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Evaluating biodegradable alternatives to plastic mesh
for small-scale oyster reef restoration
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Polyethylene plastic mesh is commonly used for containing oyster shells in small-scale oyster reef restoration, but environmen-
tal and public health concerns have prompted investigations of biodegradable alternatives. Shallow (<0.5 m) and deep (approx-
imately 1 m) oyster reefs (approximately 6 m?) were constructed in the Mission-Aransas Estuary, Texas, U.S.A., in March 2020
using recycled oyster shells placed into four different replicated mesh bag types: polyethylene (plastic) and three biodegradable
alternatives (cellulose, cotton, and jute). Biodegradable alternatives (cellulose, cotton, and jute) all completely degraded within
2 months of deployment, leaving piles of loose shell, while polyethylene bags remained intact. Despite rapid degradation, the
biodegradable/loose shell successfully recruited and developed larger oysters (mean of 46 mm) than on the polyethylene-
bagged shell (mean of 40 mm) after 7 months, although at less than half the density. Associated motile fauna density in the
bagged shell was 2.4 times higher than in the loose shell after 7 months at both the deep and shallow locations. Faunal commu-
nity composition and diversity varied more with reef depth than by bag type. The total cost of using polyethylene bags was
lower than for biodegradable alternatives (22-45% the cost of cellulose, 35-72% the cost of jute, 49-99% the cost of cotton).
However, because our estimate of the environmental cost of polyethylene plastic mesh only included impacts on marine natural
capital, the true cost is likely much higher. Despite higher costs, biodegradable alternatives can still be successful for use in
small-scale oyster restoration events without introducing plastics into the marine environment.

Key words: Crassostrea virginica, fauna, Gulf of Mexico, habitat restoration, plastic pollution

transported by barge to a selected restoration site and deployed
on the estuary bottom (Powers et al. 2009; Schulte et al. 2009;
George et al. 2015; Graham et al. 2017). An alternative restora-
tion method that can be used at smaller-scales (<0.4 ha) is to
manually fill mesh bags with oyster shell and form a reef com-
prising these bags. Using mesh bags can minimize loss of loose
shells due to waves and currents (e.g. Grizzle et al. 2002; Wall
et al. 2005; Stiner & Walters 2008) and can create structural
complexity similar to natural reefs (Ertel & McCall 2005;
Kennedy et al. 2011). Shell bagging can be completed as a

Implications for Practice

e Using biodegradable mesh materials to contain oyster
shells in small-scale reef restoration can facilitate oyster
and faunal recruitment and eliminate the introduction of
plastics to the ocean.

e The direct costs of biodegradable bags are currently more
expensive than polyethylene bags but using biodegrad-
able bags avoids unquantified environmental costs.

e Restoring oyster reef using biodegradable oyster bags still
facilitates oyster populations and associated epifaunal
communities despite the bags rapid degradation in a sub-
tropical, low-energy environment.

Author contributions: DC, TAP, NJB, JBP conceived and designed the research; DC
performed the experiments; DC, TAP analyzed the data; DC, TAP, NJB, JBP wrote and
edited the manuscript.

Introduction

Unsustainable harvest combined with pollution, disease, and
other environmental changes have led to severe declines
of native oyster populations (Kirby 2004; Beck et al. 2011;
zu Ermgassen et al. 2016). In areas where reef habitat has been
degraded or destroyed, one approach to combat the decline in
shell resources involves placement of suitable substrate to facil-
itate recruitment and growth of larval oysters. At larger scales
(approximately >0.4 ha), recycled oyster shells or other suitable
substrates (e.g. river rock, limestone, clean concrete) are often
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Plastic-free alternatives for oyster restoration

public event, which provides the additive benefits of connecting
community volunteers with their environment and providing
support for future restoration investments (Leigh 2005;
DeAngelis et al. 2019).

Polyethylene plastic mesh is a commonly used material for con-
taining (bagging) shells or other substrates in small-scale and
volunteer-based restoration efforts (Brumbaugh & Coen 2009;
Hadley et al. 2010) because of its affordability, durability, and ver-
satility (Law 2017). However, plastic pollution has become a major
environmental and public health concern (Beaumont et al. 2019),
and has a great potential to harm the marine environment because
it accumulates along coastlines, the open ocean, and within marine
organisms (Thompson et al. 2004; Barnes et al. 2009; MacLeod
etal. 2021). An ideal replacement for plastic mesh would be made
of natural, biodegradable fibers that maintain substrate stability
long enough for oysters and fauna to recruit, grow, and stabilize
the reef structure. It is also important to balance ecological benefits
with material costs because oyster reefs are one of the most costly
marine and coastal habitats to restore (Bayraktarov et al. 2016),
and limited availability of funds can have a considerable influence
on restoration decisions (Miller & Hobbs 2007).

The goal of this study was to evaluate the efficacy of using bio-
degradable alternatives (cellulose, jute, and cotton) to polyethylene

mesh in small-scale oyster reef restoration. The objectives were to
compare oyster populations, faunal communities, and total cost
[material + shipping + labor 4+ (reduced marine natural capital
from plastic pollution)] of using three biodegradable and one plas-
tic mesh bags to create restored oyster reefs.

Methods

Site Description

St. Charles Bay is a shallow (mean approximately 1 m, Orlando
et al. 1993) secondary bay in the Mission-Aransas Estuary, a
microtidal, bar-built estuary in South Texas, U.S.A. (Fig. 1). The
estuary receives freshwater inflow primarily from the Mission
and Aransas Rivers, and exchange with the Gulf of Mexico occurs
at Aransas Pass inlet (Orlando et al. 1993). While most of the estu-
ary is open to oyster harvest, St. Charles Bay is closed to commer-
cial oyster harvest to promote recovery of existing populations.

Bag Material Description

Bags for containing oyster shells were created using three
biodegradable (cellulose, cotton, jute fiber), or polyethylene plastic
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Figure 1. Map of the study area, including (A) Texas coastline and Gulf of Mexico, (B) the Mission-Aransas Estuary and St. Charles Bay, and (C) deep (D1, D2,
D3; 1 m depth) and shallow (S1, S2, S3; < 0.5 m depth) experimental reef sites in St. Charles Bay.
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Plastic-free alternatives for oyster restoration

Figure 2. Images of mesh bag materials. From left to right: Cellulose, cotton, jute fiber, and polyethylene mesh.

(nonbiodegradable) materials (Fig. 2). The biodegradable bags
came pre-assembled from their respective suppliers. Cellulose
bags (derived from beech wood) were 70 x 30 cm with 0.3 cm
mesh size (BESE Ecosystem Restoration Products, Netherlands).
Cotton bags were 55 x 30 cm with 0.5 cm mesh size (Alibaba,
China). Jute fiber bags were 50 x 30 cm with 0.7 cm mesh size
(Tissus Papi, France). Polyethylene plastic mesh bags of approxi-
mately 50 x 20 cm with 2 cm mesh size were created by cutting
1-m sections from a 550-m long roll of tubular mesh and tying a
knot at one end. All bags were filled with 11.5 L of sun-cured
(>6 months) recycled whole oyster shells and tied shut.

Field Experiment

Three shallow (<0.5 m) and three deep (approximately 1 m)
approximately 6 m” artificial oyster reefs were created within
St. Charles Bay on 25 March 2020, adjacent to Goose Island
State Park. Each reef contained four rows of bagged oyster
shells (10 bags per row) with each row comprising bags made
from a different material (cellulose, cotton, jute fiber, polyethyl-
ene; Fig. 2). Five bags in each row were placed directly on the
sea floor and remained in place for the entire experiment. The
other five bags in each row were placed in individual
0.45 x 0.30 m HDPE soda stacking trays (Piper Industries,
Dallas, TX, U.S.A.; Model 16/20 OZ-1HD-24, 11.5-cm high)
anchored with steel reinforcing bar (rebar) to be used for sam-
pling. Five additional control trays with no bag or oysters were
placed at each site to account for potential tray artifacts in statis-
tical analyses. Sampling of the bags in trays was conducted
monthly for the first 3 months after deployment (April, May,
and June 2020), and every 2 months thereafter (August and
October 2020). On each sampling date, one tray of each bag type
and one control from each of the three shallow and three deep
sites were sampled without replacement.

Opyster size and abundance, material degradation, and motile
fauna community abundance were quantified for each sampled
tray. Shell heights of up to 20 randomly selected nonspat live
oysters (>25 mm) were measured, and all additional live oysters
(>25 mm) were counted from each sampling tray. Spat
(<25 mm) densities were quantified on five randomly selected
live oysters and dead shells (five of each). Material degradation

was recorded using a qualitative scale (intact, small holes
[<30 mm], large holes [>30 mml], disintegrated [>90% of bag
has degraded]).

Motile epifauna were removed from each tray and fixed in
buffered formalin for community composition analysis in the
laboratory. Epifaunal taxa were identified to the lowest possible
taxon (usually species) and enumerated. Dry weight biomass for
each taxon was measured after drying organisms for 48 hours at
60°C. Mollusk shells were dissolved using 2 N HCI and rinsed
with fresh water before drying.

Water quality parameters, including water temperature,
salinity, dissolved oxygen concentration and saturation, pH,
and turbidity, were measured at each site on each sampling date
using a YSI ProDSS multiparameter water quality meter (YSI,
Inc., OH, U.S.A).

Data Analysis

Opyster density, epifauna density and biomass in control treat-
ments were subtracted from those in each treatment for each
date-site combination to account for tray effects. Oyster and epi-
fauna metrics were reported per unit of volume (m ) because
the bags were filled with a known volume of shell. Faunal diver-
sity analyses excluded control treatments. Analysis of variance
(ANOVA, a = 0.05) tests were used to test the effects of date,
depth (shallow or deep), and treatment (biodegradable-bagged
shell or polyethylene-bagged shell) using station as a random
effect, on motile macrofauna and encrusting fauna densities,
biomass, and Hill’s N1 diversity, as well as oyster density and
shell height. The biodegradable-bagged treatments were com-
bined into a single biodegradable-bagged treatment because of
rapid disintegration of the biodegradable bags, and are hereafter
referred to as a “loose shell” treatment, which contrasts with the
continuously “plastic-bagged shell” polyethylene-bag treat-
ment. The normality of residuals was assessed using the
Shapiro—Wilk test. All data were either log, or fourth-root trans-
formed to meet ANOVA normality assumptions. All univariate
analyses and data management were performed using the Ime4
package in RStudio version 1.2.1335 (RStudio Team 2018).
Nonmetric multidimensional scaling (nMDS) and similarity
profile (SIMPROF) cluster analyses (group average method;
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Clarke & Ainsworth 1993) were used to determine faunal com-
munity composition among treatments over time. The similarity
percentages (SIMPER) routine was used to determine the taxa
that were characteristic of, and different among treatments. Mul-
tivariate analyses were performed on a Bray—Curtis similarity
matrix on square-root transformed data using PRIMER 7 soft-
ware (Clarke et al. 2014).

Cost Comparisons

Cost comparisons of each bag type were calculated by adding the
2020 purchase and shipping cost for 1,000 bags plus the cost of
labor to fill 1,000 bags with shell. To determine the cost of labor,
the time taken to fill each bag type, and a wage (cost/time) are both
needed. The mean time to fill 1,000 bags of each bag type was cal-
culated after timing how long it took two people to fill at least five
bags of each type. The 2021 national estimate of the hourly value of
volunteer time, $28.54 USD (Independent Sector 2021), was then
multiplied by the fill rate to estimate the labor cost for each bag
type. The annual cost of reduced marine natural capital from marine
plastic pollution was calculated by converting the estimated cost
per metric ton in 2011 USD ($3,300-$33,000; Beaumont
et al. 2019) to 2021 USD ($3,975-$39,753), and adjusting by the
weight of 1,000 polyethylene bags (35 kg = 0.035 metric ton).

Results

Field Experiment
Temperatures followed seasonal trends and were similar

between depths, ranging from 20.6°C (mean) in October 2020
to 30.3°C in August 2020 (Fig. Sla). Salinity was similar
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between depths and ranged from 22.8 in June 2020 to 29.8 in
August 2020 (Fig. S1b). Shallow sites generally had higher
DO concentrations than deep sites, although DO concentrations
were high across all sampling dates, ranging from 5.45 mg/L at
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Figure 4. (A) Mean oyster density of plastic-bagged and loose shell
treatments over time after subtracting respective control values. (B) Mean
nonspat oyster height of plastic-bagged and loose shell treatments over time.
Data were pooled for deep (approximately 1 m) and shallow (<0.5 m) sites.
The shading indicates &1 SD about the mean.
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Figure 3. Proportion of each bag treatment in various levels of degradation over time (intact, small holes [<30 mm], large holes [>30 mm], disintegrated [>90%

of bag has degraded]). All bags were intact when deployed.
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deep sites in August 2020 to 7.37 mg/L at deep sites in October
2020 (Fig. S1c). pH levels were similar between depths and fluc-
tuated between 7.93 at deep sites in June 2020 to 8.18 at deep
sites in October 2020 and (Fig. S1d).

Twenty percent of cellulose and 33% of cotton bags were
fully disintegrated and 25% of jute bags had large (>30 mm)
holes after 1 month (30 days) in the water (Fig. 3). All biode-
gradable bag treatments were fully disintegrated within
2 months of deployment (56 days). Polyethylene plastic bags
remained fully intact throughout the duration of the study. The
oyster and fauna metrics of biodegradable bag treatments were
combined into a single “loose shell” treatment and compared
with the metrics of the continuously “plastic-bagged shell”
polyethylene-bag treatment because of the rapid disintegration
of all biodegradable materials (unbagging of shell).

Opyster recruitment was first observed on the experimental reefs
3 months after deployment (after all biodegradable bags were dis-
integrated). Oyster density was similar between depths (p < 0.624)

but varied over time depending on the bag type (p < 0.005;
Tables S1 & S2). Oyster densities increased in a similar manner
at both bag treatments from 3 to 5 months (mean =+ standard devi-
ation of 214 4 314 and 4,051 & 1,546 ind./m’; Fig. 4A). How-
ever, oyster density increased in the plastic-bagged shell
treatment (6,551 £+ 1,982 ind./m’ ) but decreased in the loose shell
treatment after 7 months (2,686 + 2,000 ind./m3).

Mean oyster height was similar between depths (p < 0.838) and
increased throughout the study period in all treatments (Fig. 4B;
Tables S1 & S2). Shell height was similar in plastic-bagged and
loose shell treatments until 5 months. However, at 7 months, shell
height on loose shell (46.1 & 4.4 mm) was greater than that on
plastic-bagged shell (40.0 £ 2.7 mm, p < 0.001).

Thirty-two motile epifauna taxa were collected throughout
the field experiments (Table 1). Faunal density was variable
throughout the study period and, within treatments, was gener-
ally greater in deeper sites (Fig. 5A). Faunal density on loose
shell ranged from 4,772 + 1,764 ind./m> after 1 month to

Table 1. Mean total (= SD) taxa densities across the study period for each treatment and depth.

Treatment Depth
Taxa Loose Shell Plastic-Bagged Shell Control Deep Shallow
Crustaceans
Petrolisthes armatus 49.55 + 40.98 78.88 + 75.07 10.20 £+ 8.26 67.02 £+ 63.50 29.70 + 21.01
Panopeidae 38.21 £+ 39.30 56.07 £ 56.13 12.33 + 12.18 28.71 £ 25.72 47.66 + 52.83
Eurypanopeus turgidus 14.86 &+ 10.19 19.44 £+ 12.67 12.41 £ 13.09 13.43 + 11.33 17.50 &£ 11.10
Eurypanopeus depressus 8.23 +£10.89 10.44 £ 20.42 6.62 + 11.07 11.98 £ 15.81 3.39 £5.02
Alpheus heterochaelis 6.27 + 4.19 711 +£527 1.40 + 0.55 5.07 + 3.46 7.40 + 5.06
Palaemonetes vulgaris 3.82 +3.40 6.17 + 10.28 3254+2.76 4.86 + 3.39 394 +£6.22
Callinectes sapidus 0.00 £ 0.00 2.00 = 0.00 1.00 £ 0.00 0.00 £ 0.00 1.50 £ 0.71
Menippe adina 1.14 £ 0.38 1.33 £ 0.58 1.00 £ 0.00 1.17 £ 0.39 0.00 £+ 0.00
Farfantepenaeus aztecus 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00
Panopeus herbstii 1.75 £ 1.50 1.00 £ 0.00 0.00 £ 0.00 1.60 £ 1.34 1.00 £ 0.00
Clibanarius vittatus 0.00 £ 0.00 0.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 0.00 £ 0.00
Fish
Gobiosoma bosc 4.77 £ 342 6.46 £ 3.19 2.55+192 5.52 £3.68 4.44 4+ 3.05
Opsanus beta 6.99 £+ 25.63 347 £2.05 1.00 £ 0.00 4.88 +£12.13 6.74 £ 27.69
Chasmodes longimaxilla 1.00 £ 0.00 1.00 £ 0.00 0.00 £ 0.00 1.00 £ 0.00 0.00 £ 0.00
Gobiesox strumosus 0.00 £ 0.00 1.00 £ 0.00 0.00 £ 0.00 1.00 £ 0.00 0.00 £+ 0.00
Lagodon rhomboides 0.00 £ 0.00 1.00 £ 0.00 0.00 £ 0.00 1.00 £ 0.00 0.00 £ 0.00
Microphis brachyurus 0.00 £ 0.00 1.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 1.00 £ 0.00
Mpyrophis punctatus 0.00 £ 0.00 1.00 £ 0.00 0.00 £ 0.00 0.00 £ 0.00 1.00 £ 0.00
Sygnathidae 0.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 1.00 £ 0.00 0.00 £+ 0.00
Larval fish 2.00 £+ 0.00 0.00 = 0.00 0.00 £ 0.00 0.00 £ 0.00 2.00 £ 0.00
Gastropods
Marshallora nigrocincta 8.45 + 8.10 30.42 £+ 37.22 327+ 341 12.88 4+ 23.04 1047 £+ 14.67
Boonea impressa 29.38 4+ 27.14 24.92 4+ 28.43 8.62 +£7.71 28.41 4+ 30.18 21.00 4+ 19.35
Parvanachis ostreicola 13.67 + 12.16 12.69 + 13.39 7.75 £ 6.44 17.24 + 13.17 6.72 £ 6.21
Pyrgocythara plicosa 7.59 +£7.24 19.32 4+ 25.20 278 +1.72 13.15 +£ 16.03 5.98 + 10.65
Costoanachis avara 14.40 £+ 12.93 14.81 £+ 12.85 13.67 + 12.89 20.73 + 14.10 7.27 +£5.36
Bittiolum varium 4.88 £ 6.07 5.00 £ 6.52 9.80 £9.34 2.52 £2.06 6.85 £ 7.63
Astyris lunata 5.30 £9.21 420 £ 5.16 10.00 + 12.92 392 +434 8.38 + 12.89
Boonea seminuda 240 £ 3.13 1.50 + 0.71 1.00 £+ 0.00 2.00 £ 2.45 0.00 + 0.00
Eulimastoma canaliculatum 2.50 £ 0.71 1.00 £ 0.00 18.00 £ 0.00 3.00 + 0.00 7.00 £+ 9.54
Nassarius vibex 233 £1.53 1.00 £ 0.00 2.00 £ 1.41 2.00 £ 1.26 0.00 £ 0.00
Parvanachis obesa 5.25 £2.50 1.00 £ 0.00 0.00 + 0.00 6.00 £+ 0.00 4.00 + 3.16
Flatworms
Turbellaria 2.77 £ 2.00 4.58 +2.87 1.33 +0.58 2.87+233 3.50 +£2.52
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13,227 + 4,120 ind./m> after 5 months in deep sites, and from
4,812 + 5,226 ind./m> after 7 months to 11,198 + 7,844 ind./m>
after 2 months in shallow sites. Faunal density in plastic-bagged
shell ranged from 8,783 £ 3,197 ind/m> after 1 month to
29,391 + 8,711 ind/m> after 5 months in deep sites, and from
8,899 + 2,924 ind./m?> after 3 months to 15,101 & 2,255 ind./m>
after 1 month in shallow sites. Faunal density differed by treatment
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Figure 5. Mean motile epifauna (A) density, (B) biomass, and (C) diversity
of plastic-bagged and loose shell treatments after subtracting respective
control treatments at deep (approximately 1 m) and shallow (<0.5 m) sites
over time. Shading indicates £1 SD about the mean.

(p <0.001) and varied over time depending on depth (p < 0.001;
Tables S1 & S2); faunal density in bagged shell was higher than
in loose shell, and was higher in deep areas than in shallow areas
after 2 months.

Epifaunal biomass generally increased throughout the study
period (Fig. 5B). Faunal biomass on loose shell ranged from
145 + 128 g/m® after 1 month to 852 4 1,174 g/m’ after
7 months in deep sites, and from 28 + 136 g/m3 after 1 month
to 606 + 344 g/m3 after 7 months in shallow sites. The widest
range of faunal biomass was observed on plastic-bagged shell
in deep sites, ranging from 306 + 75 g/m3 after 3 months to
3,448 + 900 g/m’> after 7 months, and from 212 + 389 g/m’
after 1 month to 1,004 + 314 g/m3 after 5 months in shallow
sites. There were significant interactions between treatment
and depth (p < 0.037), and treatment and date on faunal biomass
(p £0.009; Tables S1 & S2); faunal biomass was higher in
bagged shell and deep areas but only after 5 months.

Hill’s N1 diversity of motile epifauna generally increased
throughout spring and summer, with a slight decline in fall
(Fig. 5C). Faunal diversity on loose shell ranged from
2.8 + 1.4 after 1 month to 4.0 £ 2.1 after 5 months in deep
sites, and from 6.7 £+ 1.6 after 1 month to 8.3 &= 1.0 after
5 months in shallow sites. Faunal diversity on plastic-bagged
shell ranged from 2.7 4 0.5 after 1 month to 4.5 £+ 1.1 after
5 months in deep sites, and from 6.6 = 1.9 after 1 month to
8.2 £ 1.9 after 7 months in shallow sites. Combining both treat-
ments, diversity was greater in shallow sites, ranging from
6.7 £ 1.6 after 1 month to 8.3 £ 1.0 after 5 months, than deep
sites, ranging from 2.8 £ 1.2 after 1 month to 4.0 £ 2.0 after
5 months (Fig. S3). Faunal diversity was similar among treat-
ments but differed by depth (p < 0.032; Tables S1 & S2).

Faunal community composition clustered into deep and shal-
low treatments with samples in each cluster being at least 68%
similar to each other as determined by nMDS and SIMPROF
cluster analysis (Figs. 6 & S2). Differences in community com-
position between depths were driven primarily by higher
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Figure 6. Nonmetric multidimensional scaling plot of density-based faunal community composition among treatments and depths. Each point represents one
sampling date of the respective depth-treatment. Samples in each cluster are at least 68% similar to each other as determined by SIMPROF cluster analysis.
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Table 2. Cost comparison of bag materials for purchasing, shipping, and filling 1,000 units. Labor cost is calculated as $28.54 x time (hours).

Material Cost Shipping Cost Time (hours) Labor Cost Environmental Cost Total Cost
Cellulose $4,400 $660 11.9 $339 $0 $5,411
Jute $2,200 $550 22.2 $633 $0 $3,405
Cotton $1,500 $520 14.9 $426 $0 $2,460
Plastic $127 $188 25.1 $717 $139-$1,391 $1,196-$2,448

densities of the porcelain crab Petrolisthes sp. and several gas-
tropods including Costoanachis avara, Boonea impressa, Par-
vanachis ostricola, and Marshallora nigrocincta at the
shallow reefs, and higher densities of mud crabs (Panopeidae)
at the deep reefs (Table S3).

Cost Comparisons

Total costs for each material were calculated per 1,000 units and
included material and shipping costs, volunteer labor costs
($28.54 per hour; Independent Sector 2021) required for con-
ducting restoration using each bag type, and the estimated cost
of reduced marine natural capital from plastic pollution
(Table 2). Polyethylene plastic bags had the lowest material
and shipping costs ($127 and $188), and cellulose bags had
the highest ($4,400 and $660). However, plastic bags took the
longest time to fill and had the highest labor costs (approxi-
mately 25 hours and $717) compared to cellulose, which had
the lowest (approximately 12 hours and $339). The estimated
annual cost of reduced marine natural capital from plastic pollu-
tion was $0 for cellulose, jute, and cotton mesh bags and ranged
from $139-$1,391 for polyethylene plastic mesh bags. Total
costs of using 1,000 units for conducting oyster reef restoration
were lowest for polyethylene plastic ($1,196-2,448) and cotton
($2,460) mesh bags, followed by jute ($3,405) and cellulose
($5,411) mesh bags.

Discussion

One of the most common approaches for small-scale,
community-based oyster reef restoration is to construct reefs
using polyethylene plastic mesh bags filled with reclaimed
shells (Brumbaugh & Coen 2009; Hadley et al. 2010). However,
in part due to its durability, plastic has become a persistent pol-
lutant, with dramatic increases in the marine environment over
the past 50 years (Thompson et al. 2004; Barnes et al. 2009),
necessitating use of plastic-free materials for habitat restoration.
The ideal mesh material for containing oyster shell would be
biodegradable yet maintain stable, three-dimensional substrate
long enough for spat to recruit and grow into adult oysters to sta-
bilize the reef structure.

Although the biodegradable materials in this study were
anticipated to eventually break down, the speed of disintegration
(<2 months) was remarkable. The cellulose mesh bags are spe-
cifically marketed for use in oyster reef restoration, and are tou-
ted to last 1 year in the water (BESE Ecosystem Restoration
Products 2020). However, these bags are manufactured in the
Netherlands and estimates of degradation are based on rates

observed in the Baltic Sea, an ecosystem with lower tempera-
tures, salinities and faunal abundance (Elmgren 1984; Ojaveer
et al. 2010) than Gulf of Mexico estuaries (Ward &
Tunnell 2017). The jute mesh bags and cotton mesh bags are
not specifically marketed for restoration purposes, but were
selected based on dimensions, practicality for use in
community-based restoration events, and plausibility of being an
alternative to plastic mesh. Regardless of material, all biodegrad-
able bags rapidly disintegrated, leaving behind piles of loose,
unconsolidated shell. Oyster shells are relatively flat and tend to
settle into even layers, reducing the three-dimensional complexity
that normally promotes prey survivorship and oyster recruitment
success (Humphries et al. 201 1a; Graham et al. 2017; De Santiago
et al. 2019). However, the presence of oyster shells alone (relative
to unstructured soft sediments) can be more than important than
the degree of structural habitat complexity for producing enhanced
habitat value (Lehnert & Allen 2002; Shervette & Gelwick 2008;
Humphries et al. 2011b; Zacherl et al. 2015), and loose shell
deployments have been shown to successfully support oysters
along low-energy, low-slope shorelines (Thayer et al. 2005; Wall
et al. 2005; Keller et al. 2019).

Oyster density and size were remarkably similar among
treatments for 5 months after deployment, even though all bio-
degradable bags were reduced to piles of unconsolidated shells
within 2 months. It is likely that multiple processes influenced
recruitment and post-settlement faunal dynamics (Osman
et al. 1989; Knights et al. 2012). Oyster recruitment and survival
was similar between treatments for 5 months before declines
were observed in the biodegradable/loose shell treatments. The
intact polyethylene bags maintained structural complexity and
may have excluded predators and differentially increased sur-
vival (and density) of oysters and fauna in that treatment beyond
5 months (Brown et al. 2008; Humphries et al. 2011a; Carroll
etal. 2015; Temmink et al. 2021). Predator dynamics also likely
changed with time after deployment, with predation by crabs
possibly decreasing with increasing oyster size (Bisker & Cas-
tagna 1987), and predation by drills being greatest for medium
sized (50-75 mm) oysters (Pusack et al. 2018). The biodegrad-
able/loose shell treatment also likely experienced greater physi-
cal disturbance and movement of shells, which can also increase
oyster mortality (McGuinness 1987; Wall et al. 2005). The per-
sistent three-dimensional structure provided by the plastic-
bagged shell treatment also maintained greater vertical relief,
which has been positively correlated with oyster density
(Taylor & Bushek 2008; Schulte et al. 2009; Lipcius et al. 2015).

In contrast to oysters, faunal community composition was
influenced more by depth than by treatment, with higher densi-
ties of gastropods and porcelain crabs characterizing shallow
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sites. This pattern likely reflects differences in adjacent habitat,
with shallow sites near submerged aquatic vegetation (primarily
Halodule wrightii) and deep sites near unvegetated soft bottom
and oyster reef. Our results corroborate those from previous
studies indicating the importance of the surrounding landscape
and connectivity among habitats in predicting the response of
associated fauna to restored oyster reefs (Geraldi et al. 2009;
La Peyre et al. 2014). The presence of multiple structured habi-
tats can enrich faunal communities unique to each habitat,
increase mobility between habitat patches, and enhance overall
restoration success (Kindlmann & Burel 2008; Gain
et al. 2017; McAfee et al. 2021). However, in some cases, func-
tional redundancy of structured habitats (e.g. for refuge, food)
may mediate abundance enhancements for nekton (Grabowski
et al. 2005; Geraldi et al. 2009). Patterns in faunal community
composition were unaffected by the breakdown of biodegrad-
able materials and the resulting loose shell, therefore, for resto-
ration projects with the goal of faunal enhancement, material
longevity and bag type may be less important than proximity
to adjacent habitat. Indeed, mounded loose substrate can still
greatly enhance oyster recruitment and faunal communities in
areas with substrate limitation (Humphries et al. 2011a, 2011b;
Graham et al. 2017; Blomberg et al. 2018). Longer-term studies
are warranted to determine the longevity of observed patterns for
both oysters and associated fauna.

Small-scale and community-based oyster reef restoration pro-
jects around the world use the shell bagging method to replace
lost ecosystem services and enhance community participation
(DeAngelis et al. 2019). Given the current awareness of wide-
spread and persistent plastic pollution in marine environments
globally (MacLeod et al. 2021), there is an urgent need to switch
from plastic-based to natural fiber-based materials for oyster reef
restoration; use of polyethylene plastic should no longer be
acceptable. However, results from our study identify a number
of barriers in several key areas. The total cost for using an oyster
bag made of polyethylene is lower than for biodegradable mesh
(22-45% the cost of cellulose, 35-72% the cost of jute, 49-99%
the cost of cotton). However, because the environmental cost of
polyethylene plastic mesh only considered impacts on marine
natural capital, the true cost (including broader social and eco-
nomic costs) is likely much higher (Beaumont et al. 2019) and
warrants additional study. Continued introduction of plastic to
the marine environment mean that total costs are liable to
increase in the future, albeit at unknown rates (Jambeck
et al. 2015; Law 2017). A final barrier to overcome to facilitate
widespread adoption of biodegradable bags for restoration is
durability. Whereas polyethylene plastic bags successfully con-
tained shells for the duration of the study, cellulose, cotton, and
jute were partially disintegrated after 1 month and fully disinte-
grated within 2 months of deployment. Additional research is
warranted to elucidate what factors may have influenced the
breakdown of biodegradable materials in the field, including
breakdown by grazers and microorganisms, abrasion due to
water flow or water-borne sediment, and photochemical or ther-
mal degradation.

Replacement of plastic with biodegradable materials to con-
tain oyster shells for habitat restoration is unlikely without

substantial cost reductions, but widespread use cannot be based
on direct monetary cost alone. Whole scale adoption will require
coordinated, multidisciplinary research and development efforts
to advance materials science and improve durability in support
of habitat restoration agendas. In the meantime, we encourage
practitioners to consider whether the affordability and persis-
tence of plastic mesh outweighs the environmental benefits of
using biodegradable alternatives, regardless of differences in
oyster densities. Although relatively higher costs may limit the
amount of reef that can be restored using biodegradable mate-
rials, it is offset by the benefits of teaching and modeling reduc-
tions in plastic pollution to coastal communities and garnering
support for future restoration investments. Our results support
the calls to action in the UN Decade on Ecosystem Restoration
and the co-occurring UN Decade of Ocean Science for Sustain-
able Development by taking steps toward identifying best prac-
tices to restore habitats and biodiversity and reverse degradation
of ocean ecosystems.
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