting the weights based
on the optimal steering layer analyses. In addition, Dong and
Neumann (1986) showed that there is some advantage to in-
cluding pressure levels below 850 hPa and above 200 hPa to
estimate TC steering, so additional levels could be used to
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improve TAB. New techniques that use advanced statistical
methods such as machine learning could be used instead of
simpler linear regression approaches, many of which are al-
ready being developed for intensity forecasting (e.g., Xu et al.
2021; Su et al. 2020). In addition, the simple TAB track model
and the statistical–dynamical intensity models that are part of
the NHC guidance suite have applications beyond short-term
deterministic forecasting. For example, Shan and Yu (2020)
developed a trajectory model very similar to TAB for climato-
logical studies of global TC tracks and possible impacts of cli-
mate change and Lin et al. (2020) applied simplified track and
intensity forecast models to develop a large-member TC en-
semble system for estimating forecast uncertainty. Thus, the
simplified models in the NHC guidance suite will continue to
provide useful forecast information that complements dynam-
ical models.
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APPENDIX

List of Acronyms and Initialisms

AOR Area of responsibility
ATCF Automated Tropical Cyclone Forecast System
ATL Atlantic basin
BAM Beta and Advection Model
BAMD Beta and Advection Model, deep version
BAMM Beta and Advection Model, medium version
BAMS Beta and Advection Model, shallow version
CIRA Cooperative Institute for Research in the

Atmosphere
CLIP ATCF identifier for CLIPER
CLIPER Climatology and Persistence model
CLIPER5 Five-day Climatology and Persistence model
CLP5 ATCF identifier for CLIPER5

CPHC Central Pacific Hurricane Center
DSHP ATCF identifier for D-SHIPS
DSWR D-SHIPS Wind Radii model
DTOP ATCF identifier for DTOPS
DTOPS Deterministic to Probabilistic Statistical model
D-SHIFOR Decay-SHIFOR
D-SHIPS Decay-SHIPS
ECMWF European Centre for Medium-Range Weather

Forecasts
EFD e-folding distance
EP/CP Eastern North Pacific and central North Pacific

basins
GFS Global Forecast System
GFSI ATCF identifier for interpolated version of

GFS
HCCA HFIP Corrected Consensus Approach model
HFIP Hurricane Forecast Improvement Project
HWRF Hurricane Weather Research and Forecasting

Model
JTWC Joint Typhoon Warning Center
LGEM Logistical Growth Equation Model
MPI Maximum potential intensity
NCEP National Centers for Environmental

Prediction
NCO NCEP Central Operations
NCODA Navy’s Coupled Ocean Data Assimilation
NNIB Neural Network Intensity Baseline model
NNIC Neural Network Intensity Consensus model
OCD5 ATCF identifier for combined CLIPER5/

D-SHIFOR output
OFCL ATCF identifier for NHC/CPHC/JTWC

official forecasts
OHC Ocean heat content
QP Quasi-production
RFC Request for change
RI Rapid intensification
RIOB RI Operational Bayesian model
RIOC RI Operational Consensus model
RIOD RI Operational Discriminate Analysis model
RIOL RI Operational Logistic Regression model
RoI Radius of influence
SHF5 ATCF identifier for SHIFOR5
SHIFOR Statistical Hurricane Intensity Forecast model
SHIFOR5 Five-day Statistical Hurricane Intensity Forecast

model
SHIP ATCF identifier for SHIPS
SHIPS Statistical Hurricane Intensity Prediction

Scheme
SHIPS-RII SHIPS rapid intensification index
SST Sea surface temperature
ST5D ATCF identifier for JTWC 5-day implementation

of SHIFOR
TAB Trajectory and Beta model
TABD ATCF identifier for TAB, deep version
TABM ATCF identifier for TAB, medium version
TABS ATCF identifier for TAB, shallow version
TBDE ATCF identifier for TAB, deep version using

ECMWF data
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TBME ATCF identifier for TAB, medium version using
ECMWF data

TBSE ATCF identifier for TAB, shallow version using
ECMWF data

TC Tropical cyclone
TCLP ATCF identifier for T-CLIPER
T-CLIPER Trajectory Climatology and Persistence model
WCOSS Weather and Climate Operational Supercomputer

System
XTRP ATCF identifier for a track forecast based

solely on extrapolation of the current observed
storm motion

REFERENCES

Aberson, S. D., 1998: Five-day tropical cyclone track forecasts in
the North Atlantic basin. Wea. Forecasting, 13, 1005–1015,
https://doi.org/10.1175/1520-0434(1998)013,1005:FDTCTF.2.
0.CO;2.

}}, and C. R. Sampson, 2003: On the predictability of tropical
cyclone tracks in the Northwest Pacific basin. Mon. Wea.
Rev., 131, 1491–1497, https://doi.org/10.1175/1520-0493(2003)131
,1491:OTPOTC.2.0.CO;2.

Banzon, V., T. M. Smith, M. Steele, B. Huang, and H. M. Zhang,
2020: Improved estimation of proxy sea surface temperature
in the Arctic. J. Atmos. Oceanic Technol., 37, 341–349,
https://doi.org/10.1175/JTECH-D-19-0177.1.

Barnes, S. L., 1964: A technique for maximizing details in numeri-
cal weather map analysis. J. Appl. Meteor., 3, 396–409, https://
doi.org/10.1175/1520-0450(1964)003,0396:ATFMDI.2.0.CO;2.

Bister, M., and K. A. Emanuel, 2002: Low frequency variability of
tropical cyclone potential intensity. 1. Interannual to interde-
cadal variability. J. Geophys. Res., 107, 4801, https://doi.org/
10.1029/2001JD000776.

Cangialosi, J. P., 2021: National Hurricane Center forecast verifi-
cation report: 2020 hurricane season. NOAA/NHC, 77 pp.,
https://www.nhc.noaa.gov/verification/pdfs/Verification_2020.pdf.

Cummings, J. A., 2005: Operational multivariate ocean data
a similation. Quart. J. Roy. Meteor. Soc., 131, 3583–3604,
https://doi.org/10.1256/qj.05.105.

DeMaria, M., 2009: A simplified dynamical system for tropical
cyclone intensity prediction. Mon. Wea. Rev., 137, 68–82,
https://doi.org/10.1175/2008MWR2513.1.

}}, 2010: Tropical cyclone intensity change predictability
estimates using a statistical-dynamical model. 29th Conf. on
Hurricanes and Tropical Meteorology, Tucson, AZ, Amer.
Meteor. Soc., 9C.5, https://ams.confex.com/ams/29Hurricanes/
techprogram/paper_167916.htm.

}}, 2021: A new framework for statistical-dynamical tropical
cyclone intensity forecast models. 34th Conf. on Hurricanes
and Tropical Meteorology, Online, Amer. Meteor. Soc., 8C.4,
https://ams.confex.com/ams/34HURR/meetingapp.cgi/Paper/
373073.

}}, and J. M. Gross, 2003: Evolution of tropical cyclone forecast
models. Hurricane! Coping with Disaster: Progress and Chal-
lenges Since Galveston, 1900, R. Simpson et al., Eds., 1st ed.
Amer. Geophys. Union, 103–126.

}}, M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005:
Further improvements in the Statistical Hurricane Intensity
Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531–543,
https://doi.org/10.1175/WAF862.1.

}}, J. A. Knaff, and J. Kaplan, 2006: On the decay of tropical
cyclone winds crossing narrow landmasses. J. Appl. Meteor.,
45, 491–499, https://doi.org/10.1175/JAM2351.1.

}}, J. L. Franklin, M. J. Onderlinde, and J. Kaplan, 2021: Oper-
ational forecasting of tropical cyclone rapid intensification at
the National Hurricane Center. Atmosphere, 12, 683, https://
doi.org/10.3390/atmos12060683.

Dong, K., and C. J. Neumann, 1986: The relationship between
tropical cyclone motion and environmental geostrophic flows.
Mon. Wea. Rev., 114, 115–122, https://doi.org/10.1175/1520-0493
(1986)114,0115:TRBTCM.2.0.CO;2.

Dunion, J., J. Kaplan, and A. Schumacher, 2019: Improvement to
the Tropical Cyclone Genesis Index (TCGI). Final Rep.
NOAA Joint Hurricane Testbed, NA15OAR4590201, 16 pp.,
https://www.nhc.noaa.gov/jht/15-17reports/Dunion_201_
Schumacher_202_progress_reportFINAL_rev030619.pdf.

Franklin, J. L., and M. DeMaria, 1992: The impact of omega
dropwindsonde observations on barotropic hurricane track
forecasts. Mon. Wea. Rev., 120, 381–391, https://doi.org/10.
1175/1520-0493(1992)120,0381:TIOODO.2.0.CO;2.

Halperin, D. J., R. E. Hart, H. E. Fuelberg, and J. H. Cossuth,
2017: The development and evaluation of a statistical-dynamical
tropical cyclone genesis guidance tool. Wea. Forecasting, 32,
27–46, https://doi.org/10.1175/WAF-D-16-0072.1.

Harris, L., X. Chen, W. M. Putman, L. Zhou, and J. Chen, 2021:
A scientific description of the GFDL finite-volume cubed-
sphere dynamical core. NOAA Tech. Memo. OAR GFDL,
2021-001, 109 pp., https://doi.org/10.25923/6nhs-5897.

Holland, G. J., 1983: Tropical cyclone motion: Environmental
interaction plus a beta effect. J. Atmos. Sci., 40, 328–342,
https://doi.org/10.1175/1520-0469(1983)040,0328:TCMEIP.2.
0.CO;2.

Jarvinen, B. R., and C. J. Neumann, 1979: Statistical forecasts of
tropical cyclone intensity. NOAA Tech. Memo NWS NHC-
10, 22 pp.

Kaplan, J., and M. DeMaria, 1995: A simple empirical model for
predicting the decay of tropical cyclone winds after landfall.
J. Appl. Meteor. Climatol., 34, 2499–2512, https://doi.org/10.
1175/1520-0450(1995)034,2499:ASEMFP.2.0.CO;2.

}}, and }}, 2001: On the decay of tropical cyclone winds after
landfall in the New England area. J. Appl. Meteor. Climatol.,
40, 280–286, https://doi.org/10.1175/1520-0450(2001)040,0280:
OTDOTC.2.0.CO;2.

Klein, P. M., P. A. Harr, and R. L. Elsberry, 2000: Extratropical
transition of western North Pacific tropical cyclones: An
overview and conceptual model of the transformation stage.
Wea. Forecasting, 15, 373–395, https://doi.org/10.1175/1520-
0434(2000)015,0373:ETOWNP.2.0.CO;2.

Knaff, J. A., M. DeMaria, C. R. Sampson, and J. M. Gross, 2003:
Statistical, 5-day tropical cyclone intensity forecasts derived
from climatology and persistence. Wea. Forecasting, 18,
80–92, https://doi.org/10.1175/1520-0434(2003)018,0080:
SDTCIF.2.0.CO;2.

}}, C. R. Sampson, and G. Chirokova, 2017: A global statisti-
cal-dynamical tropical cyclone wind radii forecast scheme.
Wea. Forecasting, 32, 629–644, https://doi.org/10.1175/WAF-
D-16-0168.1.

Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane data-
base uncertainty and presentation of a new database format.
Mon. Wea. Rev., 141, 3576–3592, https://doi.org/10.1175/
MWR-D-12-00254.1.

WEATHER AND FORECAS T ING VOLUME 372158

Unauthenticated | Downloaded 12/01/22 03:27 PM UTC

https://doi.org/10.1175/1520-0434(1998)013<1005:FDTCTF>2.0.CO;2
https://doi.org/10.1175/1520-0434(1998)013<1005:FDTCTF>2.0.CO;2
https://doi.org/10.1175/1520-0493(2003)131<1491:OTPOTC>2.0.CO;2
https://doi.org/10.1175/1520-0493(2003)131<1491:OTPOTC>2.0.CO;2
https://doi.org/10.1175/JTECH-D-19-0177.1
https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2
https://doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2
https://doi.org/10.1029/2001JD000776
https://doi.org/10.1029/2001JD000776
https://www.nhc.noaa.gov/verification/pdfs/Verification_2020.pdf
https://doi.org/10.1256/qj.05.105
https://doi.org/10.1175/2008MWR2513.1
https://ams.confex.com/ams/29Hurricanes/techprogram/paper_167916.htm
https://ams.confex.com/ams/29Hurricanes/techprogram/paper_167916.htm
https://ams.confex.com/ams/34HURR/meetingapp.cgi/Paper/373073
https://ams.confex.com/ams/34HURR/meetingapp.cgi/Paper/373073
https://doi.org/10.1175/WAF862.1
https://doi.org/10.1175/JAM2351.1
https://doi.org/10.3390/atmos12060683
https://doi.org/10.3390/atmos12060683
https://doi.org/10.1175/1520-0493(1986)114<0115:TRBTCM>2.0.CO;2
https://doi.org/10.1175/1520-0493(1986)114<0115:TRBTCM>2.0.CO;2
https://www.nhc.noaa.gov/jht/15-17reports/Dunion_201_Schumacher_202_progress_reportFINAL_rev030619.pdf
https://www.nhc.noaa.gov/jht/15-17reports/Dunion_201_Schumacher_202_progress_reportFINAL_rev030619.pdf
https://doi.org/10.1175/1520-0493(1992)120<0381:TIOODO>2.0.CO;2
https://doi.org/10.1175/1520-0493(1992)120<0381:TIOODO>2.0.CO;2
https://doi.org/10.1175/WAF-D-16-0072.1
https://doi.org/10.25923/6nhs-5897
https://doi.org/10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2
https://doi.org/10.1175/1520-0469(1983)040<0328:TCMEIP>2.0.CO;2
https://doi.org/10.1175/1520-0450(1995)034<2499:ASEMFP>2.0.CO;2
https://doi.org/10.1175/1520-0450(1995)034<2499:ASEMFP>2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040<0280:OTDOTC>2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040<0280:OTDOTC>2.0.CO;2
https://doi.org/10.1175/1520-0434(2000)015<0373:ETOWNP>2.0.CO;2
https://doi.org/10.1175/1520-0434(2000)015<0373:ETOWNP>2.0.CO;2
https://doi.org/10.1175/1520-0434(2003)018<0080:SDTCIF>2.0.CO;2
https://doi.org/10.1175/1520-0434(2003)018<0080:SDTCIF>2.0.CO;2
https://doi.org/10.1175/WAF-D-16-0168.1
https://doi.org/10.1175/WAF-D-16-0168.1
https://doi.org/10.1175/MWR-D-12-00254.1
https://doi.org/10.1175/MWR-D-12-00254.1


Lin, J., K. Emanuel, and J. L. Vigh, 2020: Forecasts of hurricanes
using large-ensemble outputs. Wea. Forecasting, 35, 1713–
1731, https://doi.org/10.1175/WAF-D-19-0255.1.

Mainelli, M., M. DeMaria, L. K. Shay, and G. Goni, 2008:
Application of oceanic heat content estimation to opera-
tional forecasting of recent Atlantic category-5 hurri-
canes. Wea. Forecasting, 23, 3–16, https://doi.org/10.1175/
2007WAF2006111.1.

Marks, D. G., 1992: The beta and advection model for hurricane
track forecasting. NOAA Tech. Memo. NWS NMC 70, 89
pp., https://repository.library.noaa.gov/view/noaa/7184.

Neumann, C. J., 1972: An alternate to the HURRAN (Hurricane
Analog) tropical cyclone forecast system. NOAA Tech.
Memo. NWS SR-62, 24 pp., https://repository.library.noaa.
gov/view/noaa/3605.

Reynolds, R. W., and T. M. Smith, 1994: Improved global sea
surface temperature analyses using optimum interpolation.
J. Climate, 7, 929–948, https://doi.org/10.1175/1520-0442
(1994)007,0929:IGSSTA.2.0.CO;2.

Sampson, C. R., and A. J. Schrader, 2000: The Automated Tropi-
cal Cyclone Forecasting System (version 3.2). Bull. Amer.
Meteor. Soc., 81, 1231–1240, https://doi.org/10.1175/1520-
0477(2000)081,1231:TATCFS.2.3.CO;2.

Sardeshmukh, P. D., and B. I. Hoskins, 1984: Spatial smoothing
on the sphere. Mon. Wea. Rev., 112, 2524–2529, https://doi.
org/10.1175/1520-0493(1984)112,2524:SSOTS.2.0.CO;2.

Shan, K., and X. Yu, 2020: A simple trajectory model for climato-
logical study of tropical cyclones. J. Climate, 33, 7777–7786,
https://doi.org/10.1175/JCLI-D-20-0285.1.

Simon, A., A. B. Penny, M. DeMaria, J. L. Franklin, R. J. Pasch,
E. N. Rappaport, and D. A. Zelinsky, 2018: A description of
the real-time HFIP Corrected Consensus Approach (HCCA)
for tropical cyclone track and intensity guidance. Wea. Fore-
casting, 33, 37–57, https://doi.org/10.1175/WAF-D-17-0068.1.

Su, H., L. Wu, J. H. Jiang, R. Pai, A. Lui, A. J. Zhai, P. Tavallali,
and M. DeMaria, 2020: Applying satellite observations of
tropical cyclone internal structures to rapid intensification
forecast with machine learning. Geophys. Res. Lett., 47,
e2020GL089102, https://doi.org/10.1029/2020GL089102.

Tallapragada, V., L. Bernardet, M. K. Biswas, S. Gopalakrishnan,
Y. Kwon, Q. Liu, and X. Zhang, 2014: Hurricane Weather
Research and Forecasting (HWRF) model: 2013 scientific
documentation. HWRF Development Testbed Center Tech.
Rep., 99 pp.

Velden, C. S., and L. M. Leslie, 1991: The basic relationship
between tropical cyclone intensity and the depth of the en-
vironmental steering layer in the Australian region. Wea.
Forecasting, 6, 244–253, https://doi.org/10.1175/1520-0434
(1991)006,0244:TBRBTC.2.0.CO;2.

Xu, W., K. Balaguru, A. August, N. Lalo, N. Hodas, M. DeMaria,
and D. Judi, 2021: Deep learning experiments for tropical cy-
clone intensity forecasts. Wea. Forecasting, 36, 1453–1470,
https://doi.org/10.1175/WAF-D-20-0104.1.

O P S NO T E S 2159NOVEMBER 2022

Unauthenticated | Downloaded 12/01/22 03:27 PM UTC

https://doi.org/10.1175/WAF-D-19-0255.1
https://doi.org/10.1175/2007WAF2006111.1
https://doi.org/10.1175/2007WAF2006111.1
https://repository.library.noaa.gov/view/noaa/7184
https://repository.library.noaa.gov/view/noaa/3605
https://repository.library.noaa.gov/view/noaa/3605
https://doi.org/10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2
https://doi.org/10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2
https://doi.org/10.1175/1520-0477(2000)081<1231:TATCFS>2.3.CO;2
https://doi.org/10.1175/1520-0477(2000)081<1231:TATCFS>2.3.CO;2
https://doi.org/10.1175/1520-0493(1984)112<2524:SSOTS>2.0.CO;2
https://doi.org/10.1175/1520-0493(1984)112<2524:SSOTS>2.0.CO;2
https://doi.org/10.1175/JCLI-D-20-0285.1
https://doi.org/10.1175/WAF-D-17-0068.1
https://doi.org/10.1029/2020GL089102
https://doi.org/10.1175/1520-0434(1991)006<0244:TBRBTC>2.0.CO;2
https://doi.org/10.1175/1520-0434(1991)006<0244:TBRBTC>2.0.CO;2
https://doi.org/10.1175/WAF-D-20-0104.1

