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1  |  INTRODUC TION

Skaug (2001) introduced into the statistical literature the idea that 
the pairwise relationships, inferred from genetic data, between the 
members of a sample could be used in a mark– recapture frame-
work to estimate the size of a natural population. While genetic 
markers obtained non- invasively (e.g. from hair and faeces) have 

been used to sample and ‘recapture’ the same individuals using a 
traditional mark– recapture approach (Miller et al., 2005), Skaug 
(2001) proposed using related individuals (i.e. kin) as a type of re-
capture and illustrated the use of such an approach with microsat-
ellite data applied to a population of northern minke whales. This 
approach has subsequently been termed close- kin mark– recapture 
(CKMR).
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Abstract
In the last five years, interest in close- kin mark– recapture (CKMR), a variant of mark– 
recapture that uses genetically inferred kin as ‘recaptures’, has grown dramatically. 
However, understanding the basis of CKMR, and properly implementing it, remains 
challenging. This paper describes an R package, CKMRpop, for simulating age- 
structured populations with user- specified demography, overdispersed variance in 
reproductive success (allowing for different ratios of effective to census size) and ran-
dom sampling of individuals. Using compiled code for the simulation makes it feasible 
to simulate populations of millions of individuals. From the simulation output, pairs of 
sampled individuals related within a user- specified number of generations are found. 
Such pairs form the foundation for CKMR inference, and simulating them provides in-
sight for understanding the statistical basis for CKMR and for assessing the feasibility 
of CKMR in different scenarios. We predict that CKMRpop will serve as an important 
tool for researchers contemplating CKMR estimation of population size. Furthermore, 
the methods presented here for identifying and categorizing relationships beyond 
half- siblings allow a more complete picture of the wide variety of kin pairs encoun-
tered in populations. This identifies the fraction of kin pairs that may not be the target 
of a CKMR experiment, but may be inadvertently mistaken for a more closely related 
‘target’ kin pair. Additionally, as more distant kin categories will likely be accurately 
inferred from increasingly available and inexpensive whole genome resequencing, 
understanding the distributions of more distant relationships in populations is a first 
step towards broadening the scope of CKMR to include them.

K E Y W O R D S
abundance estimation, CKMR, close- kin mark– recapture, pairwise relationships

 17550998, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13513 by N

oaa D
epartm

ent O
f C

om
m

erce, W
iley O

nline L
ibrary on [18/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

www.wileyonlinelibrary.com/journal/men
mailto:￼
https://orcid.org/0000-0003-1326-0840
mailto:eric.anderson@noaa.gov
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1755-0998.13513&domain=pdf&date_stamp=2021-10-05


    |  1191ANDERSON

Since Skaug (2001), the last two decades have seen a dramatic in-
crease in the availability of genetic data and a reduction in cost, making 
CKMR more feasible. Additionally, the underpinnings of CKMR have 
been further developed, with Bravington, Skaug, et al. (2016) provid-
ing a comprehensive description of kin- probability calculations in the 
presence of covariates and a statistical treatment of sampling design 
considerations for CKMR by quantifying the Fisher information from 
the pseudo- likelihood. Finally, CKMR has proven tremendously suc-
cessful in providing fishery- independent estimates of abundance in 
large, valuable fisheries (Bravington et al., 2016), as well as in smaller 
populations of conservation concern (Hillary et al., 2018).

Accordingly, there is considerable interest in applying CKMR, espe-
cially in fisheries applications; however, implementing CKMR remains 
difficult. In addition to the massive sampling and genotyping efforts 
typically required, the statistical modelling and computation necessary 
for developing the CKMR pseudo- likelihood in long- lived species is 
non- trivial. One of the first hurdles, in this regard, can be simply under-
standing and predicting how many kin pairs of different types might be 
expected given a certain degree of sampling effort in a population of 
a given size. This prediction is especially challenging in age- structured 
populations with long- term sampling programmes carried out over 
multiple years, or in situations where the sampling is spatially orga-
nized in species that are not panmictic, despite very high levels of gene 
flow, as is often found in the marine environment (Waples, 1998).

An additional obstacle to applying CKMR today is that most of 
the theory for CKMR has been worked out only for rather close re-
lationships such as parent– offspring and/or half- sibling relationships. 
Published accounts of CKMR— either theoretical or practical— provide 
considerably less insight into the expected occurrence of other, more 
distant, kin pairs, such as cousins. Knowing the expected frequency 
of occurrence of these other types of kin pairs is important for two 
separate reasons. First, using genetic data, it can be difficult to distin-
guish these more distant kin pairs (like half- aunt– niece or half- first– 
cousin pairs) from the target kin pairs (like half- siblings) that one may 
wish to use for CKMR. Thus, in designing a CKMR experiment, it is 
important to know how many non- target kin pairs of different types 
are expected, because this will affect the reliability of CKMR ‘recap-
tures’ of target kin categories— if many first cousins or half- aunt– niece 
pairs are expected in a CKMR study using half- siblings, then sufficient 
genetic resources are needed to reliably distinguish a large fraction of 
these more distant kin categories from the half- siblings.

The second reason that more distant kin pairs are pertinent to 
CKMR studies today is that, at some point in the near future, it may 
be possible to reliably distinguish these more distant kin pairs. As 
the cost of DNA sequencing continues to decline (Fuentes- Pardo & 
Ruzzante, 2017), it becomes reasonable to entertain the possibility 
that low- coverage whole genome resequencing in non- model species 
with well- assembled genomes will provide sufficient information to 
reliably identify pairwise relationships an additional generation or two 
more distant than has traditionally been pursued in molecular ecology 
(Hanghøj et al., 2019) (i.e. identifying half- first cousins or great uncles, 
rather than merely parent– offspring and half- sibling pairs). If such rela-
tionships can be reliably identified, then they can be used as additional 

information in a CKMR framework, but only if we can predict their fre-
quency of occurrence given a population's size and other parameters.

There is a need for two developments that could help with the 
continued application of CKMR approaches. First, potential users of 
CKMR would benefit greatly from having a simple, easily understood 
way to simulate the populations that they study and to carry out, in 
silico, a variety of proposed sampling schemes in these populations. 
Second, from the results of such simulations, it would be beneficial 
to be able to categorize and count all the related pairs found in the 
samples out to an arbitrary degree of relationship. Here, we describe 
the R package CKMRpop that provides users with a way to accom-
plish both of these tasks.

In brief, the package CKMRpop gives a simple R interface for 
running the compiled C program spip (Anderson & Dunham, 2005) 
that provides for fast, forward- in- time simulation of age- structured 
populations, allowing the parameterization of a number of demo-
graphic features such as variability in reproductive success, degree 
of monogamy/polygamy and migration between demes, as well as 
the specification of a wide range of sampling schemes in the popu-
lation(s). Although spip has the capacity to simulate unlinked genetic 
markers in the course of the simulation, the objects of interest within 
CKMRpop are the simulated population census sizes, the samples 
collected from the population during the simulation, and, most im-
portantly, the pedigree of the population that is output by spip. Users 
more familiar with other forward- in- time simulation packages, for 
example the widely used and full- featured software SLiM (Haller & 
Messer, 2019), can configure the output of those programs (rather 
than of spip) to be used downstream by CKMRpop.

CKMRpop implements functions for extracting textual output 
from spip (or other simulation programs) and organizing it into na-
tive R data frames, providing easy access to information about the 
time of birth and death of all individuals in multiple inter- connected 
populations, the age-  and sex- specific annual census size of the 
populations, the identities and ages of individuals sampled from the 
populations, and the complete pedigree of all individuals in the pop-
ulations over the time of the simulation. Functions are available that 
produce a variety of summaries and plots to verify that the distribu-
tions of rates of birth, death and reproduction are what the user ex-
pects. And finally, CKMRpop provides a fast method, implemented 
in C, using RCpp (Eddelbuettel & François, 2011), to recursively 
traverse the simulated pedigree and identify all the pairwise rela-
tionships, out to a user- specified number of generations, between 
the sampled individuals from the simulation. The following section 
provides details about these aspects of the package.

2  |  METHODS

2.1  |  Interfacing with the program spip

The program spip was written in C and is intended for use on the 
Unix/Linux or Windows command line, writing all of its results in 
text format to the standard output stream. Once CKMRpop has 
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1192  |    ANDERSON

been installed using R on a user's computer, a function in the pack-
age allows for the straightforward download and installation of the 
OS- specific compiled command- line version of spip from GitHub. 
CKMRpop provides an R wrapper to spip, passing input to spip, catch-
ing error messages, then processing spip's text output and passing 
data frames back to R.

On the command line, all options available for parameterizing 
the spip simulation can be given as long option names preceded by 
two hyphens, for example, ‘- - max- age 20’ on the spip command line 
sets the maximum age of the species being simulated to 20 years. 
In CKMRpop, these options are specified as named members of a 
list of options, where the names are the spip option names with the 
preceding dashes removed. For example, if the options to spip were 
to be stored in an R list pars, then setting ‘ pars$max- age <-  20’ would 
store that maximum age option to be passed to spip.

Details of spip's simulation approach are provided in Anderson 
and Dunham (2005). Since the original publication on spip, the 
program has been expanded to allow for simulation of multiple 
demes, each with their own vital rates and with arbitrary, time- 
dependent rates of migration between them. CKMRpop provides 
the functions spip _ help() and spip _ help _ full() to 
print spip's manual files in abbreviated and long format to the R 
console window. Population size regulation in spip is managed by 
the user specifying the number of incoming individuals to be born 
in each new cohort. CKMRpop provides functions for determin-
ing these numbers and the resulting age structure in scenarios of 
constant population size, given the age- specific survival rates in 
the population. The user specifies the number of individuals at the 
outset of the simulation; these are regarded as unrelated founders 
of the simulated pedigree, and the simulation must be run forward 
a sufficient number of generations to simulate the desired, possi-
ble pairwise relationships between individuals. Fine- grain control 
of sampling of the populations within spip is available by specify-
ing the fraction of males and females of each age that should be 
randomly sampled each year. The sampling can be either lethal or 
non- lethal.

CKMRpop runs spip and returns data frames that hold the ped-
igree of the population, the census sizes before and after the ep-
isode of death each year, the times of death of all individuals that 
died during the simulation, an account of every event of individual 
migration between the populations, and the IDs, sampling times 
and populations of origin and sampling of all individuals that were 
taken as samples from the populations. With these data frames 
available in R, the package CKMRpop includes a variety of func-
tions for summarizing and visualizing the output. The first package 
vignette, viewable at https://eriqa nde.github.io/CKMRp op/artic 
les/speci es_1_simul ation.html, provides a comprehensive descrip-
tion of these functions, and they are also fully documented in the 
package manual. The most important functions are those that use 
the pedigree information and the IDs of the samples to identify 
pairs of different relationship categories. The approach to doing so 
is described in the next section.

2.2  |  Defining relationships, ancestry vectors, etc.

In any natural or randomly simulated population of dioecious mem-
bers, the number of possible pairwise relationships between two in-
dividuals can be quite large, especially when relationships involving 
more than just one generation of separation are involved. If inbreed-
ing is a possibility, this further increases the number of ways that 
two individuals might be related. Sometimes, we might be interested 
specifically in relationships that involve a particular sex of an ances-
tor, while in some applications that might not matter. In fact, in many 
cases we can expect that we will want to enumerate relationships 
into summarized categories. To handle this diversity of goals, we first 
develop a general approach that is capable of classifying every type 
of distinct pairwise relationship that could be encountered. We sub-
sequently introduce some approaches for aggregating the output of 
such a fine- grained classification of relationships into coarser rela-
tionship categories.

Two individuals— let us call them x and y— in a population are 
related because they share the same individuals amongst their an-
cestors, or if one is an ancestor of the other. In order to treat these 
two cases equivalently, we define the ‘ancestors’ of an individual to 
include the individual itself, in addition to its formal ancestors. These 
shared individuals amongst the ancestors of x and y, need not, of 
course, be the same ancestors for both x and y. For example, indi-
vidual z might be x's mother, while z could be y's maternal grand-
mother— a situation that would make x at least a half- aunt of y. We 
will consider pairwise relationships that involve shared ancestors 
going back no more than n generations from either of the two mem-
bers of the pair. This is made simple by recording the identities of the 
ancestors of each individual, starting from the individual itself, in an 
ancestry vector. If n = 0, then we consider only the individual itself, 
and the ancestry vector is of length 1. If n = 1, then we consider the 
identities of the individual and its two parents: first the father and 
then the mother. For example, the ancestry vector for individual x 
when n = 1 is of length 3 and has the ordered elements: 1) individual 
x, 2) the ID of x's father and 3) the ID of x's mother. If n = 2, ancestry 
out to the grandparents is recorded, giving a vector with ordered el-
ements: 1) individual x, 2) the ID of x's father, 3) the ID of x's mother, 
4) the ID of x's father's father, 5) the ID of x's father's mother, 6) the 
ID of x's mother's father and 7) the ID of x's mother's mother. Such a 
scheme can be carried out to any number of generations, following 
a simple numbering/ordering convention as shown in Figure 1. In 
general, the length of the ancestry vector is L = 2n+1 − 1.

We let vx =
(
vx,1, … , vx,L

)
 denote the ancestry vector of individ-

ual x, and we define vy similarly for individual y. Recall that the vx,'s 
and vy,'s are the IDs of the individuals in the ancestries of x and y, re-
spectively. Now, we define M as the ancestry match matrix between 
x and y. M is a matrix of 0's (or FALSE's) and 1's (or TRUE's) with L 
rows and L columns, such that mr,c, the element in the rth row and cth 
column of M, is equal to 1 (TRUE) if vx,r = vy,c, and 0 (FALSE) other-
wise. Every possible pairwise relationship between two individuals is 
captured by the value of M, and so, it provides a way to enumerate, 
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    |  1193ANDERSON

on a fine- grained scale, all the distinct relationships between any 
pair of individuals. It is worth noting that, in species that remain of 
the same sex throughout their lives, many values of M are impossible 
(i.e. a male ancestor of x could not be a female ancestor of y); how-
ever, we do not impose such a constraint on the form of M, as doing 
so would preclude its use in modelling hermaphroditic, protandrous 
or protogynous species.

For illustration, Figure 2a plots the ancestry match matrices for 
n = 2 of six different relationships between two individuals (ind_1 
and ind_2). Shown are the relationships of ‘self’, ‘father– offspring’, 
‘full- sibling’, ‘paternal– half- sibling’, ‘half- aunt– niece’ and ‘full- cousin’.

It should be clear that the pattern of black squares in the an-
cestry match matrix uniquely defines any possible relationship. It is 
also evident from the different coloured shading in the plots that 
there are different regions or ‘zones’ in the ancestry match matrix 
in which a shared ancestor gives rise to a different type of relation-
ship. Finally, note that some of the blackened cells correspond to the 
shared ancestors of shared ancestors. This is particularly evident in 
the ‘self’ relationship, where, since the ID of the individual itself is 
shared, so too are the IDs of all of its ancestors. In such cases, the 
directly relevant shared ancestor is the most recent of the string of 
shared ancestors, with the remainder simply being the ancestors of 
that first shared ancestor. We refer to such an individual as a primary 
shared ancestor, with the ancestors of the primary ancestor desig-
nated as secondary shared ancestors. In Figure 2a, the cells corre-
sponding to primary shared ancestors are highlighted with a white 
dot in the middle of them. Note that a pair of individuals can have 
more than one primary shared ancestor. It turns out to be straight-
forward to identify the secondary (and hence, also, the primary) 
shared ancestors in an ancestry match matrix: any cell with mr,c = 1 

in M denotes a secondary shared ancestor if m⌊ r

2
⌋,⌊ c

2
⌋ = 1, where ⌊w⌋ 

denotes the largest integer less than w.
Figure 2b shows the different relationship zones out to n = 4 gen-

erations. A primary shared ancestor in each of these different zones 
gives rise to a certain class of relationship, as listed in Table 1. For 
example, primary shared ancestors in the Si zone give rise to siblings: 
if a pair shares one primary shared ancestor and it is in the Si zone, 
then the related pair has a half- sibling relationship; the occurrence 
of two primary shared ancestors in the Si zone indicates that the 
members of the pair are full siblings.

The relationship zones shown in Table 1 are listed in a natural 
order that corresponds to the contribution that a single primary 
shared ancestor in each zone makes to the coefficient of kinship, �, 
of the related pair (i.e. the probability that a gene segregated from x 
and a gene segregated from y are identical by descent). This proba-
bility is a function of the number of meioses that occur when a gene 
copy is transmitted from the primary shared ancestor to either mem-
ber of the pair, and that number can be easily read from the position 
of the relationship zone in the ancestry match matrix. Let m1 and 
m2 be the number of meioses between the primary shared ancestor 
and the first (x) and second (y) individuals of the pair, respectively. In 
Figure 2b, the first individual is denoted ind_1 and the second indi-
vidual is denoted ind_2. Visually, in Figure 2b, the values of m1 and 
m2 for any primary shared ancestor can be found by counting the 
number of different relationship zones that must be entered in order 
to reach the zone on the left or bottom edge of the figure when 
travelling left from the primary shared ancestor (for m1) or down 
from the primary shared ancestor (for m2). For example, a primary 
shared ancestor in the GGP zone above the diagonal gives m1 = 0, 
m2 = 3, whereas a primary shared ancestor in the FCr1 zone below 

F I G U R E  1  Ordering/numbering/naming scheme for the identity of ancestors in an ancestry vector, shown going back for up to 
n = 3 generations. (a) The order of an individual's ancestors in an ancestry vector. 1 is the individual itself, 2 is its father, 3 its mother and so 
forth. (b) The abbreviated names given to the members of the ancestry vector. These appear in the ancestry match matrices shown in Figure 
1. The abbreviations are as follows: s = ‘self’; p= ‘pa’ (father); m= ‘ma’ (mother); pp= ‘pa's pa’ (father's father), and so forth, such that, for 
example, mmp = ‘ma's ma's pa’ (the father of the individual's mother's mother), etc. Note that this is not a pedigree as such— it is diagrammatic 
device used to denote the numbering of identities in an ancestry vector. While it appears that the individual 1 (in a) or s (in b) is not inbred, 
actual inbreeding of the focal individual can be represented by the repeated occurrence of any ancestor's ID within the ancestry vector

(a) (b)
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1194  |    ANDERSON

F I G U R E  2  The Ancestry Match 
Matrix. (a) Ancestry match matrices 
to n = 2 generations of six example 
relationships indicated above each panel. 
Notation after the first comma in each 
name is the dominant relationship notation 
(see text). The blackened cells represent 
shared individuals in the ancestry vectors 
of the two members (ind_1 and ind_2) of 
the pair. The blackened cells with a white 
dot in the centre show the primary shared 
ancestors. The x-  and y- axis values denote 
specific elements of the ancestry vectors 
of ind_1 and ind_2, as described in Figure 
1. The different colours in the background 
of each cell show different relationship 
‘zones’. (b) Colour- coded relationship 
zones and their labels for the ancestry 
match matrix to n = 4 generations. The 
labels and meanings of each zone are 
defined in Table 1. The zones that straddle 
the diagonal: Se, Si, FC, SC and TC, are 
zones in which shared ancestors give rise 
to symmetrical relationships— those in 
which the relationship that a has to b is 
the same as the relationship that b has to 
a. All other zones are associated with non- 
symmetrical relationships

Half Aunt−Niece/Nephew, A[1,0] Full First Cousin, FC[2,2]

Full Sibling, Si[2,2] Paternal Half Sibling, Si[1,1]

Self, Se[1,1] Father−Offspring, PO[0,1]
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the diagonal gives m1 = 3, m2 = 2. The probability that a non- inbred 
x and y each segregates a gene that is identical by descent with the 
same gene inherited from a single primary shared ancestor in a given 
relationship zone is � (1) = 2−(m1+m2+1) (because x segregates a copy 
of either of the two genes from the ancestor with probability 2−m1 , 
and y segregates a copy of the same gene as x from the ancestor 
with probability 1

2
⋅ 2−m2). Thus, Table 1 is sorted in decreasing order 

of � (1). When two zones have the same � (1), they are placed in as-
cending order of max {m1, m2}, thus listing zones with the capacity 
for more primary shared ancestors first.

The properties of the ordering in Table 1 suggest a simple way 
of summarizing the relationship of a pair. We define the dominant re-
lationship of a pair as the intersection of two pieces of information:

1. the first relationship zone (ordered as in Table 1) in which the 
pair has at least one shared primary ancestor,

2. the number of primary shared ancestors in that relationship zone.

In practice, for the non- symmetrical relationships (which are 
those that have relationship zones that do not straddle the dotted, 
diagonal line in Figure 2b), we record, in an ordered list of length 
two, the number of primary shared ancestors in the zone occurring 
above the diagonal and in the zone occurring below the diagonal, 
as this demarcates the orientation of non- symmetrical relationships 
(e.g. parent– offspring versus offspring– parent). This provides for a 
compact notation, examples of which appear in the facet headers 
of Figure 2a. For example, the father– offspring pair in the figure 
is notated PO[0,1], indicating that the PO zone above the dotted 
diagonal line includes 0 primary shared parents, while 1 primary 
shared ancestor occurs in the PO zone below the dotted diagonal 
line; therefore, the second individual of the pair (ind_2) is the parent 
while ind_1 is the child (because the shared ancestor is ‘self’ to ind_2 
and is ‘father’ to ind_1). Similarly, the half- aunt- niece/nephew rela-
tionship is denoted by A[1,0] which tells us that the aunt/uncle in the 
relationship is ind_1. When notating the symmetrical relationships, 
the number of primary shared ancestors in the entire zone is merely 
written twice. For example, a half- sibling is written as Si[1,1] and a 
full first cousin is written as FC[2,2]. In every symmetrical relation-
ship, the second number (after the comma) is redundant, since it is 
always the same as the first; however, this convention is convenient 
for the programming involved in categorizing relationships.

It must be stressed that the dominant relationship in a pair is 
not necessarily the only relationship between the members of the 
pair. Primary shared ancestors in later zones could provide addi-
tional relationships. For example, you could have paternal half- 
siblings that are also first cousins through the maternal lineage. In 
general, however, in large populations, and with moderate values of 
n, such compound relationships are encountered far less frequently 
than non- compound relationships (by the same reasoning that kin 
triads are encountered much less frequently than kin pairs in such 
circumstances, see, for example, section 4.3 in Bravington, Skaug, 
et al., 2016). Accordingly, it is worthwhile to summarize pairwise 
relationships according to what we call the dominant relationship, 

as it provides a lower bound on the kinship of the pair. CKMRpop 
provides this summary by dominant relationship type. It also returns 
detailed plots of all the distinct ancestry match matrices, found in a 
simulation, within each dominant relationship category, so that the 
occurrence of compound (and inbred) relationships within the simu-
lation can be assessed.

2.3  |  Identifying related, sampled pairs from the 
simulated pedigree

After the spip simulation has completed and its output has been im-
ported into R, the necessary elements for identifying related pairs 
are 1) the pedigree: a data frame with three columns, kid, pa and ma, 
that give the IDs of the two parents of every child in the simulated 
population(s); and 2) a vector of the IDs of the sampled individu-
als (the individuals that were randomly sampled during the course 
of the simulation). In large simulated populations, the pedigree may 
consist of millions of rows, so an efficient algorithm for identifying 
related pairs amongst the much smaller number of sampled individu-
als is necessary. CKMRpop implements such a function in RCpp for 
speed. Briefly, first, the pedigree is stored in memory as a directed 
graph (a collection of vertices and directed edges), with array ac-
cess to the sampled individuals. Then, starting from each sampled 
individual, a recursive function, search _ up(), implements a 
depth- first search for other sampled individuals that extends up 

TA B L E  1  Relationship ‘zones’ within the ancestry match 
matrix to n = 4 generations, listed in decreasing order of � (1), the 
contribution that a single primary shared ancestor in the zone 
makes to the coefficient of kinship of the pair. The `Symm’ column 
contains a Y for zones associated with symmetrical relationships 
and an N otherwise

Code Symm �
(1) Description

Se Y 1

2
Self or monozygous twin

PO N 1

4
Parent/offspring

Si Y 1

8
Sibling

GP N 1

8
Grandparent/grandchild

A N 1

16
Avuncular (aunt/niece, etc.)

GGP N 1

16
Great- grandparent/gg- offspring

FC Y 1

32
First cousin

GA N 1

32
Great avuncular

GGGP N 1

32
Great- great- grandparental

FCr1 N 1

64
First cousin, once removed

GGA N 1

64
Great- great avuncular

SC Y 1

128
Second cousin

FCr2 N 1

128
First cousin, twice removed

SCr1 N 1

256
Second cousin, once removed

TC Y 1

512
Third cousin
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1196  |    ANDERSON

the pedigree for n generations above the sampled individual. At the 
same time, with each invocation of search _ up() (including re-
cursive invocations by the search _ up() function itself), another 
algorithm, search _ down()— a depth- first search for sampled indi-
viduals down the pedigree for n generations from the current vertex 
(individual)— is initiated and completed. All possible pairs of samples 
identified during this process are then identified as related. After 
running this algorithm, starting from each sample, each distinct pair 
that is found is stored in a list. The ancestry vectors of the members 
of those pairs are obtained from the pedigree, and then the ances-
try match matrix for each related pair is computed using an outer- 
product- like operation on the ancestry vectors.

CKMRpop returns a data frame of all related pairs amongst the 
samples, along with the covariates of each pair member that are per-
tinent to a CKMR study. As noted in Bravington, Skaug, et al. (2016), 
these covariates include the time (year) and place (deme) of birth and 
of capture of each individual, and hence, the age of capture of each 
individual is known. These covariates determine the different cat-
egories the pairs belong to— each with their own kinship probabili-
ties, sensu Bravington, Skaug, et al. (2016)— for calculating the CKMR 
pseudo- likelihood. Users can censor such information, if desired, to 
simulate a case where such covariates are latent variables and are 
not directly observed.

If the kin pairs found in a CKMR sampling experiment are largely 
independent of one another, then the CKMR pseudo- likelihood 
should behave much like a true likelihood (Bravington, Skaug, 
et al., 2016). This property is not enjoyed if identified kin pairs are 
not largely independent. To assist the user in identifying situations 
where kin pairs should not be treated as independent, CKMRpop 
constructs a graph with individuals as vertices and kin- pair relation-
ships indicated by edges between the pair members, and it identifies 
the connected components in this graph. Such an exercise provides 
the user with an immediate and comprehensive list of all pairs that 
participate in triads or in groups with a higher number of pairs— an 
obvious indication of non- independence of the pairs. This graph is 
available in a tidy format providing easy viewing and manipulation by 
the user, and CKMRpop includes built- in plots for viewing and inter-
preting these relationships between pairs. Of course, for advanced 
users, CKMRpop provides a fully customizable individual- based sim-
ulation, the outputs of which can be used to directly evaluate the 
suitability of the pseudo- likelihood by calculating Bravington, Skaug, 
et al. (2016)’s Equation (4.5) which may suggest exploring an alterna-
tive to the pseudo- likelihood (Bravington, Skaug, et al., 2016, p. 268).

3  |  RESULTS AND DISCUSSION

The development version of the R package that implements the func-
tionality described above is available for free download from https://
github.com/eriqa nde/CKMRpop, and the stable version of the pack-
age is available on CRAN at https://cran.r- proje ct.org/web/packa 
ges/CKMRp op/index.html. The package vignettes give full examples 
of its use in two different scenarios: 1) a single- population version of 

an estuary- nursing elasmobranch and 2) a simple multiple popula-
tion/sampling- site version that includes migration between demes. 
Additional examples for a variety of life histories will continue to 
be added to the package to help new users quickly understand how 
to set the spip parameter values to model their own research spe-
cies and scenarios. We foresee that the availability of CKMRpop will 
simultaneously serve the multiple purposes of: providing an exten-
sible platform for performing power- analysis simulations for CKMR, 
helping biological researchers understand the statistical underpin-
nings of CKMR and helping statistical researchers appreciate the 
consequences of biological complexities that impact CKMR; deliver-
ing much- needed information about the occurrence of non- target 
kin pairs, beyond parent– offspring and half- sibling pairs, in CKMR 
studies; and offering a simulation mechanism for understanding the 
potential to use more distant relationships in CKMR.

Another R package called fishSim, available on GitHub (https://
github.com/SMBay lis/fishSim), allows the identification of kin pairs 
in simulated populations. It has been used to perform simulations 
assessing the effect of dispersal limitation and spatially variable 
sampling probabilities on CKMR estimates of population size, repro-
ductive schedules and survival (Conn et al., 2020). Like CKMRpop, 
the fishSim package allows the user to configure a forward- in- time 
simulation of a population (or populations). Unlike CKMRpop, how-
ever, the code implementing the simulation in fishSim is entirely 
written in R and has been designed so that it is easily customizable, 
by writing a few custom functions in R, to account for nearly any 
imaginable life history or sampling oddity. By contrast, the popula-
tion simulations possible in CKMRpop are restricted to those that 
can be obtained by adjusting the options in spip. On the other hand, 
the compiled code of spip runs considerably faster than fishSim, es-
pecially for large populations (Table 2).

fishsim's kin- finding algorithm employs ancestry vectors, such as 
CKMRpop, although does not take the same ancestry match ma-
trix approach. There are several separate functions in fishSim for 
identifying related pairs. The first, findRelatives() (as well as a 
parallelized version, findRelativesPar()), appears to require 
that all possible pairs of samples be compared with one another— a 
computational task that scales quadratically with the number of 
sampled individuals. An additional fishSim function for finding rel-
atives, called quickin(), is now recommended for routine use, as 
it is much faster; however, it may not capture the full array of possi-
ble relationships between pairs of inbred individuals (Shane Baylis, 
pers. comm.). CKMRpop's kin- finding algorithm, based on a recur-
sive search of the pedigree, finds relatives with run times that scale 
linearly in the number of sampled individuals. Since that recursive 
search is implemented in compiled code, it runs quite quickly; how-
ever, there is some overhead in setting up the data structures, which 
is done in interpreted R code.

To assess run times of CKMRpop and fishSim, I simulated a pop-
ulation for 100 years with life history (survival and reproduction) 
like that in the fishsim vignette (see https://github.com/eriqa nde/
CKMRp op_vs_fishS im_run_times for details). I started each simula-
tion in CKMRpop or fishSim with the same number, N0, of founders. 
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Because of differences in how the two packages implement pop-
ulation size regulation and sampling, it is not possible to simulate 
the same, exact, population sizes, but they are close in terms of the 
total number of individuals in the simulated pedigree, NP, and the 
total number of individuals sampled, S. For different values of N0, 
I ran a single simulation with each software package and recorded 
the number of seconds required to complete the population simula-
tion and the kin- finding parts of each analysis. For kin- finding with 
findRelativesPar(), fishsim was allowed to use 20 cores, while 
kin- finding with quickin() and within CKMRpop was done with 
a single core. All analyses were run on a node of a modern, Linux 
computer cluster. The results are presented in Table 2.

As expected, the findRelativesPar() function in fishSim 
becomes impractical as the number of samples increases. On the 
other hand, fishSim's quickin() function is impressively fast— faster 
than the kin- finding routine in CKMRpop until the sample sizes get 
up into the low 10 thousands. As the population sizes increase, the 
run- time disparities for the forward population simulation phase of 
fishSim and CKMRpop become more pronounced. When millions 
of individuals are simulated, fishSim requires greater than 100- fold 
more time (as might be expected, as spip's simulation is done with 
compiled code). However, for simulating small populations, this does 
not represent a great cost, and fishSim's customizability in the R lan-
guage could be a great benefit.

While the use of relationships beyond half- siblings (like half- 
avuncular, or half- first cousin relationships) in CKMR is an exciting 
prospect, doing so poses several complications that must be ad-
dressed. Most importantly, the ages and years of birth of the an-
cestors of individuals sampled for CKMR are not observable. This 
means there is not an obvious and direct way to control for variance 
in reproductive success and cohort strength while using such pairs 
for CKMR. By contrast, half- siblings born in different years are, by 
definition, not part of the same cohort, and therefore, restricting 
focus in CKMR to only those half- sibling pairs that include members 
from different cohorts provides one defensible and straightforward 
way to account for variance in reproductive success due to variation 

in recruitment strength. Since the reproductive events that might in-
flate the kinship probabilities for half- first cousins or half- avuncular 
pairs are those that give rise to the ancestors of the sample, rather 
than to the members of the sample, themselves, and because there 
is no way to know the ages of those ancestors, there is no easy way 
to restrict sampled pairs to only those whose ancestors were defi-
nitely not part of a shared reproductive event. Accordingly, using 
more distant kin pairs in CKMR may require accounting for vari-
ance in reproductive success by explicitly modelling and estimating 
it within the CKMR likelihood. It will be important to assess how 
the estimation of different parameters (e.g. the total population size 
versus the per- generation dispersal rate) is influenced by variance 
in reproductive success when using distant kin. Having a simulation 
package— especially one like CKMRpop, that allows the user to spec-
ify extra- Poisson variation in offspring number— will be critical for 
helping move forward in this realm.

A typical run of a moderately sized population in CKMRpop will 
be quite fast (less than a second, to several seconds). However, as is 
typical of forward- in- time, individual- based simulations, when the 
simulated population sizes get up into the millions, each run by spip 
can require considerable time and memory and produce sizable out-
put. This, in turn, can substantially lengthen the time and memory 
required for functions in CKMRpop to process the output. For ex-
ample, in simulating a teleost with a 20- year life span for 60 years 
with a stable population size of 1.5 million fish of age 2 and older, spip 
produces 9.3 Gb of output. The entire process of one simulation of 
this size and the associated identification and categorization of kin 
pairs from 10,000 sampled individuals requires roughly half an hour 
using four CPUs on a modern server. As seen in our comparison, 
fishSim likely would have required many hours for the forward- in- 
time simulation phase. An alternative to printing the entire pedigree 
(as done by spip) would be to store the ancestry vectors for all indi-
viduals for only a few generations and then only print them for the 
sampled individuals. The CKMRpop vignettes show an example of 
doing this with the SLiM software. Such an approach carries the ad-
vantage that the text output is considerably smaller, and there is no 

TA B L E  2  Run times for the forward- in- time simulation phase and the kin- pair finding phase of comparable simulations using 
CKMRpop and fishSim. Times are elapsed times in seconds, tCP for CKMRpop and tFS for fishSim. For pair finding in fishSim, tfRP

FS
 is using 

findRelativesPar() with 20 cores, and tqk
FS

 is using quickin(). N0: number of founders; NP,CP and NP,FS:total number of simulated 
individuals in pedigree from CKMRpop and fishsim, respectively; SCP and SFS: number of sampled individuals, respectively

N0

Forward- in- time simulation Finding sampled, related pairs

NP,CP NP,FS tCP tFS SCP SFS tCP t
qk

FS
tfrP
FS

500 35,467 20,615 0.2 3.0 237 140 2.0 0.1 1.7

1000 70,736 60,583 0.3 7.0 448 280 3.3 0.2 7.9

2,500 177,270 149,274 0.7 19.4 1,168 700 9.1 0.5 78.0

5,000 352,876 290,158 1.4 40.7 2,326 1,400 18.2 1.4 488.9

10,000 707,442 546,793 2.8 88.1 4,620 2,800 36.5 4.3 3,457.5

25,000 1,766,157 1,413,680 7.2 349.1 11,319 7,000 95.1 32.2 53,263.5

50,000 3,536,055 2,846,662 15.5 1,096.4 22,935 14,000 213.0 123.2 – 

100000 7,068,476 5,752,280 30.6 3,485.2 46,282 28,000 458.1 501.0 – 
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1198  |    ANDERSON

longer a necessity to recursively traverse the pedigree to find the an-
cestry vectors for the sampled individuals, eliminating the overhead 
involved in setting up the data structures for that recursive traversal. 
Using SLiM would also provide the user with a far more custom-
izable framework for simulations, allowing, for example, simulation 
of individuals interacting in continuous space and the simulation of 
genome- scale data for the sampled individuals. Nonetheless, for 
very large problems, an alternative to forward- in- time simulations 
may, in some cases, be desirable.

The approach presented here for identifying kin pairs by the an-
cestry match matrix is ideally suited for simulating kin pairs in a ret-
rospective fashion. Just as the coalescent process allows modelling 
the lineages of a sample, backward in time, without having to explic-
itly simulate all the individuals in a population, so too will it be possi-
ble to simulate kin pairs by an analogous approach. Such an approach 
has already been implemented in non- age- structured populations to 
simulate segments of genome in diploid populations (Gasbarra et al., 
2005). That method could be adapted to the simulation of kin pairs 
with very fast run times. Analogous to the coalescent, the run times 
of such simulations would depend only on the sample size and the 
age structure of the population, but not on the total population size. 
Furthermore, we note that the combination of the ancestry match 
matrix approach, for defining relationships, and the retrospective 
view for conceptualizing populations could provide for a fully gen-
eral, efficient approach to calculating kinship probabilities, both with 
and without covariate uncertainty. Such a general framework could 
considerably simplify the implementation of CKMR inference across 
a wide variety of population and sampling scenarios and is actively 
being researched.

ACKNOWLEDG EMENTS
I am supremely grateful for my long association with Hans Skaug 
and Mark Bravington and the considerable efforts both of them 
have made in helping me to understand the vagaries of the CKMR 
approach. The inspiration for the R package CKMRpop came from 
working with David Portnoy and Carlos Garza to identify and 
evaluate opportunities for CKMR applications in the Atlantic and 
Pacific Oceans and the Gulf of Mexico. I gratefully acknowledge 
many helpful discussions with both of them. Shane Baylis pointed 
me to fishSim's impressive quickin() function for the run- time 
comparison, Paul Conn and Daniel Ruzzante provided helpful 
comments on a pre- submission version of the manuscript, and Robin 
Waples provided valuable feedback as an early user of CKMRpop. 
Peter Ralph and two additional anonymous referees provided many 
insightful comments that greatly improved this manuscript as well as 
the utility of CKMRpop.

OPEN RE SE ARCH BADG E S

This article has earned an Open Data Badge for making publicly 
available the digitally- shareable data necessary to reproduce the 

reported results. The data is available at https://cran.r-proje ct.org/
web/packa ges/CKMRp op/index.html, https://github.com/eriqa nde/
CKMRpop, https://eriqa nde.github.io/CKMRp op/, https://github.
com/eriqa nde/CKMRp op_vs_fishS im_run_times.

DATA AVAIL ABILIT Y S TATEMENT
CKMRpop is available as an R package with these associated links:

• Stable version available on CRAN: https://cran.r- proje ct.org/
web/packa ges/CKMRp op/index.html

• Development version and entire revision history on GitHub: 
https://github.com/eriqa nde/CKMRpop

• Online version of all package documentation: https://eriqa nde.
github.io/CKMRp op/

• Code for run- timing comparisons of CKMRpop and fishSim: 
https://github.com/eriqa nde/CKMRp op_vs_fishS im_run_times

ORCID
Eric C. Anderson  https://orcid.org/0000-0003-1326-0840 

R E FE R E N C E S
Anderson, E. C., & Dunham, K. K. (2005). spip 1.0: a program for sim-

ulating pedigrees and genetic data in age- structured populations. 
Molecular Ecology Notes, 5, 459– 461.

Bravington, M. V., Grewe, P. M., & Davies, C. R. (2016). Absolute abun-
dance of southern bluefin tuna estimated by close- kin mark- 
recapture. Nature Communications, 7, 1– 8. https://doi.org/10.1038/
ncomm s13162

Bravington, M. V., Skaug, H. J., & Anderson, E. C. (2016). Close- kin 
mark- recapture. Statistical Science, 31, 259– 274. https://doi.
org/10.1214/16- STS552

Conn, P. B., Bravington, M. V., Baylis, S., & Ver Hoef, J. M. (2020). 
Robustness of close- kin mark– recapture estimators to dis-
persal limitation and spatially varying sampling probabilities. 
Ecology and Evolution, 10, 5558– 5569. https://doi.org/10.1002/
ece3.6296

Eddelbuettel, D., & François, R. (2011). Rcpp: Seamless R and C++ 
Integration. Journal of Statistical Software, 40, 1– 18.

Fuentes- Pardo, A. P., & Ruzzante, D. E. (2017). Whole- genome sequenc-
ing approaches for conservation biology: Advantages, limitations 
and practical recommendations. Molecular Ecology, 26, 5369– 5406. 
https://doi.org/10.1111/mec.14264

Gasbarra, D., Sillanpää, M. J., & Arjas, E. (2005). Backward simulation of 
ancestors of sampled individuals. Theoretical Population Biology, 67, 
75– 83. https://doi.org/10.1016/j.tpb.2004.08.003

Haller, B. C., & Messer, P. W. (2019). SLiM 3: Forward genetic simulations 
beyond the Wright- Fisher model. Molecular Biology and Evolution, 
36, 632– 637.

Hanghøj, K., Moltke, I., Andersen, P. A., Manica, A., & Korneliussen, 
T. S. (2019). Fast and accurate relatedness estimation from 
high- throughput sequencing data in the presence of inbreed-
ing. Gigascience, 8, giz034. https://doi.org/10.1093/gigas cienc e/
giz034

Hillary, R. M., Bravington, M. V., Patterson, T. A., Grewe, P., Bradford, R., 
Feutry, P., Gunasekera, R., Peddemors, V., Werry, J., Francis, M. P., 
Duffy, C. A. J., & Bruce, B. D. (2018). Genetic relatedness reveals 
total population size of white sharks in eastern Australia and New 
Zealand. Scientific Reports, 8, 1– 9. https://doi.org/10.1038/s4159 
8- 018- 20593 - w

 17550998, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13513 by N

oaa D
epartm

ent O
f C

om
m

erce, W
iley O

nline L
ibrary on [18/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://cran.r-project.org/web/packages/CKMRpop/index.html
https://cran.r-project.org/web/packages/CKMRpop/index.html
https://github.com/eriqande/CKMRpop
https://github.com/eriqande/CKMRpop
https://eriqande.github.io/CKMRpop/
https://github.com/eriqande/CKMRpop_vs_fishSim_run_times
https://github.com/eriqande/CKMRpop_vs_fishSim_run_times
https://cran.r-project.org/web/packages/CKMRpop/index.html
https://cran.r-project.org/web/packages/CKMRpop/index.html
https://github.com/eriqande/CKMRpop
https://eriqande.github.io/CKMRpop/
https://eriqande.github.io/CKMRpop/
https://github.com/eriqande/CKMRpop_vs_fishSim_run_times
https://orcid.org/0000-0003-1326-0840
https://orcid.org/0000-0003-1326-0840
https://doi.org/10.1038/ncomms13162
https://doi.org/10.1038/ncomms13162
https://doi.org/10.1214/16-STS552
https://doi.org/10.1214/16-STS552
https://doi.org/10.1002/ece3.6296
https://doi.org/10.1002/ece3.6296
https://doi.org/10.1111/mec.14264
https://doi.org/10.1016/j.tpb.2004.08.003
https://doi.org/10.1093/gigascience/giz034
https://doi.org/10.1093/gigascience/giz034
https://doi.org/10.1038/s41598-018-20593-w
https://doi.org/10.1038/s41598-018-20593-w


    |  1199ANDERSON

Miller, C. R., Joyce, P., & Waits, L. P. (2005). A new method for es-
timating the size of small populations from genetic mark– 
recapture data. Molecular Ecology, 14, 1991– 2005. https://doi.
org/10.1111/j.1365- 294X.2005.02577.x

Skaug, H. J. (2001). Allele- sharing methods for estimation of population 
size. Biometrics, 57, 750– 756.

Waples, R. S. (1998). Separating the wheat from the chaff: patterns of ge-
netic differentiation in high gene flow species. Journal of Heredity, 
89, 438– 450. https://doi.org/10.1093/jhere d/89.5.438

How to cite this article: Anderson, E. C. (2022). CKMRpop: 
Forward- in- time simulation and tabulation of pairwise kin 
relationships in age- structured populations. Molecular Ecology 
Resources, 22, 1190– 1199. https://doi.org/10.1111/ 1755- 
0998.13513

 17550998, 2022, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13513 by N

oaa D
epartm

ent O
f C

om
m

erce, W
iley O

nline L
ibrary on [18/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1111/j.1365-294X.2005.02577.x
https://doi.org/10.1111/j.1365-294X.2005.02577.x
https://doi.org/10.1093/jhered/89.5.438
https://doi.org/10.1111/1755-0998.13513
https://doi.org/10.1111/1755-0998.13513

