Ecology

Appendix S3: Additional details from experiment testing the effects of fish consumers on juvenile corals

Priority effects in coral-macroalgae interactions can drive alternate community paths in the absence of top-down control

Thomas C. Adam^{1*}, Sally J. Holbrook^{1,2}, Deron E. Burkepile^{1,2}, Kelly E. Speare², Andrew J.

Brooks¹, Mark C. Ladd^{1,3}, Andrew A. Shantz⁴, Rebecca Vega Thurber⁵, Russell J. Schmitt^{1,2}

¹Marine Science Institute, University of California, Santa Barbara, California 93106, USA

²Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93106, USA

³NOAA – National Marine Fisheries Service, Southeast Fisheries Science Center, Key Biscayne, FL 33149, USA

⁴Florida State University Coastal and Marine Laboratory, St. Teresa, FL, USA

⁵Department of Microbiology, Oregon State University, Corvallis, OR, USA

^{*}corresponding author: thomascadam@gmail.com

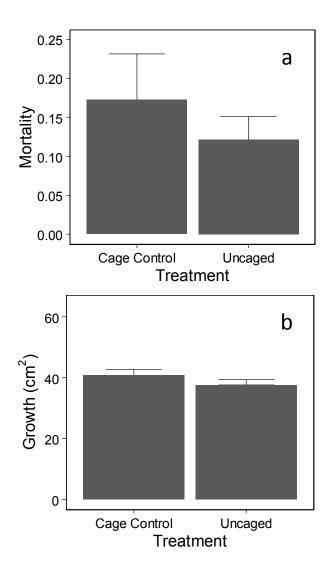


Figure S1. Comparison of (a) mortality (mean + SE) and (b) growth (mean + SE) rates of juvenile *Pocillopora* spp. corals between the uncaged treatment and the cage control from 2-year experiment manipulating access by herbivorous and corallivorous fishes to juvenile corals in 37 cm x 37 cm x 12 cm cages (N = 10 cages per treatment). There were no significant differences in mortality ($F_{1,9} = 0.61$, P = 0.46) or growth ($F_{1,9} = 0.75$, P = 0.41) among the two treatments.