Supplement of

Microphysical processes producing high ice water contents (HIWCs) in tropical convective clouds during the HAIC-HIWC field campaign: dominant role of secondary ice production

Yongjie Huang et al.
Correspondence to: Yongjie Huang (huangynj@gmail.com, yongjie.huang@ou.edu) and Greg M. McFarquhar (mcfarq@ou.edu)

The copyright of individual parts of the supplement might differ from the article licence.

Fig. S1. Scatter plots of (black) observed and (colorized) simulated ice number concentration $\left(\mathrm{Ni}, \# \mathrm{~m}^{-3}\right.$) divided by ice water content (IWC, $\mathrm{g} \mathrm{m}^{-3}$) (denoted as $\mathrm{Ni} / \mathrm{IWC}$) as a function of vertical velocity ($\mathrm{w}, \mathrm{m} \mathrm{s}^{-1}$) in regions with IWC $>1 \mathrm{~g} \mathrm{~m}^{-3}$ at temperatures of (left column) -10 ${ }^{\circ} \mathrm{C}$, (middle column) $-30^{\circ} \mathrm{C}$, and (right column) $-45^{\circ} \mathrm{C}$ at $\mathrm{t}=60 \mathrm{~min}$ in experiments (a1-a3) NoSIP1kmAC, (b1-b3) NoSIP250mAC, (c1-c3) NoSIP125mAC, and (d1-d4) NoSIP250m, respectively. The simulations at the three temperature levels are interpolated from the model outputs. The simulations with horizontal grid spacing $<1 \mathrm{~km}$ have been coarsened to 1 km for comparison by spatially averaging with a window size of $1 \mathrm{~km} \times 1 \mathrm{~km}$. The points are colorcoded according to the magnitude of radar equivalent reflectivity factor (dBZ).

Fig. S2. As Fig. S1 but for experiments NoSIP1kmAC, NoSIP250mAC, NoSIP125mAC, and NoSIP250m for $100 \mu \mathrm{~m}<D_{\max }<12845 \mu \mathrm{~m}$, respectively.

Fig. S3. As Fig. S1 but for experiments NoSIP1kmAC, NoSIP250mAC, NoSIP125mAC, and NoSIP250m for $200 \mu \mathrm{~m}<D_{\max }<12845 \mu \mathrm{~m}$, respectively.

Fig. S4. As Fig. S1 but for experiments HM250m, RFZB250m, IICB250m, and SIPs250m for $50 \mu \mathrm{~m}<D_{\max }<12845 \mu \mathrm{~m}$, respectively.

Fig. S5. As Fig. S1 but for experiments HM250m, RFZB250m, IICB250m, and SIPs250m for $100 \mu \mathrm{~m}<D_{\max }<12845 \mu \mathrm{~m}$, respectively.

Fig. S6. As Fig. S1 but for experiments HM250m, RFZB250m, IICB250m, and SIPs250m for $200 \mu \mathrm{~m}<D_{\max }<12845 \mu \mathrm{~m}$, respectively.

