NODC accession:

REPORT ON DATA FROM THE

GC .C283 no.79-8 NEARSHORE SEDIMENT TRANSPORT STUDY EXPERIMENT AT TORREY PINES BEACH. CALIFORNIA, NOVEMBER -- DECEMBER 1978

Edited by C. G. Gable

December 1979

INSTITUTE OF MARINE RESOURCES IMR Reference No. 79-8

Approved for Distribution:

Associate Director

Institute of Marine Resources

06 1 .ca83 no.79-8

PREFACE

The NEARSHORE SEDIMENT TRANSPORT STUDY (NSTS) is a national project, sponsored by the Office of Sea Grant, Washington, D. C., with the objective of developing improved engineering prediction techniques for sediment transport by waves and currents in the nearshore region.

The NSTS Review Group, recognizing the importance of the NSTS field data to other investigators, has directed that these data be made publically available in a timely manner and that a comprehensive experiment report be prepared to describe each major field experiment. This report, edited by Mr. C. G. Gable of **the** Institute of Marine Resources, covers the first in a series of reports for each of the several planned experiments. This document has been prepared to provide those investigators who were not involved with the conduct of this experiment with the following information:

- 1) The purpose and objectives of this experiment and its relationship to the overall NSTS program.
- 2) Details of the physical setting for the experiment necessary to evaluate the significance of the various measurements.
- 3) A precise identification of the kind of measurements obtained, including duration, time, quality of data, location of instrument, calibration history, relationship to adjacent instruments, etc.
- 4) Sufficient information to allow the investigator to extract meaningful data from the magnetic data tapes and data tables.
- 5) Where and how to receive the data tapes that supplement this report as discussed in Section V.

JAN 2 4 2002

National Oceanic & Atmospheric Administration

U.S. Dept. of Commerce

ACKNOWLEDGMENTS

The NSTS project was sponsored by the Office of Sea Grant (OSG) under the management of Dr. N. A. Ostenso (Director of the National Sea Grant Program), Mr. A. G. Alexiou (Associate Director for Programs) and Dr. D. B. Duane (Associate Program Director for Grants Management; Program Director, NSTS). OSG is advised by the NSTS Review Group which includes: Dr. W. R. James (U. S. Geological Survey), Prof. J. C. Ludwick, Jr. (Old Dominion University), Prof. B. J. Le Mehaute (University of Miami--RSMAS), Dr. A. (NMI) Malahoff (National Ocean Survey, NOAA), Dr. A. H. Sallenger (U. S. Geological Survey), Dr. J. H. Saylor (Great Lakes Environmental Laboratory, NOAA), Mr. T. (NMI) Saville, Jr. (Coastal Engineering Research Center) and Dr. R. J. Seymour, Ex Officio (State of California and Institute of Marine Resources). The conduct of the program undertaken by the NSTS Steering Committee and directed by Dr. R. J. Seymour includes: Prof. R. G. Dean (University of Delaware), Prof. D. L. Inman (Scripps Institution of Oceanography) and Prof. E. B. Thornton (Naval Postgraduate School).

The following people contributed valuable information in the preparation of this document: Dr. J. A. Bailard, Mr. M. P. Clark, Mr. P. M. Cunningham, Dr. R. E. Flick, Mr. M. H. Freilich, Prof. R. T. Guza, Mr. D. M. Hanes, Prof. D. L. Inman, Mr. R. L. Lowe, Mr. M. D. Parker, Mr. S. S. Pawka, Mr. B. W. Waldorf and Mr. J. A. Zampol of the Shore Processes Lab, Scripps Institution of Oceanography and Dr. R. J. Seymour of the Nearshore Research Group, Institute of Marine Resources; Prof. E. B. Thornton, Naval Postgraduate School; Prof. R. W. Sternberg and Mr. J. P. Downing, University of Washington; and Prof. R. A. Dalrymple, University of Delaware.

Inquiries concerning the Nearshore Sediment Transport Study should be directed to:

Dr. R. J. Seymour, Program Manager UCSD, Institute of Marine Resources Mail Code A-022 La Jolla, CA 92093

or: Office of Sea Grant
N O A A
National Ocean Survey
6010 Executive Boulevard
Rockville, MD 20852

Inquiries concerning data availability should be directed to:

National Oceanographic Data Center Code D781 2001 Wisconsin Avenue, N.W. Washington, D.C. 20235

TABLE OF CONTENTS

	PAGES.
PREFACE	11
ACKNOWLEDGEMENTS	
TABLE OF CONTENTS	iv
LIST OF FIGURES	
LIST OF TABLES	viii
I. BACKGROUND AND INTRODUCTION	1 0
A. History and Objectives of Nearshore Sediment Transport Stud	v 1
1. Statement of Problem	j j
2. Creation of the Program	2
3. NSTS Objectives and Schedule	
4. Organization of the Program	3
Task 1-AField Investigation of Currents and Surface Elev	ation
Within the Surf Zone	6
Task 1-EDevelopment of a Model Characterizing Surf Zone	
Dynamics	6
Task 2-AField Investigation of Longshore Sediment Transp	ort 6
Task 2-BField Investigation of Suspended Sediment	
Task 3-AField Investigation of On-Offshore Transport	
Task 4-AEvaluation of Candidate Experimental Sites	7 5 5
5. Data Management	
1. Technical Approach	
2. Significance of This Experiment to the NSTS Program	
18 Law Street and Law Street Law	
II. EXPERIMENT SETTING	9-22
A. Site Selection	9
B. Geographic Location of Torrey Pines Experiment.C. Geologic and Coastal Processes.	9
D. Historical Wave Climate at Torrey Pines Beach	7/2 7
E. Seasonal Profile Configuration at Torrey Pines Beach	
F. Climate and Weather	
III. EXPERIMENT DESCRIPTION	23-32
A. Experiment Overview	* * * 20
C. Data Acquisition and Processing Systems	
1. Scripps Shelf and Shore (SAS) Data Acquisition and Processi	
System	23
2. University of Washington Data Acquisition and Processing Sy	stem . 30
TACK DECEDIDATION	77.01
A. Surf Zone Dynamics (NSTS Task 1-A)	33-81
la)Instrument Report Wave Pressure Sensors.	33
1b)Offshore and On-Offshore Pressure Arrays	36
2. Instrument Report Wave Staffs	
3. Instrument Report Runup Meter	39

			<u>P</u>	AGES
D. E.	 1. 2. 3. 1. 2. 3. 	Instrument Report Electromagnetic Water Current Meters Instrument Report Anemometer Field Measurements of Rip Currents (NSTS Task 1-B). Sediment Transport Studies (NSTS Task 2-A). Sand Tracer Measurements. NSTS Sand Tracer Sample Analysis Techniques Grab Samples. Core Samples. Discrete Suspended Sediment ("Water Core") Samples. Sampler Emptying Procedure. Swash Laboratory Procedure. Optical Suspended Sediment Meter. Acoustic Bedload Sensor Suspended Sediment Study (NSTS Task 2-B). Instrument Report Suspended Sediment Sensors Beach and Offshore Surveys (NSTS Task 3-A). Survey Methodology. Positioning System (MRS III) Calibration Methodology. Fathometer Calibration and Bar Check Methodology. Wave Smoothing and Digitizing Methodology.		42 47 49 52 53 53 59 62 62 64 66 66 67 70 75 75
	5.6.	Tide Corrections and Methodology		79 79
\/	TOI			2 20
V. B. C.		How to Order Data Tapes		82 82 83 83 83
	2.	Data Files	•	87 88 89 89
VI.	RE	FERENCES CITED		90

APPENDICES

LIST OF FIGURES

FIGURE		PAGE
1-1	Program Schedule	. 4
1-2	Program Management	. 5
2-1	Experiment Location Map	. 10
2-2	Physiographic Block Diagram of a Portion of Western San Diego County (after Hertlein and Grant, 1944)	. 12
2-3	Geologic Structure (Inman and Flick)	. 13
2-4	Geologic Section Exposed in the Sea Cliffs at Torrey Pines State Reserve (Inman and Flick)	. 14
2-5	Simplified Columnar Section for the Torrey Pines - La Jolla Section for the Torrey Pin	
2-6	A Rough Chart of the Continental Borderland off Southern Calif (Pawka, 1976)	
2-7	Typical Directional Spectrum	. 18
2-8a	Comparison of Beach Profiles Measured at North Range Showing Seasonal Changes in Beach Configuration 1972-73	. 21
2-8b	Comparison of Beach Profiles Measured at North Range Showing Seasonal Changes in Beach Configuration 1973-74	. 22
3-1	Topographic Map	. 24
3-2	Experiment and Instrument Plan View	. 25
3-3a	Block Diagram of SAS Transmit Station	. 31
3-3b	Block Diagram of SAS Receiving and Data Processing System	. 31
3-4	Data Processing Flow Chart	. 32
4A-1	Pre and Post Calibration for Pressure Sensor No. 1	. 34
4A-2	Pressure Sensor	. 37
4A-3	Wave Refraction Plot at Torrey Pines Beach	. 38
4A-4	Wave Staff and Electromagnetic Current Meter at Torrey Pines Beach	. 40
4A-5	Runup Meter Installed at Torrey Pines Beach	. 41

FIGURE		PAGE
4A-6	Marsh McBirney Electromagnetic Current Meter Probe and Electronics Package	43
4A-7	A.C. Gains vs. Frequency for Current Meter Sensor S112	46
4A-8	Performance Specifications for MRI Model 1022 Anemometer · · ·	48
4B-1	Portable Current Meter Tripod Assembly	50
4C-1	Tracer Injection of 8 NOV 78	54
4C-2	Corer	60
4C-3	Core Sample Methodology	61
4C-4	Water Core Rack	63
4C-5	Integrated Scatterance Meter	65
4D-1	Block Diagram of Impingement Transducer Signal Processing System	67
4D-2	Support Mast and Sensors	69
4E-1	Survey Procedure	78
4E-2	Nearshore BathymetryTorrey Pines Beach 9 NOV 78	80
4E-3	Nearshore BathymetryTorrey Pines Beach 18 NOV 78	81

LIST OF TABLES

-	ABLE		PA	GE
	2-1	Probability of Occurrence of H 1/3 (Significant Height) at Torrey Pines Beach for the Period February 1973 to May 1974.		
	3-1	Instrument Location in NSTS Cartesian Coordinates	. 2	6
	3-2	Data Summary Index	. 2	28
	4A-1	Pressure Sensor Gains and Offsets	. 3	35
	4A-2	Calibration (D.C. Gains) of Current Meters	. 4	4
	4C-1	Grain Size Analysis of Undyed Tracer Sand	. 5	55
	4C-2	Grain Size Analysis of Dyed Tracer Sand	. 5	6
	4C-3	Dates and Times of Dye Injection and Tracer Experiments	. 5	7
	4C-4	Sand Tracer Study	. 5	8
	4D-1	Summary of Sensor Status for Data Transmissions by Scripps-SAS System	. 7	'1
	4D-2	Summary of Sensor Status During University of Washington Data Acquisition Runs 1978 NSTS Torrey Pines Beach Experiment	. 7	2
	4D-3	Specifications of Instrumentation used by the University of Washington Torrey Pines Beach Experiment.	- 7	' 3
	4E-1	Wading Profiles	. 7	6
	4E-2	Offshore Profiles	- 7	7
	5-1	Sample Magnetic Tape Header	. 8	35

I. BACKGROUND AND INTRODUCTION

A. HISTORY AND OBJECTIVES OF NEARSHORE SEDIMENT TRANSPORT STUDY

1. Statement of Problem

Sandy beaches form the primary barrier against erosion by ocean waves along much of the nation's coastline. The sediment forming the beach and the nearshore ocean bottom is in almost continuous motion under the combined forces of wind, waves, and currents. The motions are complex and irregular and, at this point, poorly understood. However, accumulative effects of these motions are easily recognized. They result in damaging erosion of the beach and wave attack on the areas behind it, in accumulations or accretions of sediment where there was none before, in formation of bars offshore and at river mouths, and in the clogging of harbors and lagoons.

Man's activity in the nearshore zone has made him acutely aware of the large volumes of sand that move along the shelves and beaches under the influence of waves and currents, and that he is generally unable to predict this motion. The construction of jetties, breakwaters, and other coastal structures that block the movement of sand has resulted in changes of shoreline location and the sometimes associated serious problems involving both erosion and deposition of large quantities of sand. In general, interception of the littoral drift causes accretion of the beach updrift from the obstacle and unwanted erosion downdrift where the sand supply has been cut off. Examples of this effect are numerous and the cost of remedial action is increasing each year. Intelligent use of the coastline requires an ability to work with, rather than against, natural processes. To achieve this ability, we must greatly expand our understanding of the nearshore environment.

Simplistic theoretical models for the on-offshore and for the longshore transport of sand have been formulated and partially tested. These models show some rough agreement with field observations suggesting that they may serve as a framework around which to build a more thorough understanding. It is now clear that substantial improvement of existing transport models is going to require significant advancement through careful field research in several related aspects of nearshore processes.

The natural sediment supplies to the sandy beach coastlines of the United States are suffering ever increasing impairment by coastal urbanization, flood control measures, and delta stabilization. This is especially true on some Atlantic beaches where sediment has been largely supplied by coastal erosion and urban pressures demand stabilization of source headlands. Florida coastlines are even now suffering severe starvation by loss of the biogenous sediment source, a major component of most of that state's beaches. The coastal investment throughout the country has long ago passed the point where coastlines can be abandoned with little economic loss to the increased erosion which must follow the deprivation of natural sediment sources. There are no feasible methods for reversing the trends which have denied these sources.

The only viable solution appears to be the careful conservation of the remaining sources and the creation of new sources, largely from offshore sediment deposits. In order that the costs of such remedies remain affordable, coastal

engineers must have the ability to predict the sediment demands for a particular coastline with a degree of accuracy far greater than is available today. Present rudimentary methods for predicting the performance and periodic maintenance requirements of such nourishment projects would be enhanced by accomplishment of the objectives established in this plan.

With increasing awareness of the importance of coastal zone management, forward-looking coastal states are evaluating land use criteria in which setbacks, abandonment or construction limits are to be effected in areas of intermittent or continuing coastline recession. The political and economic penalties for misjudgment here are tremendous. Effective decisions require hard quantitative answers on sediment demands. No such answers are available today.

2. Creation of the Program

In an attempt to satisfy these needs, an ad hoc group was formed at the Fifteenth Coastal Engineering Conference in Honolulu (July 1976) to plan a large scale and coordinated series of investigations leading to improved predictive models of sediment transport. Less than a year later, in April 1977, the Nearshore Sediment Transport Study was initiated under the sponsorship of the Office of Sea Grant. The program began as a focused cooperative effort among four Sea Grant universities and several government agencies. With the advent of new legislation authorizing national Sea Grant projects to meet national needs, the NSTS program was designated as the first such national program in 1978.

3. NSTS Objectives and Schedule

The overall objective is to perfect relations for the prediction of sediment transport by waves and currents in the nearshore environment. Initially, this program will deal with the problems of sediment transport along straight coastlines. Detailed studies of the mechanics of water-sediment interaction will be coordinated into a working model, and tested by two or more "large scale" field experiments along the coast of the United States.

Results of the study will provide coastal engineers with a model that will allow useful prediction of the magnitude and direction of sediment transport under waves and currents on relatively straight sections of coastlines. This model will utilize measurement schemes that provide the necessary data in a practical and economical fashion. Concurrently with the later stages of this study, the U. S. Army Corps of Engineers will be undertaking a number of regional programs of gathering coastal wave data. One of the purposes of these programs will be to provide nearshore data for sediment management. Results of the NSTS will provide direction to this program in terms of the types of measurements necessary to predict sediment transport. At the same time, the Army Corps of Engineers programs will be beginning to develop the data base necessary to apply the findings of this study. To develop a model which will have sufficiently universal applicability, it is necessary to understand the physics of sediment motions under a range of conditions. Therefore, the intermediate objectives of this program are to characterize those physical processes and parameters that have significant effects on sediment motion. Only those investigations that continue to demonstrate this significance will be pursued under the study.

The general schedule for the program is shown in Figure 1-1.

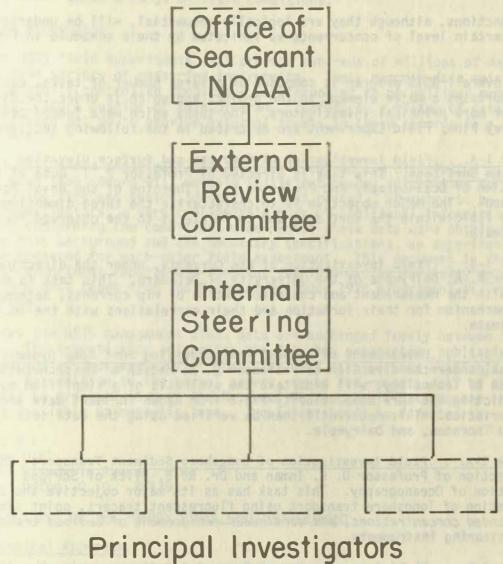
To accomplish the NSTS objectives, it was understood from the earliest planning sessions that the program must contain certain attributes which would set it apart from many prior efforts. Among the most important of these attributes are:

- a) NSTS is a broad-based program with many investigators from a large number of institutions. It is an attempt to bring together many experienced researchers to plan and execute a series of major experiments which would greatly exceed the capabilities of a single investigator.
- b) NSTS is a field-oriented program. Laboratory and numerical modeling are not foreseen as significant elements of the project.
- c) The NSTS field experiments will measure, simultaneously, the details of both the velocity field within the surf zone and the sediment response to these velocities. This is in recognition of the fact that there are significant spatial variations in sediment transport within the nearshore regime and that the ability to understand and predict these variations is a prerequisite to developing a universally applicable engineering model.
- d) The NSTS measurement program will encompass a large number of parameters that are potentially significant to a predictive model.
- e) The NSTS predictive model is intended to be two-dimensional. That is, it will predict on-offshore movement as well as longshore movement of sediment.

4. Organization of the Program

Management of this technically complex program and the effective coordination of the large and diverse group of investigators required the creation of a management concept substantially different from existing Sea Grant programs. The program employs a two-tier management structure which is shown schematically in Figure 1-2. The Director of the National Sea Grant College Program has appointed an advisory group referred to as the NSTS Review Group. This group, all experienced in nearshore processes, reviews proposals and makes funding recommendations to the Director, formulates overall program direction, and reviews the progress of the investigators. A second tier group, known as the NSTS Steering Committee, is formed of the senior investigators. The chairman of this group functions as the Program Manager and is an ex officio member of the Review Group. The Steering Committee formulates the details of the project program, plans and executes cooperative field programs, and conducts workshops to promulgate the findings of the study to the coastal engineering community.

The NSTS program will have a duration of six years and is anticipated to cost more than \$5 million. During this period, four major functional elements will be completed. These are:


a) The development of necessary instruments and measurement and analysis techniques;

FUNCTIONAL SCHEDULE

1977	1978	1979	1980	1981	1982
-	ruments and nt techniques				
	Determine in of various for			- 11	
	ions to transp	port		3/1	
	o better in	Formulate	models		
100			Verify mo	ndels	
			Verify inte	/4013	>
	A DAY OF THE REAL PROPERTY.	st prototype eriment/Torn			
			First major experiment, Barbara		
				Secon field e	nd major experiment

FIGURE 1-1 PROGRAM SCHEDULE

NSTS PROGRAM MANAGEMENT

- b) The determination by field investigation of the parameters which are significant to nearshore sediment transport and the collection of sufficient data to allow characterization of these significant parameters;
- c) The formulation of models to characterize the forcing and response functions and overall engineering models for predicting transport;
- d) The verification of these models using field data obtained in this program.

These functions, although they are logically sequential, will be undertaken with a certain level of concurrence as indicated by their schedule in Figure 1-1.

The overall NSTS program is composed of a large number of tasks, each one of which addresses a major element in the project and which is under the direction of one or more principal investigators. The tasks which were funded prior to the Torrey Pines Field Experiment are described in the following sections.

- Task 1-A. . .Field Investigation of Currents and Surface Elevation
 Within the Surf Zone. This task is directed by Professor R. I. Guza of Scripps
 Institution of Oceanography and Professor E. B. Thornton of the Naval Postgraduate School. The major objective is to characterize the three-dimensional velocity field within the surf zone and to relate it to the observed incident wave climate.
- Task 1-B. . .Field Investigation of Rip Currents, under the direction of Professor R. A. Dalrymple of the University of Delaware. This task is concerned with the measurement and characterization of rip currents, determination of the mechanism for their formation and their correlations with the incident wave climate.
- Task 1-E. . . Development of a Model Characterizing Surf Zone Dynamics. This task, under the direction of Professor O. S. Madsen of Massachusetts Institute of Technology, will undertake the synthesis of a simplified model for predicting the surf zone velocity field from known incident wave and wind characteristics. This model will then be verified using the data sets from Guza and Thornton, and Dalrymple.
- Task 2-A. . .Field Investigation of Longshore Sediment Transport, under the direction of Professor D. L. Inman and Dr. R. E. Flick of Seripps Institution of Oceanography. This task has as its major objective the characterization of longshore transport using fluorescent tracers, point samplers of suspended concentrations, and continuous measurement of bedload transport with monitoring instruments.
- Task 2-B. . .Field Investigation of Suspended Sediment, under the direction of Professor R. W. Sternberg of the University of Washington. This is a complementary project to the Inman and Flick task and is concerned with the development and deployment of monitoring instruments to obtain continuous measurements of suspended sediment concentrations.

Task 3-A. . .Field Investigation of On-Offshore Transport, under the direction of Dr. R. J. Seymour of the Institute of Marine Resources. This task is concerned with the characterization of on-offshore transport by means of precision profiling.

Task 4-A. . . Evaluation of Candidate Experimental Sites, under the direction of Professor R. G. Dean of the University of Delaware. This task is concerned with identifying and ranking potential sites along the United States coastlines for large-scale field experiments with the objective of testing the working model under a range of field conditions.

5. Data Management

The NSTS field experiments will produce hundreds of millions of data values from a wide variety of measuring instruments. These mammoth data sets, acquired under carefully controlled conditions, are expected to be utilized extensively by investigators outside of this program. Therefore, a system of data management has been set up to provide external access to these records in a timely and useful manner.

All NSTS field experiment data will be archived and distributed on magnetic tape. Each tape record will contain sufficient header information to positively identify the time and sensor identity of that record. However, to be useful to other investigators, a very considerable body of additional information is required concerning the conditions under which these data were obtained. To provide this background and the necessary specifications, an experiment report will be prepared for each major field experiment. This document is the first of these experiment reports and contains the information necessary to effectively use the data tapes from the November-December 1978 experiment at Torrey Pines, California.

Under the NSTS management plan, data are exchanged freely between investigators. The investigator collecting the data has proprietary publishing rights for a period of one year. After that time, all data becomes available to the public. In addition to the normal papers, texts and reports, all of the raw data will be archived through the National Oceanographic Data Center (NODC) and will be available on magnetic tape. Inquiries should be directed to:

N O D C Code D781 2001 Wisconsin Avenue, N.W. Washington, D. C. 20235

B. OBJECTIVES OF THE TORREY PINES FIELD EXPERIMENT

1. Technical Approach

The major emphasis in the Torrey Pines Field Experiment was on the characterization of the nearshore velocity field in relationship to the incident wave field. This was to be accomplished through the deployment of large numbers of two-axis current meters across the surf zone. The wave field outside the surf zone was to be defined by a linear directional array of pressure sensors.

Additional single pressure sensors and wave staffs were deployed across the surf zone. The tide range at Torrey Pines is sufficiently large (2.3 meters) and the bottom slope sufficiently small so that large horizontal excursions of the surf zone occur. This allows for a smaller number of instruments to span the entire surf zone, but precludes simultaneous measurements in all regimes.

The second major objective was to obtain measurements of longshore transport rates by means of tracer studies and of on-offshore transport by means of profile analysis.

A final objective was to evaluate promising techniques for continuous point measurements of suspended sediment and bedload transport concurrently with the measurement of the local velocity field.

2. Significance of This Experiment to the NSTS Program

The verification of useful sediment transport relationships requires a number of carefully recorded data sets obtained under a wide variety of beach slopes, sand sizes, and wave and current regimes. Torrey Pines Beach provides a setting in which waves are quite large and of long period, nearshore contours are rather straight and parallel, and sediment size is moderate and uniform. The data set obtained forms an important part of that needed to provide a means of verifying transport models developed later in the program.

In addition, as the first major field experiment under NSTS, it provided a testing ground for coordinated planning as well as measurement and analysis techniques which will be used in future field experiments.

Perhaps of greatest significance, it provided an early and comprehensive look at the character of the nearshore velocity field which is the driving force for all nearshore transport. These data will provide the direction for the creation of new transport relationships based upon a more thorough understanding of the physics of the surf zone.

II. EXPERIMENT SETTING

A. SITE SELECTION

The Torrey Pines Beach area was selected for the first NSTS field experiment based on the following favorable criteria:

- 1) Straight coastline;
- 2) Uncomplicated gently sloping offshore bathymetry (which avoids complicated wave refraction effects);
- Exposure to several wave generating regions;
- 4) Beach texture of predominantly fine quartz sand;
- 5) Readily accessible by land and by boat from the instrumentation laboratory and launching facilities at Scripps (which simplified the overall logistics of the experiment in terms of instrument repair and manpower).

B. GEOGRAPHIC LOCATION OF TORREY PINES EXPERIMENT

Torrey Pines Beach is located in San Diego County approximately 3.2 Km north of Scripps Institution of Oceanography. A location map is provided in Figure 2-1. The study area consists of gently sloping offshore bathymetry and a straight fine-grained sand beach which starts at the base of a 91-meter high sea cliff. The central network of instrumentation was located approximately 200 meters north of the mouth of Indian Canyon which is an intermittent stream channel. The beach is exposed to several wave generating regions in the North and South Pacific, although the offshore Channel Islands do shelter the study site from waves propagating from certain sectors as shown in Figure 2-6 of Section 2 of this report.

C. GEOLOGIC AND COASTAL PROCESSES

Torrey Pines Beach is at the southern end of a littoral cell that extends northward 82 Km to Dana Point. Sand is supplied to this cell by streams entering the ocean along this stretch of coastline and from minor cliff erosion [State of California, 1969]. Waves cause a net longshore transport of sand to the south through the littoral cell to Scripps Submarine Canyon which is located 2.8 Km south of the study site. Chamberlain [1960] and State of California [1969] have estimated the net littoral transport in the vicinity of Torrey Pines Beach at about 2 x 10^5 m³/yr. Once in Scripps Canyon, the sand is periodically transported by strong currents from the nearshore zone through the Canyon into deep water [Nordstrom and Inman, 1975]. The beach is approximately 61 meters wide and consists of fine to very fine well sorted quartz sand with minor amounts of feldspars and heavy minerals. Light minerals such as quartz and feldspars and shell fragments comprise 90% of a sample, while heavy minerals such as hornblende and biotite total about 10% [Inman, 1953].

Torrey Pines Beach is backed by steep sea cliffs which rise to heights of 107 meters. Whitaker [1960] reported that the Torrey Pines Cliffs are called

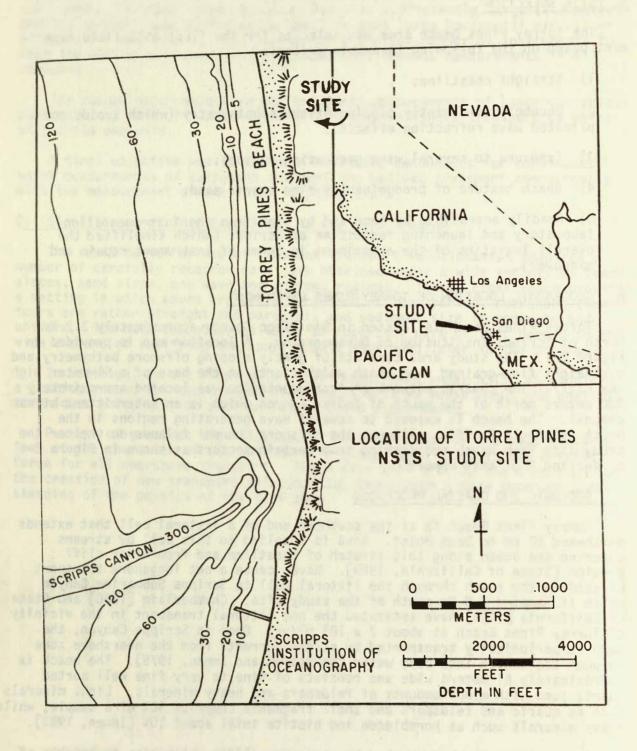


Figure 2-1 EXPERIMENT LOCATION MAP

the Torrey and Delmar Formations and are part of a thick sequence of marine sediments that were deposited during Tertiary and Quaternary periods. The geologic history of the region has been dominated by a series of marine inundations since pre-Tertiary times. The Delmar Formation is composed predominately of greenish siltstones and some sandstones, shales, and limestones located in the lower half of the cliff. The Torrey Sandstone outcrops in the upper steep portion of the cliff and is composed of clean, moderately well rounded grains of quartz and feldspars. The Torrey Formation is white to buff except for some areas where it appears a light rust color because of staining from the red Lindavista Formation terrace material above it. The Lindavista Formation consists of boulders, gravels, and sands cemented together by iron oxide [Whitaker, 1964]. The Torrey Pines Cliffs are interrupted occasionally by canyons and intermittent streams. The prominent Indian Canyon cuts through the cliffs to the beach at the study site.

Figure 2-2 presents a block diagram of a portion of Western San Diego County. Cross sections of the geologic structure of the Torrey Pines area are provided in Figures 2-3 through 2-5.

D. HISTORICAL WAVE CLIMATE AT TORREY PINES BEACH

From February 1973 to May 1974, wave records were taken four times daily using a line array of four pressure sensors which roughly paralleled the coastline at a depth of ten meters [Pawka, et al., 1976]. This data was used for the estimation of frequency and directional spectra for waves with periods 4 to 20 seconds. This period range includes nearly all the wind generated wave energy incident to the coast at Torrey Pines Beach.

It was reported by Pawka [1976] that the location and intensity of wave generating storms are important in determining the nature of the swell which approaches the area. The blocking effect of the continental land mass and offshore islands causes Torrey Pines Beach to be shadowed from waves from certain sectors. A rough approximation of the shadowing effects, not taking into consideration diffraction or refraction effects, is shown in Figure 2-6. Refraction over the shoals in the island region significantly affects this simple shadowing representation by smoothing the edges of the shadows.

The results of the wave climate study were grouped in terms of the four seasons. Pawka [1976] reports that the frequency spectra of summer waves (June, July, August) have a characteristic bimodal form. The lower frequency peak is relatively narrow (0.04 Hz width) and the peak period is between 12 to 17 seconds and is well directed from the south. Point La Jolla refracts most of the southern swell energy to angles of 225° to 245° true just offshore of the study site. The low frequency peak energy is usually between 20 to 200 cm² with a mean energy of 100 cm². The broader high frequency peak (0.1 Hz width) has a peak period between 6 to 10 seconds and is generally less well directed from the north. The offshore islands limit the fetch for certain directional sectors and thus cause a multi-modal directional spectrum for locally generated waves. The energy of the high frequency peaks varied from 30 to 500 cm² with a mean of 170 cm².

The wave climate of the fall months (September, October, November) is very similar to that of the summer with the addition of a long period (12 to

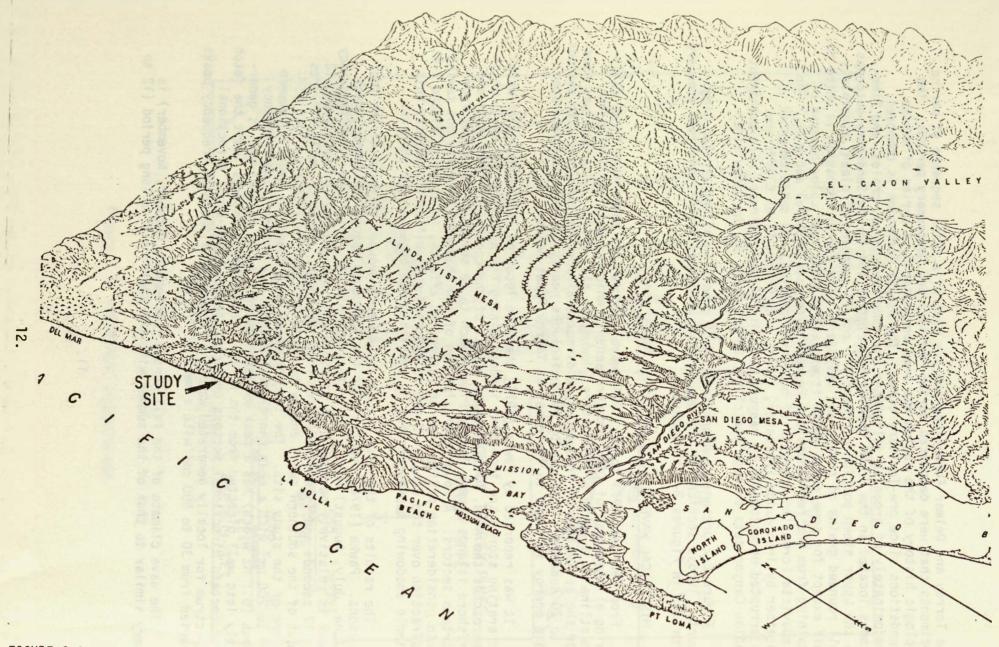
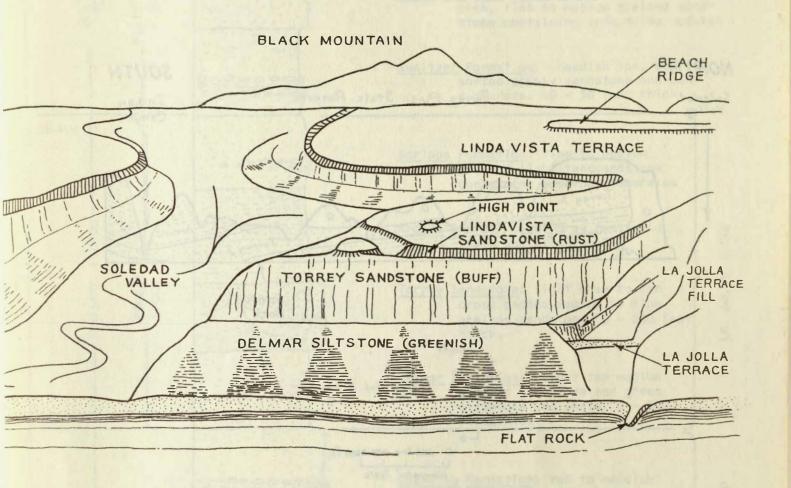



FIGURE 2-2 PHYSIOGRAPHIC BLOCK DIAGRAM OF A PORTION OF WESTERN SAN DIEGO COUNTY (AFTER HERTLEIN AND GRANT, 1944)

PACIFIC OCEAN

Figure 2-3 Geologic Structure [Inman and Flick]

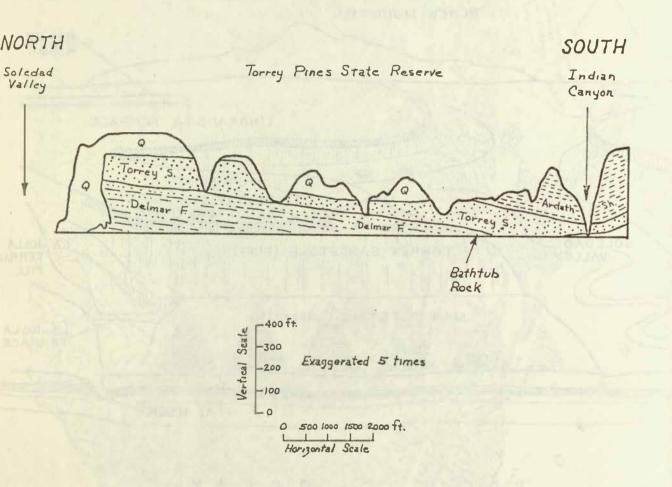


Figure 2-4

Geologic section exposed in the sea cliffs at Torrey Pines State Reserve [Inman and Flick]

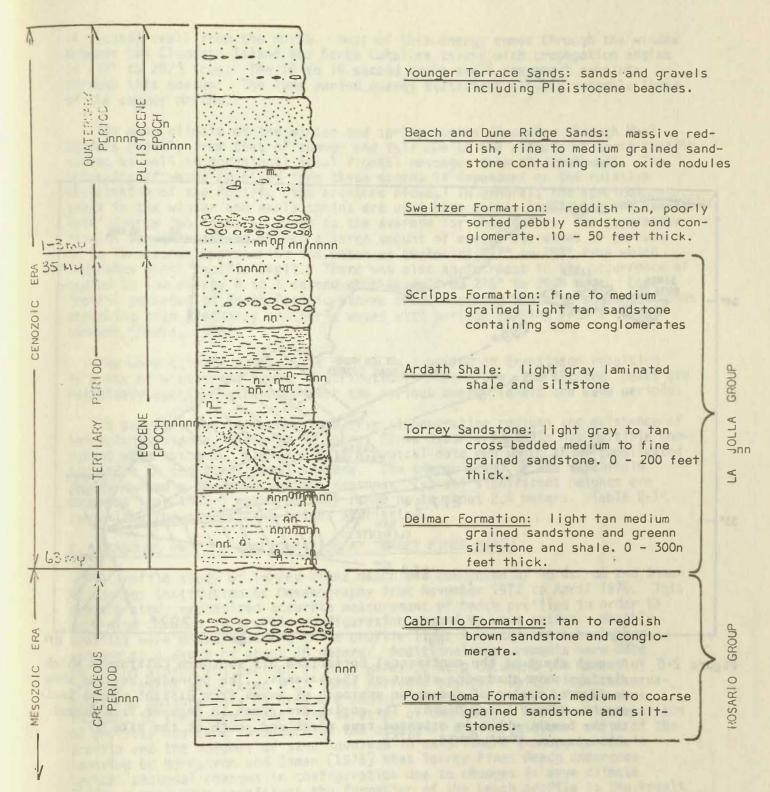


Figure 2-5

Simplified Columnar Section for the Torrey Pines - La Jolla Sea Cliffs [Inman and Flick]

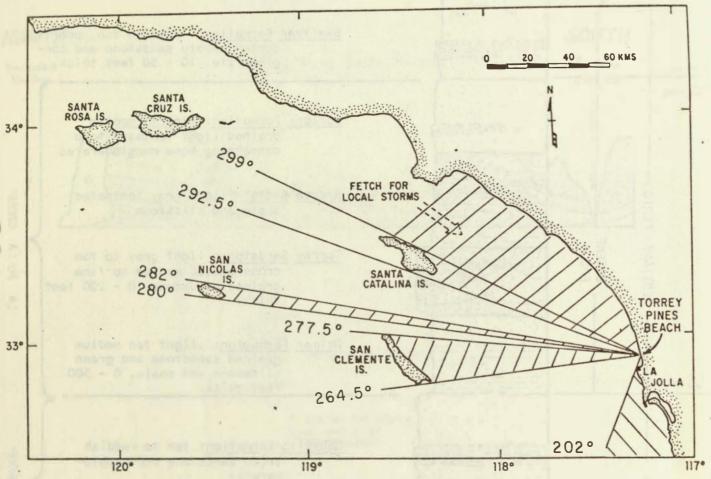
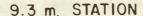
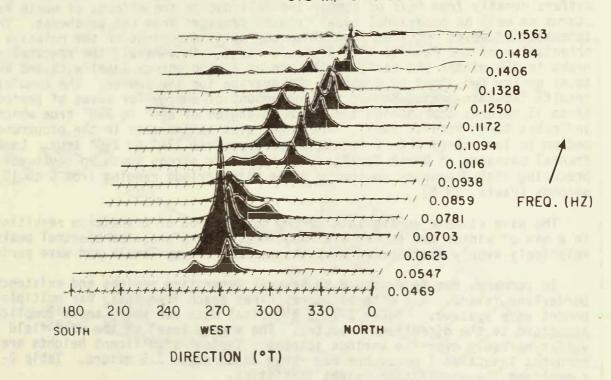


Figure 2-6

A rough chart of the continental borderland off southern California which displays wave shadowing effect of the islands. The unshaded regions show unaffected angles of deepwater approach of waves from distant storms incident to Torrey Pines Beach. The angles are given in degrees from normal to the beach, which is oriented true north and south at the site of measurement. [from Pawka, 1976]

14 second) swell from the north. Most of this energy comes through the window between San Clemente Island and Santa Catalina Island with propagation angles of 277° to 287° true. The 16 to 18 second south swell component persists through this season. The long period energy statistics closely resemble those of the summer months.


The wave climate of the winter and spring months (December through May) differs greatly from that of summer and fall due to the effects of North Pacific storms as well as occasional local frontal passages from the southwest. The intensity of waves received from these storms is dependent on the relative orientation of the Pacific high pressure ridge. In general, the spectral peaks in the winter and early spring are of a high energy level with the average total energy two times as great as the average for the summer. The cumulative results for this period showed a large amount of energy for waves of periods 12 to 15 seconds approaching the beach at angles of 277° to 288° true which indicates North Pacific swell. There was also an increase in the occurrence of medium to low energy 4 to 5 second chop waves from 275° to 290° true. Local frontal passages of North Pacific storms produce strong south to southwest winds producing high frequency southerly waves with periods ranging from 5 to 10 seconds [Pawka, 1976].


The wave climate during late spring is a period of transition resulting in a mix of winter and summer distributions. Therefore, the spectral peaks are relatively evenly distributed over the various energy levels and wave periods.

In summary, due to exposure to several generation regions and existence of borderland islands, the site at Torrey Pines Beach frequently has multiple component wave systems. Figure 2-7 is a typical data run which shows complicated structure to the directional spectra. The energy level of the wave field varies markedly over the various seasons. Typical significant heights are somewhat less than 1 meter but may range up to about 2.5 meters. Table 2-1 summarizes the significant height statistics.

E. SEASONAL PROFILE CONFIGURATION AT TORREY PINES BEACH

A profile study of Torrey Pines Beach was conducted by Nordstrom and Inman of Scripps Institution of Oceanography from November 1972 to April 1974. This profile study emphasized accurate measurement of beach profiles in order to determine changes in profile configuration caused by wave action. Monthly profiles were measured along three profile lines from the beach backshore seaward to a depth of about 18 meters. Additional measurements were made following storms and periods of high waves to help document the extent of profile change associated with these periodic events. Daily visual observations and measurements by pressure sensors provided a record of the waves incident to the beach during the duration of the study. A seasonal comparison of profiles was made to determine the erosional and depositional parts of the profile and the volumes of sand involved in on-offshore transport. It is reported by Nordstrom and Inman [1975] that Torrey Pines Beach undergoes typical seasonal changes in configuration due to changes in wave climate. During summer wave conditions the formation of the beach profile is the result of a progressive onshore migration of sand from depths less than 10 meters which accretes on the beach face. A berm crest is also developed by the progressive accretion of sand starting as a bar at depths of -1 meter.

FIGURE 2-7 TYPICAL DIRECTIONAL SPECTRUM

for a day in June 1977
obtained from a five-element
linear array at a depth of 9.3m
at Torrey Pines Beach, Calif.

TABLE 2-1

PROBABILITY OF OCCURRENCE OF H 1/3 (SIGNIFICANT HEIGHT) AT TORREY PINES BEACH

FOR THE	PERIOD	FEBRUARY	1973	TO MAY	1974

F	OR THE PERIOD FEE	BRUARY 1973 TO	MAY 1974	N. C. S.
s it surring	playent ten as	P(H 1,	/3 <u>></u> H)	to off
H 1/3 (M)	(400 RUNS) WINTER (DEC-JAN-FEB)	(424 RUNS) SPRING (MAR-APR-MAY)	(450 RUNS) SUMMER (JUN-JUL-AUG)	(375 RUNS) FALL (SEPT-OCT-NOV)
.05	Teng all his ba		100.0	100.0
.1	ALTER PRODUCT		93.6	81.5
.2		100.0	54.6	51.7
.3		99.1	30.0	37.3
. 4	100.0	95.3	13.1	27.4
.5	97.0	88.9	6.3	17.8
.6	87.8	76.2	4.8	16.0
.7	76.0	56.6	3.0	11.4
.8	63.0	40.6	2.1	8.0
.9	50.5	33.2	1.2	5.0
1.0	38.5	24.8	.8	3.6
1.1	27.0	18.6	.5	2.7
1.2	15.5	15.3	.4	1.5
1.3	11.5	13.0	.2	1.5
1.4	9.0	9.9	.2	.3
1.5	6.3	7.5	.2	0.0
1.6	3.8	5.2	.2	
1.7	2.3	4.0	.2	
1.8	1.3	3.3	.2	
1.9	1.0	1.2	.2	
2.0	. 8	.5	0.0	
2.1	.8	0.0		
2.2	.3			
2.3	. 3			
2.4	0.0			

The summer profile is fully developed when the foreshore is relatively steep, the berm crest furthest seaward, and the backshore relatively wide (30 to 60 meters).

The occurrence of winter storm waves and high tides overtop the summer berm and erode the foreshore and backshore, reducing the width of exposed beach. The eroded sand is transported offshore and deposited in depths of -3 to -9 meters. The winter beach profile is typified by a gently sloping foreshore that occasionally extends as far back as the toe of the sea cliff. There were no recorded sand level changes at depths greater than -13.7 meters. Figures 2-8a and 2-8b show the summer and winter profile configurations for the Torrey Pines Beach -- North Range area for 1972-73 and 1973-74. These profiles were measured approximately 442 meters north of the NSTS Torrey Pines Experiment site. The seasonal profile data indicate a general trend of a decrease in magnitude of sand level changes with increase in water depth.

F. CLIMATE AND WEATHER

The climate in the San Diego area is mild and semi-arid. The dominating factor in the weather for San Diego is the semi-permanent high pressure ridge of the Northeast Pacific Ocean. This pressure center migrates northward in summer, deflecting storm tracks from the Gulf of Alaska well to the north. Occasionally, however, moist air associated with chubascos drifts northward during the summer from the Gulf of Mexico or the Gulf of California.

In winter, the Pacific high decreases in intensity and retreats southward permitting storm centers from the Gulf of Alaska to swing into and across Southern California. These are the storms that bring widespread, moderate precipitation and stormy conditions. When changes in the circulation pattern permit storm centers to approach the California coast from a southwesterly direction, large amounts of moisture are carried by the northeastward streaming air. San Diego seldom receives the main frontal activity or vortex flow of these winter storms, but normally short pulses of trailing instabilities associated with the passage of a cyclonic front.

The average annual range in wind speeds for San Diego is 4 to 30 knots with a predominant direction from the northwest. High wind speeds are associated with postfrontal activity. The mean annual temperature range in San Diego is 12.7° to 20.4° C with the annual mean temperature of 16.5° C. The mean annual precipitation is 24.6 cm. [Elford, 1970 and NOAA National Climatic Center, 1977]

TORREY PINES BEACH-NORTH RANGE

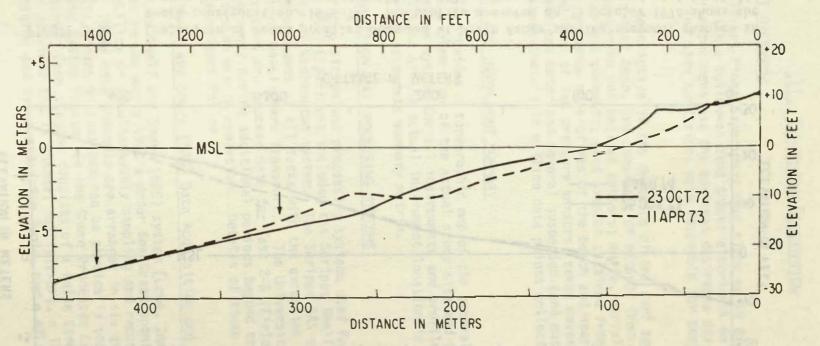


FIGURE 2-8a. Comparison of beach profiles measured at North Range showing seasonal changes in beach configuration 1972-73. The profile measured on 23 October 1972 shows the summer beach profile configuration in 1972. The profile measured on 11 April 1973 shows the winter configuration during the winter of 1972-73. Arrows indicate the positions of reference rod stations. [Nordstrom and Inman, 1975]

TORREY PINES BEACH - NORTH RANGE

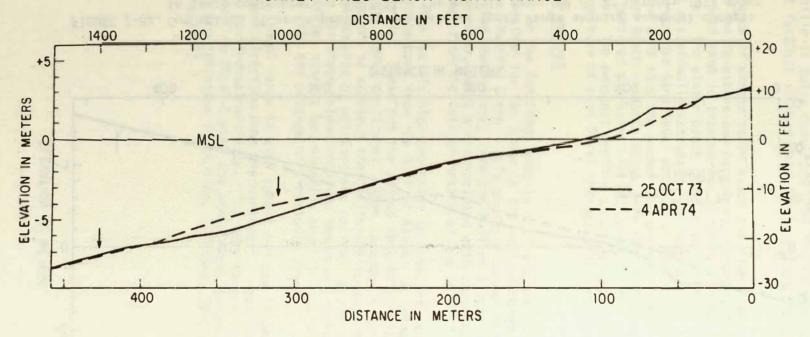


FIGURE 2-8b. Comparison of beach profiles measured at North Range showing seasonal changes in beach configuration, 1973-74. The profile measured on 25 October 1973 shows the summer beach profile configuration in 1973. The profile measured on 4 April 74 shows the winter configuration during the winter of 1973-74. Arrows indicate the positions of reference rod stations. [Nordstrom and Inman, 1975]

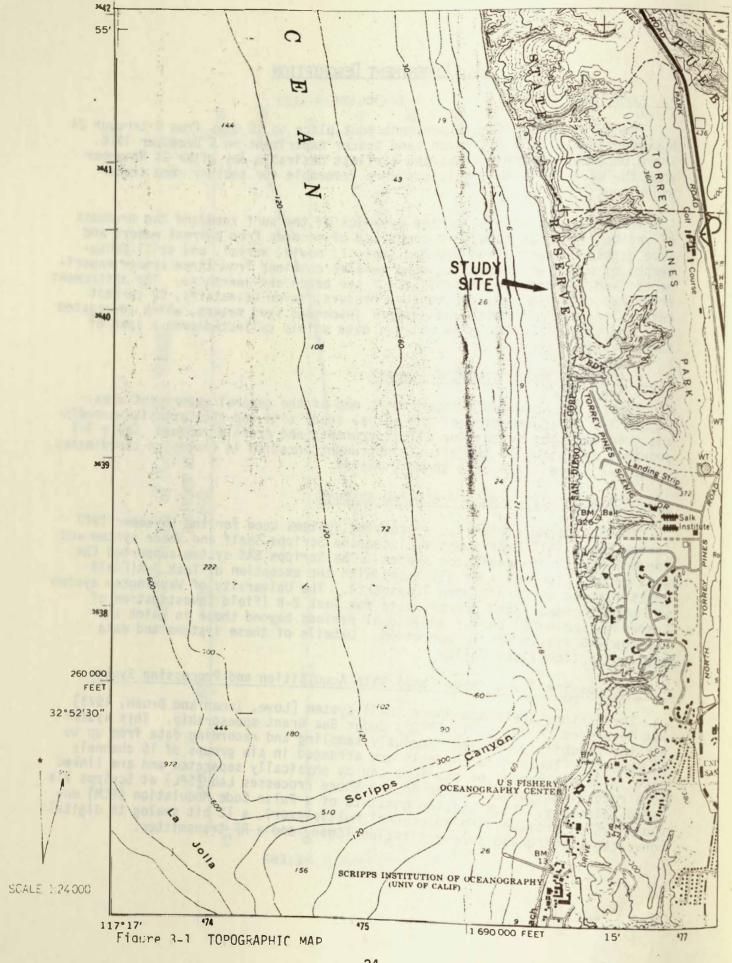
III. EXPERIMENT DESCRIPTION

A. EXPERIMENT OVERVIEW

The NSTS Torrey Pines Experiment took place on 19 days from 4 through 24 November 1978 with a follow-on sand tracer experiment on 6 December 1978. The 6 December experiment was the earliest desirable day after 24 November when the wave and tide conditions were favorable for another sand tracer experiment.

The data, descriptive of the dynamics of the surf zone and the movement of sediment in that zone, are comprised of records from current meters and wave gages; suspended and bedload sensors; movie, aerial, and still photographs of waves and currents; sand samples obtained from three tracer experiments; and, a sequence of profiles of the beach and nearshore. The instrument array was comprised of ten pressure sensors, seven wavestaffs, 22 current meters, one bedload meter and several suspended sand meters, which aggregated a record of approximately 16 million data points collected over a span of three weeks.

B. EXPERIMENT AND INSTRUMENT SUMMARY

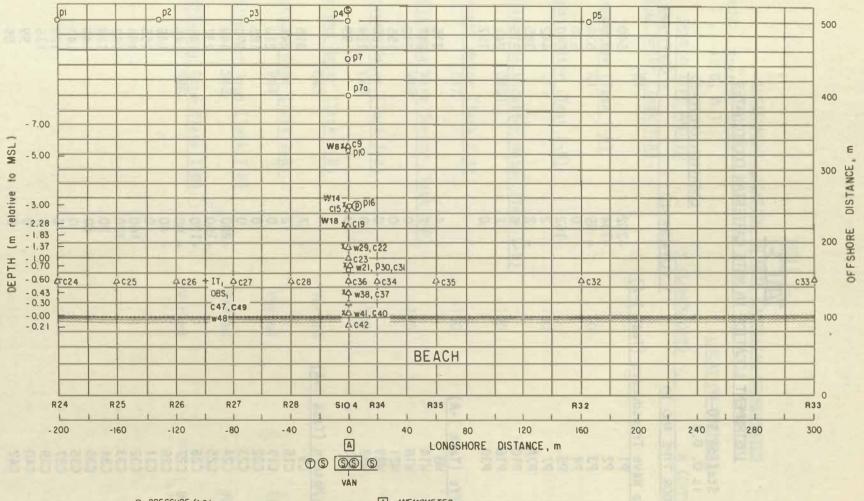

Figure 3-1 provides a topographic map of the general experiment area. Figure 3-2 is a plan view of the actual study site and the Cartesian coordinate grid location system for all instruments and profile ranges. Table 3-1 provides a listing of the actual instrument location in Cartesian coordinates. Table 3-2 serves as a data summary matrix.

C. DATA ACQUISITION AND PROCESSING SYSTEMS

The data acquisition and processing systems used for the November 1978 Torrey Pines NSTS Experiment included the Scripps Shelf and Shore system and the University of Washington system. The Scripps SAS system supported the data acquisition needs of all tasks with the exception of Task 3-A(Field Investigation of On-offshore Transport). The University of Washington system was used to record and process data for Task 2-B (Field Investigation of Suspended Sediment) during additional periods beyond those in which the Scripps SAS system was in operation. Details of these systems and data processing techniques follow.

1. Scripps Shelf and Shore (SAS) Data Acquisition and Processing System

The Scripps Shelf and Shore (SAS) system [Lowe, Inman and Brush, 1973] was developed in the early 1970's under Sea Grant sponsorship. This system has the capability of simultaneously sampling and recording data from up to 90 sensors. These data channels are arranged in six groups of 15 channels each. The six groups or stations can be physically separated and are linked to a recording system located in the Shore Processes Lab (SPL) at Scripps via radio-telemetry. Each station consists of a Pulse Code Modulation (PCM) encoder (which provides the 15 channel multiplexer), a 12 bit analog to digital converter, timing and synchronization logic, and a RF transmitter.


Figure

3-13

Experiment

Instrument

View

O PRESSURE (10)

△ CURRENT (22)

X WAVESTAFF (7)

+ CURRENT AND SUSPENDED SEDIMENT STATION P PCM ENCODER

R SURVEY RANGE LINES

A ANEMOMETER

TRANSMITTER

S STATION

MEAN SEA LEVEL

TABLE 3-1

INSTRUMENT LOCATION IN NSTS CARTESIAN COORDINATES

[NOTE: Station SIO-4 is 0, 0.]

LOCATION (METERS)

SENSOR TYPE AND ID	Y (LONGSHORE)	X (OFFSHORE)					
Pressure Wave Transducers (Task	1-A)						
P1 P2	-202 -134	540 539					
P3	- 69	538					
P4	0	538					
P5 P7	162 2	540 442					
P7A	- 2 - 6	385					
P10 P16	- 6	315					
P30	2	241 157					
Wavestaffs (Task 1-A) W8	- 4	315					
W14	- 4 2	241					
W18 W21	0	210 155					
W29	0	185					
W38 W41	0	129					
W41	0	99					
Current Meters (Task 1-A)							
C9 C15	- 7 2	315 241					
C19	0	210					
C22 C23	0 0	185					
C24	-200	170 148					
C25	-160	137					
C26 C27	-120 - 80	141					
C28	- 40	145 146					
C31 C32	0	155					
C32	160 320	144 143					
C34	20	139					
C35 C36	60	149					
C37	0	143 129					
C39	0	115					
C40 C42	0	99					
		85					

TABLE 3-1

INSTRUMENT LOCATION IN NSTS CARTESIAN COORDINATES

[NOTE: Station SIO-4 is 0, 0.]

LOCATION (METERS)

SENSOR TYPE AND ID	Y (LONGSHORE)	X (OFFSHORE)
Runup Meter (Task 1-A)	0	17
Anemometer (Task 1-A)	0	43
Impact Meter (Task 2-B) IT1	-100	170
Optical Backscatter Meter (Task 2 OBS1	<u>-B)</u>	170
Current Meter (Task 2-B) C47	-100	170
Resistence Wave Sensor (Task 2-B)	-100	170
Current Meter (Task 2-B) C49	-100	170
Current Meter (Task 1-B) C43	Varied	Varied
Pressure Gage (Task 1-B) P44	Varied	Varied
Stillwater Gage (Task 1-B) S45	Varied	Varied
Stillwater Gage (Task 1-B) S46	Varied	Varied

Oct. 1978 Nov. 1978 Dec. 1978

	10	, ,																						
	27	29	13	4	5	6	7 8	9	10	1	1 12	2 13	14	15	16	17	18	19	20	21	22	23	24	6
TASK 3 A	· Variable	1			Sections.			-					-											
TASK 1-A SURF ZONE DYNAMICS	and and		-		1	-	43	1		1			1		-		TI.				1			
SOM ZONE DINAPITOS			-		aller . see	1		-		-	-	-		į				and						
Pressure Wave Sensors				X .	X	X >	X	200	X	X	X	X	X	X	X	X	X	X	X	X	X		X	X
Wave Staff Sensors				X.					A consumer	distance to	4	X	-					X					X	X
E.M. Current Meters									X	X	X	X	X	X	X	X	X	X	X	X	X	-	X	X
Runup Meter						XX			X		X		X	X				X						
TASK 1-B			de la constitución de la constit	1	A.	-	-			-	-		-				125		19.				Cara and	-
RIP CURRENTS			-	100	-	1		a read		-	1	-												
KII CORKERIS			-	200	-	-	to our	-			-	-		-										
Portable Current Meter			-	Part of the	-	×	X	-	X		and and and	-		-		X	120		X	18		OB.		
& Pressure Sensor				1	1	1	1	-	^	-	1	-	-		-				^	m. 81. mm			-	-
Still Water Level Gage					-	1	-	-	r) ar Sea ye)	-	-	1		7	-		X	X	X	X	X		X	
Time Lapse Photography	of executive to Audit of	-		1)	(1)	(X	i						-	DEL SETTING	-	N Tabrier Land	X	X	manag	X	X	-	X	
TACK O A	1			-	T	-	1				-	- Company	an come have	Call or A radiated	Pri-mater project	CK-PANCE S	- and n 1965 185	and a second	un ac-morph	D ANOMA	promote trade	are medi-	The accountry	A women or in
TASK 2-A SEDIMENT TRANSPORT			-	1746	-	-	No. of London			18		20		409		-	-				Carrie	-01		
SEDIMENT TRANSPORT	Dest.com		200	-	1	-	10	-							-				-			-		
Dye Injection	What			3	-	index.	X	-							-	1	-	-				-		
Sand Tracer Injection				and for	-	1	X	-	.53	-				-					X	X	X		X	X
Optical Suspended	1				1		X		-	-		-	m/* (F., 240)	X		-	-		X	-	X	mingon seden	X	Same in a state of
Sediment Corer	-	-1,000	-	-		-		-	Mariting and P	The last of			to it was had.	Kathadada is s	mont by		and stead of	-	windra	hi dhi hare ut	an'manide	news trades	an Down	191 1000
Suspended Sediment	-		-	-	-	1	X	-	morrange age				The same of the sa				1		-	91 = 34	Tr personal di	anni s	X	X
Corer Acoustic Bed Load				-	+	-	-	-	manual	-	prompton party	-	MARIAN		-American		MAN DEMANDS						Mr. b. Spiller coup	
Detector				-	1		X	-	minera	horas.	andrews ma	-was	ari (17) same gira	X	mud	neater.	-		X	- NAME - PATE - 20				1
Aerial Photography	-		-	-	+	-	X		barretin	-	-	-	-	w7.0 30m/h/m						07 kg,	-	-	Property of the last	
	-	-	-	-	+	-	1	-	- Parisma			-				-	or market			-	-	-	X	X
TASK 2-B	-	and the same of	2.04.2		-	1		4						18			-			4		. !		-
SUSPENDED SEDIMENT		1	20.00	-	-	1	-							-		-	-					1		
E.M. Current Meter	PARTA	-	17.00		*	- Tarana	Projection of the Parket								-	-	-		-					
Resistance Wave Sensor		-		X		X	X	an en puid	X	X	prior transport in the	the admiral	MAN AND	and a second	-	X	X	X	X	X	X		X	
Impact Meter and					+	1	-			-		-	-	-	-		-		- Deline	X	X		X	1
Mech. Sampler	-	-	1	+	+	-	1	-	-		-		-	-	-	X	X	X	X	X	X	- Andrews	X	
Optical Backscatter	-	1	-	X	+	X	for					-									-	-		-
Meter	-	-	7	-	+	1	- description		X_	X	para es				-	X	X	X	X	_X_	X	-	X	gramman again (ag
TASK 3-A	-	1		1	1	1	1		-	-ave					-	-				-			Water study . was a fine	THE STATE AS
ON-OFFSHORE PROFILES	1	1	2000		-	p B	1	5V		A LINOTON		-	-		-	-	-					-		1
ON-OTTSHOKE PROFILES	1		0.00	2	-	-	-		1	-		-	-		-	-	-	-	1			-		
Beach Profiles	x	X	X	XX	x	X	x		X	41.00	×	x	v 1	x	~		Sea a desprise as	-	-		1	-		-
Offshore Profiles	-			· ·	+	30000	-			-		armer of	^	^	X	X		X	X	X	X	-	X	
	1		- merefor	-	1	1	1	A.,		-	-	-		-			X			-	-	-	The state of the s	-
TASK SUPPORT DATA	-		-		-	1	-		1	-			-	1	1	i		1	-	-				
Tides	.				-	-	1			- war			100,000	-	1	-	- Comme	-	-	derma		-		
Onsite Anemometer	X	X	X	XX	X	X	X		homeonid		number of the last	marrow made	X	X	X	X	X	X	X	X	X	X	X	X
Beach Observations	-			XX		X	2		mount	-			X			X	X	X	SI WHEN	X			Anna service	
Land Still Photography	-		-		+	^	^	-	X	X	-	X		X	X	X	X		X	X	VIII WALLE	-	X	
Surface Weather Charts	V	~	X	XX	+	and species	1-1	-	veran	anna.	or and sings			alice and	march		rmie	-	-		7.70		X	X
and Statistics	-		are made	AX	X	-X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
the state of the s			-1		L	1									-	1	-					1	- Anna Carlotte	and the second

In order to fulfill the requirements of the Torrey Pines Experiment, six telemetry stations were utilized. One station was located on a spar buoy at the 10 meter depth. This station acquired the five pressure sensor array data as well as two pressure sensors on the on-offshore range line (SIO-4). This station was completely self-contained with its own batteries and timer which allowed data collection for any eight-hour period per day. Another PCM encoder station provided data acquisition for sensors between the 3 to 7 m depths and was located in three meters of water, just outside the breakers. One long cable provided the power necessary for these sensors as well as the return signal to the transmitter on shore. The remaining four stations were all located in a temporary instrument van on the beach which provided 60 channels of data for instruments located in the surf zone. These instruments were all individually cabled back to the van. All of these station encoders were recorded.

The receiving system at the SPL consisted of a special six channel receiver tuned to each of the transmitting stations (i.e., 216.5, 217.0, 217.5, 218.0, 218.5, 219.0 MHz). The serial (multiplexed) output of each of the receivers was recorded on a seven-track instrumentation type tape recorder (Honeywell 7600) at 64 samples per second. The seventh track was used to record time in a IORIG-B format. This time recording technique tags the six other tracks of data with continuous time information to a milli-second resolution. The capacity of one reel of tape was approximately eight hours of continuous recording from the six stations.

In order to recover the data from the transmitted serial PCM, special synchronization equipment was used. A PCM bit synchronizer, using a special type of phase lock loop, produces a coherent bit rate clock and also detects and converts the serial data back to binary "l's" and "Ø's." The recovered data and clock are used by the frame synchronizer which is programmed to recognize a unique frame sync word inserted by the PCM encoder. Once this synchronization is established all data channels can be identified by their bits of location relative to the sync word. The resulting 12 bit data words and four bits of location information are presented in parallel to the computer which processes the data and prepares multiplexed data tapes [Lowe, et al., 1973]. The sample rate is reduced from 64 samples per second to 8 samples per second by block averaging eight consecutive data points of each data channel.

Only one set of synchronization equipment was available, therefore data from only one transmitting station was processed at a time. Simultaneous samples from all six stations are made possible by the time code that is recorded along with the data on the analog tapes. Precise control of the start time in the playback mode insures simultaneous sampling of the data. Playing the analog tape through the system while holding the start time constant enables all stations to be sampled at the same time. The demultiplexed nature of these tapes allows all sensors to be on the same tape with 128 seconds of data for each sensor per file. The software and hardware of the total system allows a speed up factor of 16:1 in the playback mode thus reducing the time of data processing. These demultiplexed tapes are further processed by an editing routine to remove data spikes (i.e., deglitching) and low pass filtering to substantially reduce energy between 0.5 and 1 Hz. The data are then decimated and output to tape at two samples per second (512 data points). These demultiplexed tapes will be referred to hereafter

as data tapes. A functional block diagram of the Scripps SAS data acquisition transmit station and receiver data processing system is provided in Figures 3-3a and 3-3b. Figure 3-4 is a flow chart summarizing the data processing procedure.

2. University of Washington Data Acquisition and Processing System

The University of Washington data acquisition system consists of an IMSAI 8080 microprocessor, a 12 bit A/D converter and a digital system dual floppy disk recorder which is capable of recording 10 channels of analog data at a sampling rate of 10 per channel per second. The signal from the suspended sediment meters, current meters and resistence wave sensor was cabled to a mobile camper on shore where it was recorded by the system briefly described above.

The processed data tape consists of 389 files with seven records per file (i.e., each record corresponds to each data channel). Each record consists of 512 points (1024 bytes) or 2 samples per second as binary integer values from the various sensors. The data contain actual raw values and have not been edited or filtered. The data values have a time interval of 0.1 second per scan.

Section V of this report will provide the necessary information required to correctly read and interpret both the Scripps SAS and University of Washington data tapes.

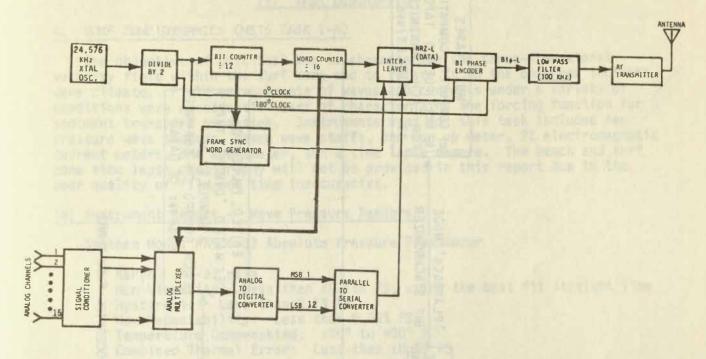


FIGURE 3-3a
BLOCK DIAGRAM OF SAS
TRANSMIT STATION

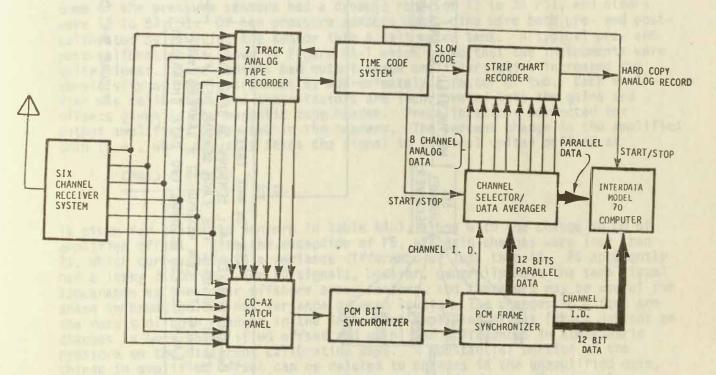


FIGURE 3-3b

BLOCK DIAGRAM OF SAS

RECEIVING AND DATA PROCESSING SYSTEM

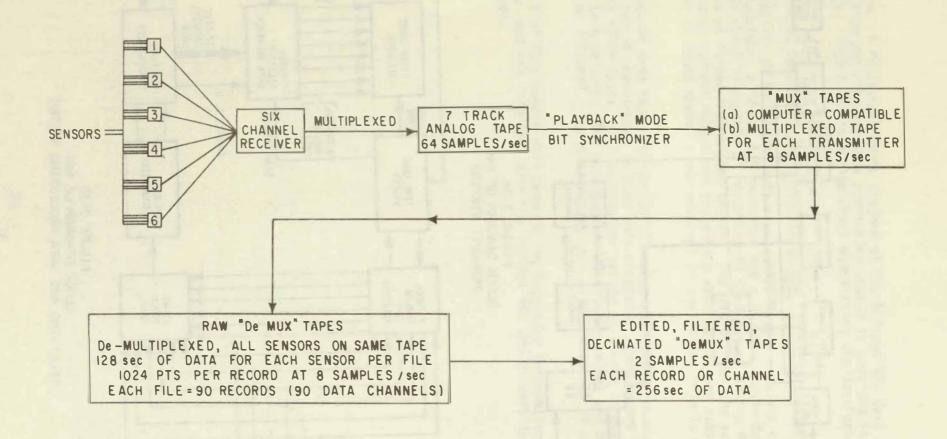


FIGURE 3-4 DATA PROCESSING FLOW CHART

IV. TASK DESCRIPTION

A. SURF ZONE DYNAMICS (NSTS TASK 1-A)

The objective of this task was to characterize the three-dimensional velocity field within the surf zone and to relate it to the observed incident wave climate. Field measurements of waves and currents under a variety of conditions were an essential part of characterizing the forcing function for sediment transport processes. Instruments used for this task included ten pressure wave sensors, seven wave staffs, one run up meter, 22 electromagnetic current meters, one anemometer, and a time lapse camera. The beach and surf zone time lapse photography will not be provided in this report due to the poor quality of film and time inaccuracies.

la) Instrument Report -- Wave Pressure Sensors

Statham Model PA506-33 Absolute Pressure Transducer

Range: 13-33 psia

Non-Linearity: Less than ±0.15% FS, using the best fit straight line

Hysteresis: Less than 0.1% FS

Non-Repeatability: Less than 0.05% FS Temperature Compensated: +30° to +90° F. Combined Thermal Error: Less than ±0.5% FS

The Statham Model PA506-33 temperature compensated transducers have strain sensitive resistance wire elements arranged in the form of a Wheatstone bridge. Some of the pressure sensors had a dynamic range of 13 to 33 PSI, and others were 13 to 53 PSI. Of ten pressure sensors used, nine were both pre- and post-calibrated by lowering the sensor into a salt water tank. A typical pre- and post-calibration is shown in Figure 4A-1 which shows that the instruments were quite linear. Some sensors had output stage amplifiers which increased the sensitivity of the instruments by approximately a factor of two. Each amplifier was calibrated, and these factors are incorporated into the gains and offsets given in the magnetic tape header. Precalibrations corrected for output amplifiers were used in the headers. The percent change in the amplified gain (i.e., what actually takes the signal to physical units) defined as:

is given for available sensors in Table 4A-1, along with the change in CM of amplified offset. With the exception of P5, all gain changes were less than 2%, which corresponds to a variance difference of less than 4%. P5 apparently had a leaky diaphram. The P5 signals, however, generally have the same visual appearance as the other offshore array sensors, and therefore may be useful for phase information but not variance or mean levels. The changes in offset are the result of both changes in the instrument amplified offset (which depends on changes in both unamplified offset and gain) and differences in atmospheric pressure on the different calibration days. A substantial portion of the change in amplified offset can be related to changes in the unamplified gain, which is presumably not affected by barometric differences. For example, 9.5 cm of the P3 amplified offset difference is due to unamplified gain changes.

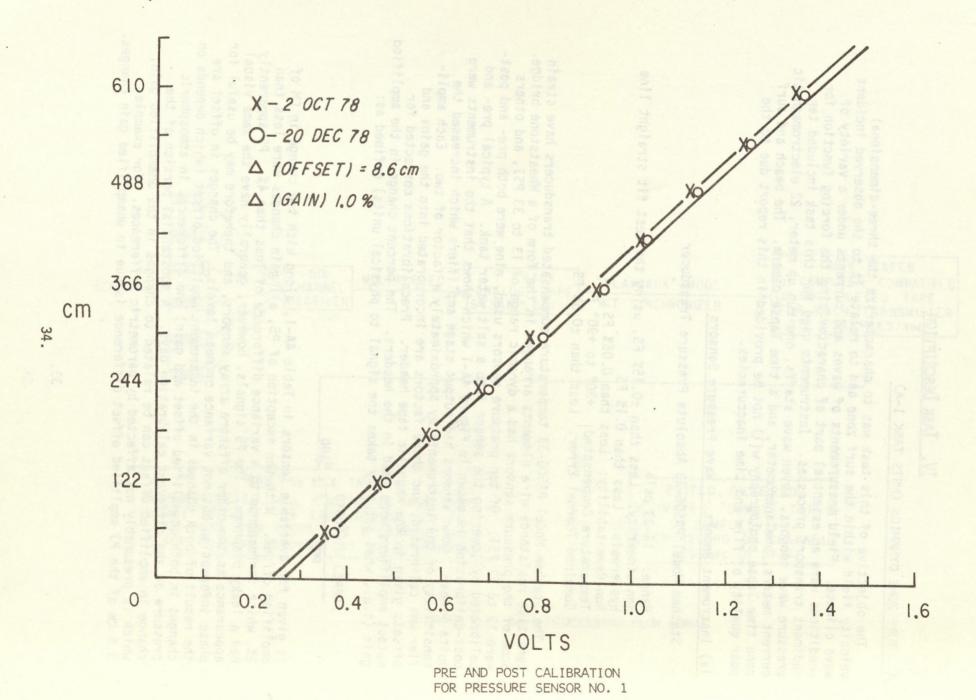


FIGURE 4A-1

TABLE 4A-1 PRESSURE SENSOR GAINS AND OFFSETS

SENSOR	Δ GAIN (%)	Δ OFFSET (cm)
P1	The same of the sa	13.8
P2	.4	3.9
P3	1.35	24.5
P4	1.2	19.7
P5	64.	38.
P7	-1.69	10.2
P7A	+1.41	17.3
P10	-1.2	6.0
P16	84	8.3
P30	Post-cal Only	,

Δ OFFSET = OFFSET (PRE) - OFFSET (POST)

 $\Delta \text{ GAIN} = \frac{\text{GAIN (PRE)} - \text{GAIN (POST)}}{\text{GAIN (PRE)}} \approx 100$

In summary, gains for the pressure sensors given in the headers are probably accurate within 2 or 3%. Offsets do not account for barometric pressure differences, and also include electronic drift of roughly 10 cm.

Figure 4A-2 shows a photograph of the type of pressure sensor used.

1b) Offshore and On-offshore Pressure Arrays

The offshore measurements of the wave field were made using a line array of five Statham Model PA506-33 pressure sensors mounted on the ocean bottom at a mean depth of approximately 9.7 meters. The study site was chosen for its relatively plane depth contours. Figure 4A-3 is a refraction plot which slows the regularity of the wave rays in the vicinity of the array. The array's axis points 4.5° west of true north (355.5° true) which is roughly parallel to the depth contours. The mean depth of the array was chosen as a trade-off between high frequency sensitivity (increased depth causes loss of signal for short waves) and wave nonlinearity. The high frequency cutoff for frequency spectral analysis is about 3.8 seconds.

The spacings of the array were in an approximate 2-2-2-5 configuration with a unit lag of 33 meters. The length of the array was designed for resolution of long period waves coming around the north and south ends of San Clemente Island. This requires directional resolution sufficient to define peaks separated by 5° to 10° in ten meters of water.

Difficulties with side lobes in the directional spectra limit the computational value of the spectra for waves with periods less than nine seconds. A planned shorter lag (33 meters) that did not function would have carried this cut-off down to wave periods of about 6.5 seconds. The long period limit of high quality directional spectra (due to resolution) is about 20 seconds. Although of limited quantitative value, the directional spectra for periods 6 to 9 seconds do accuartely locate the primary directional modes.

The routine directional spectrum analysis was performed using the maximum likelihood estimator (MLE). This estimator performs well with the narrow directional spectra which are frequently present at Torrey Pines Beach.

Pressure sensors P4, P7, P7A, P1O, and P16 were located in an on-offshore line orthogonal to the axis of the offshore array. This on-offshore array was deployed for the study of the shoaling transformation in the wave energy spectrum. The sensor locations were chosen for a conservative coverage of the zone from near linear waves to the breaker line.

The on-offshore array axis points 4.5° south of west (265.5° true) which was the best estimate to a line orthogonal to the depth contours. The long-shore location (inshore of P4) was chosen for linearity of depth contours. Also, it was desired to be well north of Indian Canyon, which has considerable run-off during rains.

2. Instrument Report -- Wave Staffs

Scripps Institution of Oceanography Dual Resistance Wire Analog Wavestaff

10 11 12 13 14 14 15

Figure 4A-2. Pressure Sensor

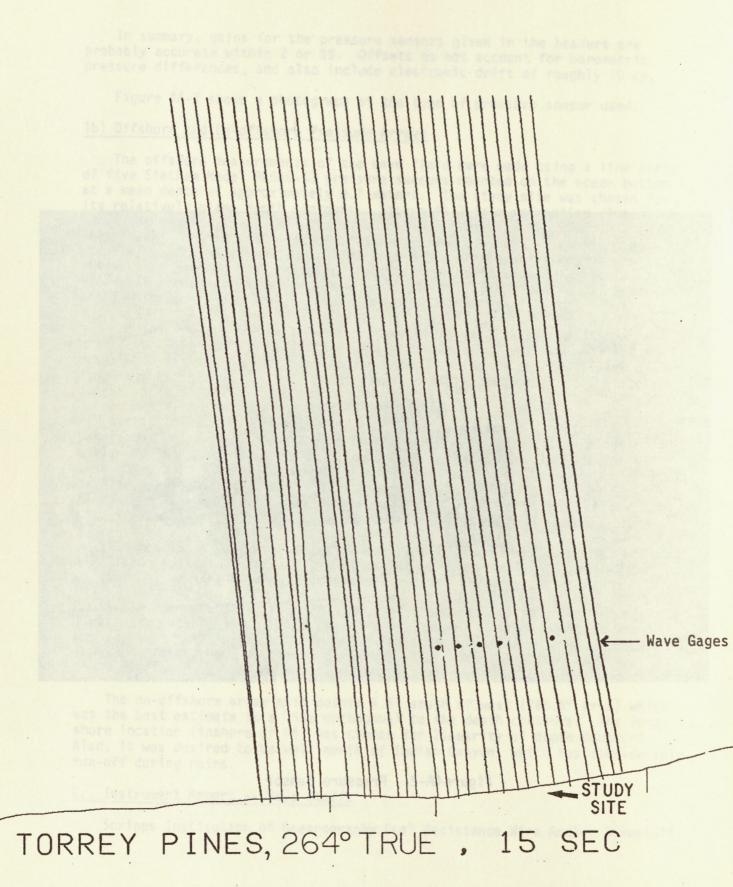


Figure 4A-3 Wave Refraction Plot at Torrey Pines Beach

Dynamic Range: 3 meters

Resolution and Maximum Drift: 0.3 cm

Output Signal: DC voltage proportional to the length of resistance

wire above the water

Staff: 6.5 m length fiberglass structural tubing with 4 cm 0.D.

Sensing Element: 2, 0.06 cm diameter nichrome wires

Dual resistance wire wavestaffs with low noise and drift, and high resolution developed at the SIO Shore Processes Lab were used for surf zone measurements of wave height. The wavestaffs have a usable dynamic range of 3 m, with resolution on the order of 0.3 cm.

Mechanically, the system consists of two 0.06 cm diameter nichrome resistance wire stretched between mounting brackets mounted in the top 3 m of a 6.5 m long, 4 cm diameter fiberglass pole. The wires are supported about 2 cm from the pole to avoid runoff hysteresis and drift due to absorption of water by the fiberglass pole.

The resistance wires form one leg of an AC, ground isolated bridge circuit transformer coupled to a 20 KHz oscillator input and transformer coupled to a synchronous detector and amplified at the output. The ground isolation and synchronous detector circuitry accounts for the low noise and drift and allows high amplification for increased resolution.

Calibration was performed by raising and lowering the wavestaff system by known increments in still water. The wavestaff was designed to have linear response to within 1%. Gains and offsets entered in the magnetic tape headers generally refer to pre-calibrations. Since staffs were generally lost and replaced, post-calibrations were not possible. The offsets are referenced to the bottom, therefore the use of these offsets yields a total depth. The disadvantages of this configuration is the vulnerability of the wires to breaking and stretching during installation and when fouled by seaweed. The pole is clamped to a disk-shaped, steel base plate and jetted into the sand for surf zone installation. Under heavy surf conditions the poles slowly work their way out of the sand. This can lead to spurious mean depths, and eventual loss of the staff. Figure 4A-4 shows a photograph of a wave staff installed next to an electromagnetic current meter at Torrey Pines Beach. A detailed discussion of the field and laboratory wavestaff system is given by Flick, et al. [1979].

3. Instrument Report -- Runup Meter

(Note: Instrument specifications same as wavestaff except as noted below.)

The investigation of long-period oscillations nearshore was studied using a runup meter developed at Scripps Institution of Oceanography [Flick, Lowe, Freilich, Boylls, 1979]. The runup meter is a variation of Scripps wavestaff system and contains two parallel 0.016 cm diameter wires 100 meters long supported about 2 cm off the beach face. As the swash runs up the beach, more wire is submerged and the output voltage changed resulting in an accurate representation of the up-rush. The downrush signal is under investigation. The calibration procedure was the same as that used for the wavestaffs. The gains and offsets entered in the magnetic tape headers represent pre- and post-calibrations. Figure 4A-5 provides a photograph of the runup meter at Torrey Pines Beach.

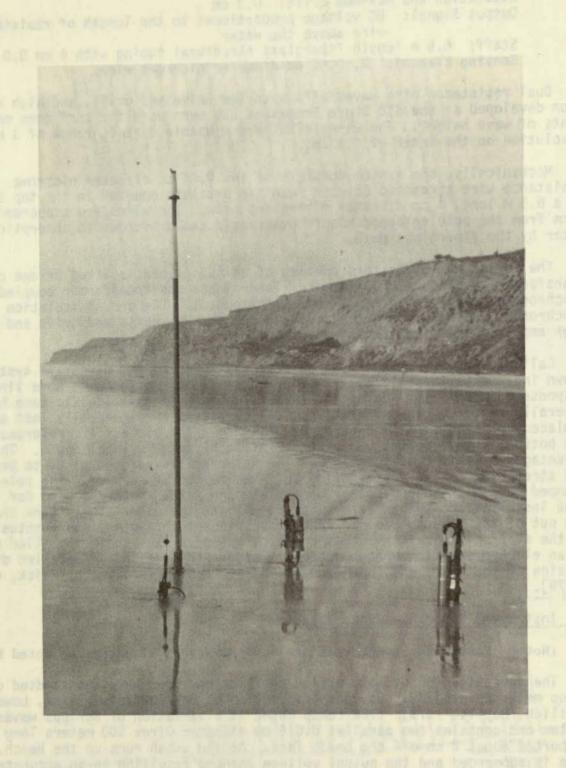


Figure 4A-4 Wave Staff and Electromagnetic

Current Meter at Torrey Pines Beach

Figure 4A-5. RUNUP METER

INSTALLED AT TORREY PINES BEACH.

4. Instrument Report -- Electromagnetic Water Current Meters

Marsh-McBirney, Inc.

Model 512 OEM 2-axis, 4 cm diameter spherical probe Nominal Output Gain: lv for a flow of 1 m/s Output Filter: 3 pole, 4Hz Output Impedance: 100Ω Accuracy: 5-10%

The Marsh McBirney electromagnetic current meter sensors operate on the principle of Faraday induction, whereby a voltage is induced in a conductor moving relative to a magnetic field. In this case, seawater is the conductor, the magnetic field (AC) is set up by an electromagnet inside the probe and the electrodes measure the induced voltage to generate the output signal. Figure 4A-6 provides a photograph of the current meter probe and electronics package. Figure 4A-4 shows the field installation of a current meter at Torrey Pines Beach.

Overall, these sensors performed well with only four failings during the extent of the experiment. Most sensors were repaired within an hour. The sensors stood up to great physical punishment and only one suffered mechanical failure (a bent probe stick). One recurring problem was that connectors worked loose, with resultant noisy signals. Fasteners to eliminate this problem have been developed. All sensors had offsets equal to:

±0.2 cm

Gains were measured by the following two methods:

a) towing at a steady speed (DC gain) and b) attaching the probe to an oscillating arm executing motions with known stroke and frequency (AC gain).

Gain which is the calibration or scale factor and offset which is the baseline or zero correction is defined as:

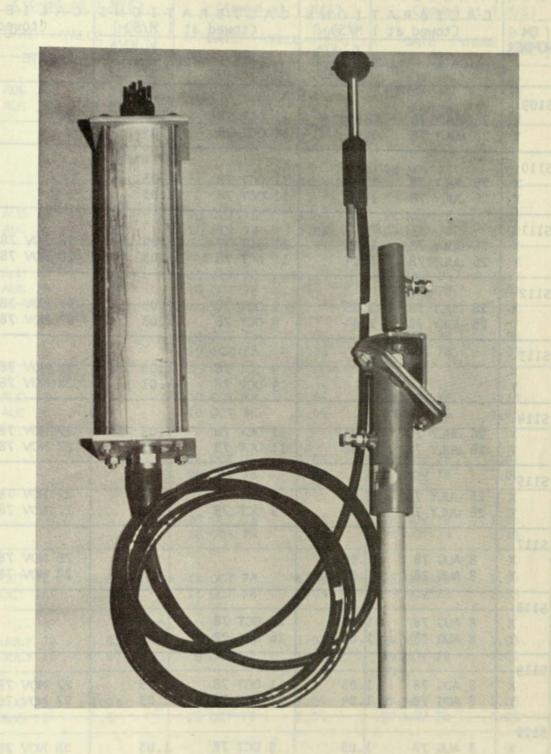
signal
$$(\frac{cm}{sec}) = OFFSET + (GAIN * V)$$

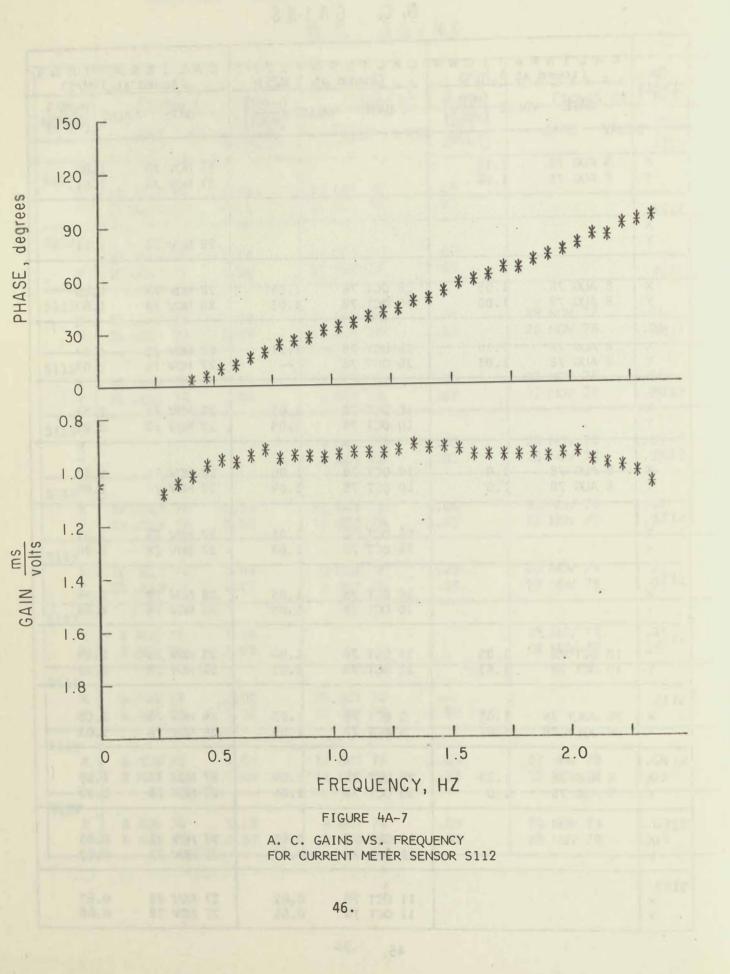
where V is the output voltage of the sensor. DC gains and offsets were measured on most instruments both before and after the experiment by towing at:

 $100 \frac{\text{cm}}{\text{sec}}$

Gains and dates measured are provided in Table 4A-2. DC gains almost always varied by less than 5%.

AC gains were less satisfactory. As shown in Figure 4A-7, the instruments do not have constant gain for varying frequencies. This is not due to the filter characteristics of the electronics, which are flat for frequencies less




Figure 4A-6. Marsh McBirney Electromagnetic Current Meter Probe and Electronics Package.

D. C. GAINS

CM NUMBER	CALIBRATIONS (towed at 1 M/S) DATE VALUE (M/S VOLT)	CALIBRATIONS (towed at 1 M/S) DATE VALUE (M/S) VOLT	CALIBRATIONS (towed at 1 M/S) DATE VALUE (M/S) VOLT
\$109 X Y	26 JULY 78 0.99 26 JULY 78 1.04	11 OCT 78 1.03 11 OCT 78 1.03	The rate or the
S110 X Y	26 JULY 78 1.03 26 JULY 78 1.00	11 OCT 78 1.03 11 OCT 78 1.03	Viernite United
S111 X Y	26 JULY 78 1.00 26 JULY 78 1.04	11 OCT 78 1.04 11 OCT 78 1.03	28 NOV 78 1.01 28 NOV 78 1.01
S112 X Y	26 JULY 78 1.05 26 JULY 78 1.04	9 OCT 78 1.03 9 OCT 78 1.03	27 NOV 78 1.04 27 NOV 78 1.04
S113 X Y		9 OCT 78 1.03 9 OCT 78 1.01	28 NOV 78 1.05 28 NOV 78 1.03
S114 X Y	26 JULY 78 1.03 26 JULY 78 0.98	11 OCT 78 1.05 11 OCT 78 1.05	27 NOV 78 1.06 27 NOV 78 1.02
S115 X Y	26 JULY 78 1.03 26 JULY 78 1.03	9 OCT 78 1.03 9 OCT 78 1.03	27 NOV 78 1.03 27 NOV 78 1.03
S117 X Y	8 AUG 78 1.00 8 AUG 78 1.00		28 NOV 78 1.05 28 NOV 78 1.02
S118 X Y	8 AUG 78 1.01 8 AUG 78 1.00	26 OCT 78 26 OCT 78 0.99	
S119 X Y	8 AUG 78 1.03 8 AUG 78 1.04	11 OCT 78 1.05 11 OCT 78 1.03	27 NOV 78 1.04 27 NOV 78 1.03
S122 X Y	8 AUG 78 1.08 8 AUG 78 1.07	9 OCT 78 1.03 9 OCT 78 1.02	28 NOV 78 1.03 28 NOV 78 1.03

D. C. GAINS

	The supplied of the second	The section of the se	The second second
CM NUMBER	CALIBRATIONS (towed at 1 M/S)	CALIBRATIONS (towed at 1 M/S)	CALIBRATIONS (towed at 1 M/S)
-	DATE VALUE (M/S VOLT)	DATE VALUE (M/S VOLT)	DATE VALUE (M/S VOLT)
S123 X Y	8 AUG 78 1.11 8 AUG 78 1.08	resurrists. Tentrally and the street of the	27 NOV 78 1.02 27 NOV 78 1.01
S124 X Y	Sever challens, we truck to the second of th	in the second se	28 NOV 78 1.01 .
S125 X Y	8 AUG. 78 1.05 8 AUG 78 1.00	26 OCT 78 1.04 26 OCT 78 1.03	28 NOV 78 1.05 28 NOV 78 1.02
S127 X Y	8 AUG 78 1.10 8 AUG 78 1.03	26 OCT 78 1.11 26 OCT 78	27 NOV 78 1.07 27 NOV 78 1.03
S128 X Y	The Section of the later of the	10 OCT 78 1.05 10 OCT 78 1.03	27 NOV 78 1.04 27 NOV 78 1.05
S129 X Y	8 AUG 78 1.0 8 AUG 78 1.0	10 OCT 78 1.06 10 OCT 78 1.04	28 NOV 78 1.10 28 NOV 78 1.05
S130 X Y	in 101 pror in mapping	26 OCT 78 1.03 26 OCT 78 1.03	27 NOV 78 1.01 27 NOV 78 1.00
S131 X Y		10 OCT 78 1.05 10 OCT 78 1.05	28 NOV 78 1.36 28 NOV 78 1.29
S132 X Y	10 OCT 78 1.05 10 OCT 78 1.03	11 OCT 78 1.04 11 OCT 78 1.03	28 NOV 78 1.04 28 NOV 78 1.03
S133 X Y	26 JULY 78 1.03 26 JULY 78 1.07	9 OCT 78 1.03 9 OCT 78 1.03	24 NOV 78 1.03 24 NOV 78 1.02
S134 X Y	8 AUG 78 1.03 8 AUG 78 1.0	26 OCT 78 1.04 26 OCT 78 1.04	27 NOV 78 1.03 27 NOV 78 1.03
S151 X	Mar Saverter 16, 71, 3000	11 OCT 78 0.62 11 OCT 78 0.63	27 NOV 78 0.63 27 NOV 78 0.62
S152 X Y		11 OCT 78 0.62 11 OCT 78 0.61	27 NOV 78 0.62 27 NOV 78 0.62

than 1 Hz. Comparison of AC calibrations with a single sinusoidal motion, and pseudo-random motions containing many frequencies show that the gain at a particular frequency depends on the characteristics of the total motion. This suggests that a single gain number, of a single gain vs. frequency curve, does not exist, which is not surprising because the meters measure the flow field very close to the probe head. Sensibly, the boundary layer region, and the detailed structure of AC boundary layers, is going to depend on the entire spectrum of fluid velocities. Typically, gains at a particular frequency vary by 5 to 10% depending on what other frequency motions are present. Gains entered in the headers are averages of DC calibrations. It is possible that the AC results are caused by inaccuracies in the calibration device. Nevertheless, we have assigned an uncertainty of 5 to 10% in instrument gain. Calibration runs in still water show approximately white noise for frequencies 0 to 4 Hz (some roll-off at high frequency due to electrical filtering) with an r.m.s. amplitude of al cm/sec which is low noise level. The orientation of the current meter was checked daily on the foreshore areas and every 2 to 3 days offshore. The accuracy of the orientation was $\pm 5^{\circ}$.

The elevation, location, and condition of the current meter electrodes relative to mean sea level for each day of the experiment is provided in Appendix B.

Summary:

- 1) The instruments offsets remained constant through the experiment.
- 2) Hydrodynamic effects apparently make the instrument gain frequency dependent in a complicated way, which depends on the total spectrum of velocities.
- 3) Gains used in magnetic tape headers are DC gains. An approximate 5 to 10% error is associated with this number.
- 4) Noise levels of the instruments are low $(Q_{r,m,s}, \approx 1 \text{ cm/sec})$.

5. Instrument Report -- Anemometer

Meteorology Research Inc. (MRI) Model 1022 Anemometer

(Note: Wind speed and direction performance specifications are provided in Figure 4A-8.)

A Meteorology Research, Inc. (MRI) model 1022 anemometer was installed at a height of seven meters above mean sea level on the shore near bench mark SIO-4. The effects of the nearby cliffs on the onshore winds were minimal. Wind speed and direction was telemetered and recorded on the Scripps SAS system. The gain for the wind speed (A₁S) is 514 cm/sec or 1 volt = 514 cm/sec and for wind direction (A₁D) is 108° (magnetic) or 1 volt per 108° from magnetic north. Instrument performance specifications for the speed and direction sensors are provided in Figure 4A-8. Overall, the winds were very light and variable throughout the experiment duration except for November 10, 11, and 21 when the winds gusted up to approximately 30 knots.

WIND SENSOR Model 1022

WIND SPEED

Performance Specifications

Starting Threshold 0.5 mph

Response Distance 5 ft (63% Recovery)

Flow Coefficient 6.0 ft/rev

Accuracy ±0.15 mph or 1% of wind speed

Range 0.5 - 120 mph maximum

Output:

Voltage Pulses, approx. 4 V peak-to-peak

Frequency 0 to approx. 2500 Hz

Impedance - Less than 10 K ohms

WIND DIRECTION Performance Specifications

Starting Threshold 0.70 mph

Delay Distance 3.7 ft (50% Recovery)

Damping Ratio 0.4 at 10° angle of attack

Accuracy ±2.5°

Range 540°

Output:

Pot A

Full scale 20 K ohms ±3%

Linearity ±0.5% of full scale

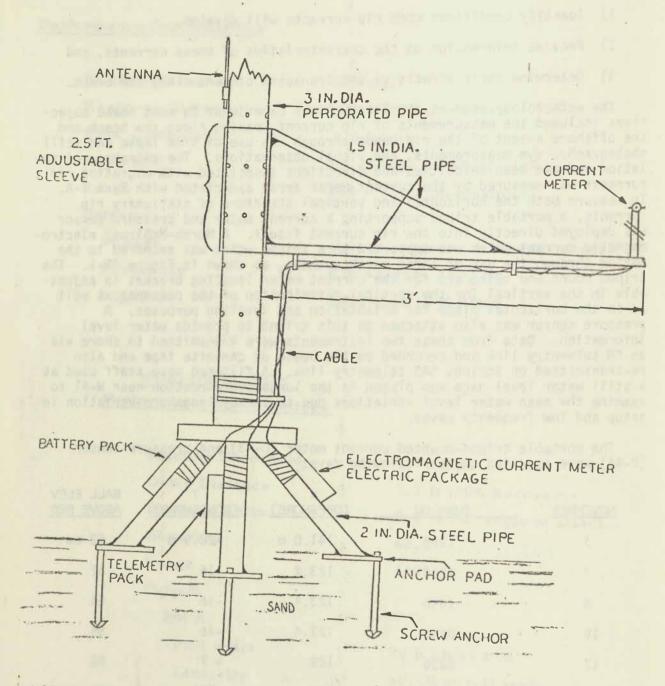
Resolution 0.1%

Maximum power 2.0 watts

Figure 4A-8 Performance Specifications for MRI Model 1022 Anemometer

B. FIELD MEASUREMENTS OF RIP CURRENTS (NSTS TASK 1-B)

The objectives of this task were to use state of the art field technology to measure the characteristics of the nearshore circulation system in situ and to develop a predictive model to


- 1) Identify conditions when rip currents will develop,
- 2) Provide information on the characteristics of these currents, and
- 3) Determine their effects on the transport of sand along the beach.

The methodology used at the Torrey Pines Experiment to meet these objectives included the measurements of rip current spacing along the beach and the offshore extent of the rip heads through the use of time lapse and still photography, dye measurements, and visual observations. The nearshore circulation and the mean velocities and directions associated with migrating rip currents was measured by the current meter array associated with Task 1-A. To measure both the horizontal and vertical structure of stationary rip currents, a portable tripod supporting a current meter and pressure sensor was deployed directly into the rip current itself. A Marsh-McBirney electromagnetic current meter was supported on a tripod which was anchored to the bottom through the use of three earth anchors, as shown in Figure 4B-1. The tripod mount and swing arm for the current meter leveling bracket is adjustable in the vertical for the vertical distribution of the currents as well as in the horizontal plane for orientation and leveling purposes. A pressure sensor was also attached to this tripod to provide water level information. Data from these two instruments were transmitted to shore via an FM telemetry link and recorded on the beach on cassette tape and also re-transmitted on Scripps SAS telemetry link. A filtered wave staff used as a still water level gage was placed in the longshore direction near W-41 to examine the mean water level variations due to steady longshore variation in setup and low frequency waves.

The portable tripod-mounted current meter (C-43) and pressure sensor (P-44) were operated on the following days:

NOVEMBER	TURN-ON	X (OFFSHORE)	Y (LONGSHORE)	BALL ELEV ABOVE BED
3	1000	141.0 m	-28.9 m	52 cm
7	1200	123.4	-16	52
8	1030	123.4	-16	55
10	0630	123.4	-16	55
17	0830	129	- 7	86
20	1315	132	-190	65

TRIPOD ASSEMBLY

NOTE: THE HEIGHT OF THIS ASSEMBLY IS APPROX. 8 FEET

FIGURE 4B-1 Portable Current Meter Tripod Assembly

A still 35 mm camera was located in a weather box mounted on the cliff about -100 m south of the main range line. Time lapse photos were taken on the following dates and times:

NOVEMBER	TIME	INTERVALS (PRINTS)
3	8:18 - 10:02	8 min
5	8:59 - 11:04	8 min
6	10:38 - 13:50	8 min
7	12:01 - 12:03	2 min
18	9:26 - 12:06	8 min
21	9:46 = 15:04	6 min
22	9:18 - 09:42	8 min
24	8:45 - 14:42	6 min

Because these photos and field notes are of very limited value to other investigators, they are not provided with this report.

The still water level gage (S-45) was located near W-41 at

X (offshore) = 99

Y (longshore) = -7

and was operational from November 18 through 24. (Note: SIO-4 = 0,0)

Data obtained from the current meter and pressure sensor on the portable sled and the still water level gage are provided in the edited data tapes.

C. SEDIMENT TRANSPORT STUDIES (NSTS TASK 2-A)

The objective of this task was to make field measurements of sand transport by waves and currents and to define the relative importance of bedload and suspended sand movement in the overall longshore transport of sand. The following studies were performed at the NSTS Torrey Pines Experiment to help meet these objectives:

- 1) Fluorescent sand tracer measurements of total longshore transport in the surf zone;
- 2) In situ suspended sand concentration measurements in the surf zone using a suspended sediment corer;
- 3) Field testing of an acoustic bed load meter to test the feasibility of making continuous measurements of bed load transport in the field.

This section will discuss:

- 1) The methodology used in conducting the tracer experiments;
- 2) Laboratory procedures;
- 3) Instruments and equipment used both in the field and laboratory.

Specific comments, summaries, and actual raw data for each tracer experiment are provided in Appendix A. Textural data of the sediment samples are not available.

1. Sand Tracer Measurements

The dates and times of fluorescent sand tracer injection were carefully selected to meet certain criteria. These criteria were:

- 1) Minimal change in the tide elevation during a 3- to 4-hour period in the middle of the day;
- 2) Occurrence of dominant waves of sufficient height and breaker angle to generate a strong, unidirectional longshore current;
- 3) Absence of either stationary or migrating rip currents in the study area; and,
- 4) Submergence and operation of current meters and wave sensors in the study area.

Target dates were picked in advance from the tide calendar and all necessary personnel notified. During the morning of the given day, Rhodamine-B dye was injected at several positions in the surf zone and observed from the cliff above the site. The dye dispersal patterns indicated the approximate mean longshore current speed as well as the occurrence of complicating rip currents. If all conditions were satisfied, the injection location and sampling grid were determined appropriate to the current speed and direction

and the range flags were installed on the beach. If conditions remained favorable a sand tracer injection was initiated as shown in Figure 4C-1. After a predetermined time, temporal core sampling and spacial grab sampling were started. Successful experiments were carried out on 8 and 24 November and 6 December 1978 with the most meaningful data gathered on 6 December [Inman and Flick, 1979].

The tracer experiments used native beach sand collected from the beach face and beach berm at Torrey Pines. The sand was delivered to the Great American Color Company in Los Angeles, California for dyeing. Standard florescein dye of a green hue was attached to the sand grains using a binding medium of air-curing plastic and organic solvent. The dye is permanent and settling tube studies have shown that the hydraulic properties of the dyed grains are unaffected as long as a wetting agent is used prior to release. Settling tube sand grain analysis of the natural undyed sand and the dyed sand is provided in Tables 4C-1 and 4C-2. The dyed sand was bagged in plastic bags of carefully weighed ten-pound quantities. These bags were carried to each injection point and the tracer introduced by carefully tearing the bag on the ocean bottom avoiding suspending tracer grains as much as possible. Rhodamine-B dye injections and drift bottle measurements were continued throughout the tracer experiments to help monitor the circulation in the study area, particularly to determine the presence of both migrating and stationary rip currents.

The tracer grain distribution after injection was sampled by two independent methods simultaneously. One method used the traditional grab sampler which sought to survey the study area grid as rapidly as possible to get a synoptic aerial view of the tracer distribution. This method is referred to as "spacial sampling." The second method used a specially designed coring device to repeatedly core the bottom on a fixed on-offshore range downstream from the injection line and at constant intervals of time. This method is called "temporal sampling."

Table $4\mathfrak{E}-3$ outlines the dates and times of dye injection and tracer experiments. Table $4\mathfrak{C}-4$ provides an outline of current, wave, and suspended sediment data collected in support of the tracer experiments during the three sand tracer days.

2. NSTS Sand Tracer Sample Analysis Techniques

Grab Samples

The grab samples were collected using a hand-held scissors type grab sampler with the sample volume of 7.5 x 12.5 and 3 cm deep. The samples were transferred to plastic bags and labeled with date and grid location. Upon return to the laboratory, each sample was transferred to a large evaporating dish and rinsed three times with deionized water, decanting the water carefully after each rinse. Samples were then evaporated to dryness at 120° C overnight in a drying oven.

Samples were split into sub-samples weighing approximately 10 gm each using a Jones sample splitter. Each sample was split to the desired size by resplitting either the right or left-hand halves. Sub-samples were

8 Nov. 78

78.169-11

Figure 4C-1.

Tracer Injection of 8 November 1978

1978 NSTS UNDYED TRACER SAND

TOTAL SAMPLE WEIGHT = 70.34701

NICRORC 2828. 427 1414.013 1000.0001 707.1071 500.6001 420.4481 353.5531 297.3021 250.0001 210.2241 176.7771 148.6511 125.0001 105.1121 83.363 74.325 62.500 44.1941	PHI -1.5001 -0.5001 0.0001 0.5001 1.0001 1.2501 1.5001 1.7501 2.0001 2.2501 2.5001 2.7501 3.0001 3.2501 3.500 3.7501 4.0001 4.5001	PERCENT 0.057 0.1181 0.2321 2.2721 8.7511 5.7021 10.593 14.419 17.107 21.023 9.280 6.566 2.913 0.515 0.256 0.095 0.043 0.061	CUII PERCENT 0.057 0.1751 0.4071 2.6781 11.429 17.131 27.724 42.1431 59.2491 80.2721 89.5521 96.1181 99.0311 99.545 99.8911 99.8961 99.9391 100.0001			
GRAPHIC MOMENTS SAMPLE MOMENTS	MEDIAN 1.865(1	274.56)1	NEAN 1.7751 (292.111 1.7891 (289.36	SKEWNESS -0.1551 -0.6971	SKEWNESS2 -0.3391	KURTOSIS 0.804 5.530
PH105= 0.6327 PH116= 1.2004 PH150= 1.8643 PH184= 2.85041 PH195= 2.70741						

1978 RSTS PYTT TEACER SAME

TOTAL SAPPLE PIGHT = 225.70%

NICPURE 1000.000 707.100 500.000 420.000 353.550. 297.000 250.000 105.112. 88.300 74.325 62.500 44.194.	0.01 0.02 0.02 1.03 1.03 1.03 1.03 1.03 2.03 2.03 2.77 2.77 3.03 3.03 3.03 4.03 4.03 4.03 4.03 4.03	Princismy 0.005 0.016 0.003 0.009 0.002 19.012 29.053 07.646 6.777. 6.000 2.662 0.658. 9.173 0.082 0.034 0.027	0.005 0.005 0.001 1.010 4.000 10.055 00.177 95.554 03.987 90.764 06.765 02.226 99.604 99.857 99.940 99.973 100.600					
CRAPHIC MONENTS SAMPLE MOMENTS	MEDIAN 1.930(.	262.43).	MEAN 1.892 (1.927 (269.46) 262.97)	DISPERSION 0.359 0.416	SKEWNESS -0.106 0.375	SKEWNESS2 0.118.	KURTOSIS 0.964 7.197

PHI05= 1.2602. PHI16= 1.5030. PHI50= 1.9000. PHI84= 2.2005. PHI95= 2.6765.

TABLE 4C-3 DATES AND TIMES OF DYE INJECTION AND TRACER EXPERIMENTS

8 Nov 78

0846 - 0910 Dye Injection 1314 - 1330 Sand Tracer under unidirectional current 1318 - 1350 Dye Injection

20 Nov 78

0749 - 0820 Dye Injection 1132 - 1206 Dye Injection

21 Nov 78

0831 - 0900 Dye Injection 1035 - 1000 Dye Injection

22 Nov 78

24 Nov 78

0950 - 1006 Dye Injection 1215 - 1530 Sand Tracer under unidirectional current 1328 - 1345 Dye Injection

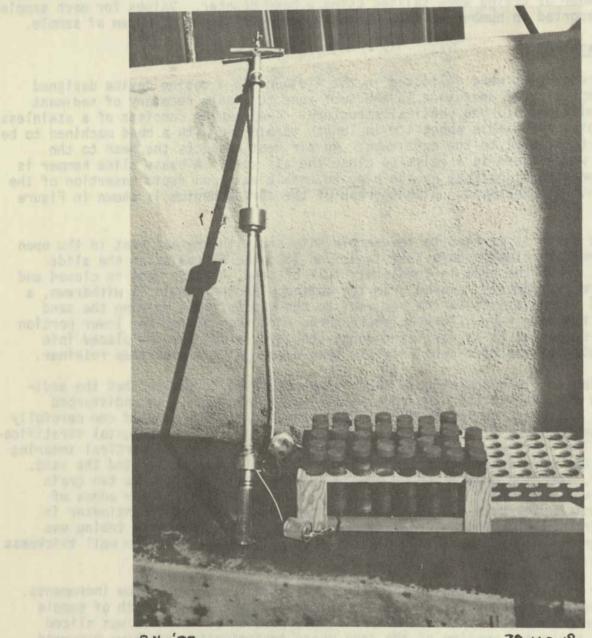
6 Dec 78

0932 - 0944 Dye Injection (strong S. current)
1250 - 1505 Sand Tracer under unidirectional current
1256 - 1304 Dye Injection (strong S. current)
1322 - 1335 Dye Injection (strong S. current)

TABLE 4C-4 SAND IRACER STUDY

DATE AND	cu	CURRER: DATA					WAVE DATA			SEDIMENT CATA				
INJECTION TIME (PST)				Aerial Photos			MAVE SENSORS				TRACER STUDY		SORS	
	Dye Patterns	Drift Bottles	Current Meters		And Visual Observations	Freq. Spectra	Directional Spectra	S _x Estimates	Suspended Concentration	Temporal Method	Spatial Method	Suspended Sensor	Bed Load Sensor	
NOVEMBER Dyed Sand Released At 1316	0846 1318-1350	None	Vector Plots 1311-1402 Analog Plots 1105-1620	SIO Pier Tide Gauge	1350-1410 Color Slides 1320-1359	1313 1347	1313 1347	1313 1347	1330 1346	1330- 1530	1429- 1446	1315- 1608	1030- 1700	
24 NOVEMBER Dyed Sand Released at 1215	0950-1006 1328-1338	1215-1530	Vector Plots 1216-1510 Analog Plots 1215-1535 17-Minute Averages 1000-1510	Tide Gauge At SIO Pier	S&W 1204-1346 Color Slides 1209-1325 Intermittent Visual Observations	Plots 1212-1446	Plots 1355	1034-1449	ixi ixi	1236-1530	1335-1402	1000- 1545	****	
DECEMBER Dyed Sand Tracer Injection At 1250	0932-0944 1256-1304 1322-1344	1250-1500	Means 1135-1425 Analog Plots 0942-1143 1202-1504	Tide Gauge At SIO Pier	T250-1444 Color Slides 1300-1451 Intermittent Visual Observations	Plots 1135-1442	Plots 1430	1135-1442	1320	1305-1457	1231-1401 1422-1439			

weighed using porcelain weighing dishes and a Mettler H80 analytical balance to ± 0.00 gm. Samples were analyzed for a number of fluorescently dyed grains by spreading the sub-sample onto a smooth black counting grid. Using a paint brush, the sub-sample was carefully manipulated to cover the counting board to a single grain layer thickness. The fluorescent sand grains were counted using a long wave ultra-violet light (B-100A Blak-Ray) in a completely darkened room. The number of grains were tallied using a hand counter. Values for each sample were reported in number of fluorescently dyed grains per kilogram of sample.


Core Samples

Core samples were collected in the field using a coring device designed for simplicity of operation in the surf zone to enable recovery of sediment cores with undisturbed vertical structure. The sampler consists of a stainless steel pipe and handle about 1 m in length terminated with a head machined to be an air tight seal to the core tube. An air vent connects the head to the handle where there is a valve to close the air vent. A brass slide hammer is positioned about halfway up the pipe to enable easy and rapid insertion of the core into the sediment. A photograph of the coring device is shown in Figure 4C-2.

The corer is carried to the sample site and with the air vent in the open position, the plastic core tube is driven into the bottom using the slide hammer. When the core is completely full of sand, the air vent is closed and the core tube gently removed from the bottom. As the sample is withdrawn, a partial vacuum exists in the air vent to the handle, thus holding the sand inside the core tube. To keep water turbulence from mixing the lower portion of the sample as it is carried through the surf, a PVC plug is placed into the bottom of the core tube which is then capped with a plexiglas retainer.

Prior to field operations, tests were conducted to ensure that the sedimentary structure within the core sample was maintained in an undisturbed manner. Alternating layers of dyed and undyed sand were sampled and carefully inspected under a fluorescent light for disruption of the horizontal stratification. The outer edges of the sample were found to have some vertical smearing due to the core dragging particles along the wall as it penetrated the sand. However, smearing only extended inward from the core wall one to two grain layers and the effect could be removed by cutting away the outer edges of the sample using thin-walled stainless steel tubing one-half centimeter in diameter smaller than the original plastic core tube. Butyrate tubing was used for the cores; the inside diameter was 4.13 cm with 0.16 cm wall thickness and the length was 15 cm.

For analysis, sediment within the core was extruded in 0.5 cm increments. By means of a plunger fixed to a threaded rod, the desired length of sample could be pushed out of the core tube. This portion of the core was sliced off and the outer portion of the core where contamination may have occurred due to drag on the walls was removed using the thin walled tubing. The remaining sample was then placed in a porcelain weighing dish. A photograph showing this operational sequence is shown in Figure 4C-3. By continuing this process, each half centimeter within any one core could be inspected for dyed tracer yielding concentration as a function of depth in the core. Each sample from within a core was rinsed three times with deionized water by decanting

8 Nov. 78

78.160-18

Figure 4C-2. Corer

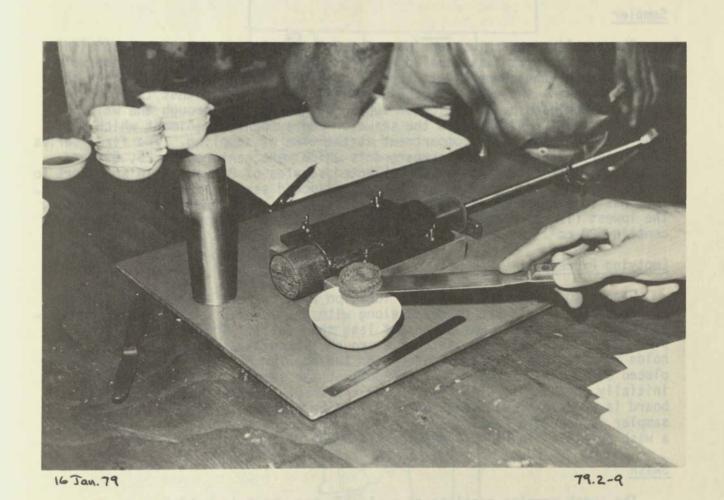


Figure 4C-3. Core Sample Methodology

the excess water after each rinse. The samples were then evaporated to dryness in an evaporating oven at 120° C overnight. Samples were analyzed for total number of dyed grains per gram of sample using the same technique as with the grab samples. The counting technique was carefully tested between individual counters to eliminate "operator bias." This was done by having four or five different individuals count the same samples independently. Comparisons showed less than 2% discrepancy between counts, so that high confidence can be placed in the counting technique.

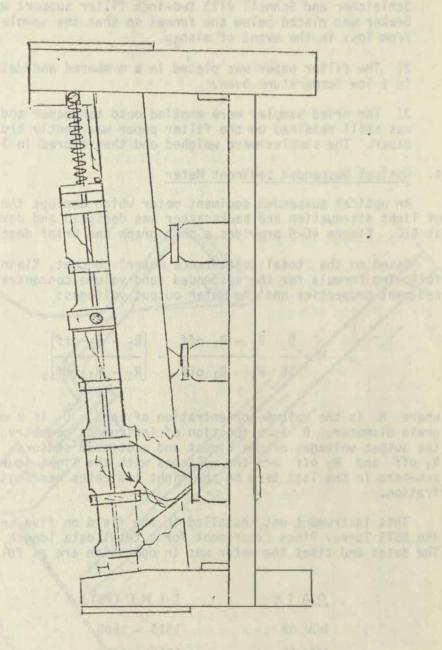
3. Discrete Suspended Sediment ("Water Core") Samples

Sampler

The sampling apparatus consists of a 3.5 inch I.D. tube which is divided into compartments by disks sealed with "O" rings. In the open position water passes through the compartments through openings in the tube wall. When the sample is taken, the tube is moved downward by a spring so that the compartments are enclosed by a section of tubing without holes through the wall. The compartment thus encloses the seawater and suspended sediment which had been passing through the compartment at the time of sampling. The first series of samplers have three such compartments which were centered at 25, 59, and 93 cm above the bottom and which collected samples of 800 cm³. In an effort to obtain information closer to the bottom, a second series of samplers was built. This has four compartments centered at 17, 37, 60, and 83 cm above the bottom. The lowest (17 cm) compartment contains 320 cm³ and the remaining compartments contain 620 cm³.

Emptying Procedure

Upon return from the surf, the location with respect to the surf zone and any reference points are recorded along with the level of water in the compartments after the sample was taken (if less than full). The full samplers are placed in a rack which consists of a trough tilted at a slight angle which holds funnels into which the water from the sampler drains. Numbered jars are placed on the end of the funnels to collect the sample. The samplers are initially opened only slightly so that the sample does not spill. A stop board is used to prevent over-opening. After the sample has drained, the sampler is opened a small amount more and the compartment is washed out with a wash bottle. Figure 4C-4 provides a sketch of the water core rack.


Swash

The swash sampler consists of a plastic bag which is held open by two horizontal bars at its mouth. The sampler's mouth is directed into the flow and the bars at the mouth are closed to seal the sample in the bag. The sample and bag are stored in a numbered jar(s).

Laboratory Procedure

The samples were processed as follows:

1) The sample bottles were shaken to resuspend the sediment and the contents were emptied into a large evaporating dish. The bottle and cap

· in stand of come as first defendance are control into the

Figure 4C-4. Water Core Rack

were rinsed into the dish with deionized water to collect any remaining particles. The surface was sprayed with distilled water to break surface tension and thus allow the sediment to settle. Water was decanted into another dish and examined to be sure no material was lost during decanting. The remaining seawater and sediment was washed into a 150 ml fluted funnel lined with 18.5 cm diameter #2 Whatman filter paper. A Schleicher and Schnell #123 two-inch filter support was used and a beaker was placed below the funnel so that the sample would be protected from loss in the event of mishap.

- 2) The filter paper was placed in a numbered and dated vial and dried in a low temperature oven.
- 3) The dried samples were emptied onto tar paper and any sediment which was still retained on the filter paper was gently brushed unto the tar paper. The samples were weighed and then stored in labeled vials.

4. Optical Suspended Sediment Meter

An optical suspended sediment meter which employs the combined principle of light attenuation and backscatter was designed and developed by Klein [1972] at SIO. Figure 4C-5 provides a photograph and brief description of the meter.

Based on the "total scatterance meter" concept, Klein [1972] gave the following formula for the suspended sand volume concentration in terms of the sediment properties and the meter output voltages:

$$N = \frac{\overline{D}}{3B} \frac{R_2 - R_2 \text{ off}}{R_1 - R_1 \text{ off}} - \left[\frac{R_2 - R_2 \text{ off}}{R_1 - R_1 \text{ off}} \right]_0$$

where N is the volume concentration of sand, \overline{D} is a measure of the average grain diameter, B is a function of instrument geometry, R_1 and R_2 are the output voltages of the direct and scattered sensors, respectively, and R_1 off and R_2 off are the voltages with the light source off. Finally, the sub-zero in the last term on the right indicates readings at zero sand concentration.

This instrument was installed in the field on five separate days during the NSTS Torrey Pines Experiment for a total data length of about 17 hours. The dates and times the meter was in operation are as follows:

DATE	TIME (PST)
NOV 08	1315 - 1608
NOV 15	1150 - 1345
NOV 20	1030 - 1430
NOV 22	1057 - 1400
NOV 24	1000 - 1545

The meter was located at X(offshore) = 170.7 meters and Y(longshore) = 10 meters.

Figure 4C-5. Integrated scatterance meter in use at Scripps Institution of Oceanography. Light source with cosine distribution (in the foreground) is detected directly by upper sensor (acting as transmisometer), while lower sensor only sees light that has been scattered. The scattering coefficient is proportional to the volume concentration of the suspended sediment. Meter was designed by Steve Klein.

It was reported by Flick and Parker [1978] that the device was essentially useless to measure suspended sediment concentrations in the surf zone because effects of ambient light fluctuations caused by surface elevation fluctuations swamped the signal. Data from this sensor is not provided in the data tapes.

Acoustic Bedload Sensor.

An acoustic bedload detector has been designed and developed at SIO. Its operation is based on the fact that sand at rest must dilate before moving and remain dilated in motion. Thus, it is possible to obtain reflections from the surface of the moving sand as well as from the layer at rest due to the different acoustic properties of the stationary and dilated sand.

An experimental version of the detector was deployed. It was limited in its resolution capabilities to approximately 1/2 cm because of excessive ringing of the transducer. The instrument was deployed on 8, 15, and 20 November 1978 and was located at X(offshore) = 170.7 meters and Y(longshore) = 10 meters during 8 and 15 November and along with University of Washington sensors (X = 143 m, Y = 100 m) on 20 November. Data from this sensor is not provided in the data tapes.

D. SUSPENDED SEDIMENT STUDY (NSTS TASK 2-B)

The objective of this task was to develop monitoring instruments to obtain continuous measurements of suspended sediment concentration and deploy these instruments during in situ field studies to determine the relative importance of suspended sediment in the overall longshore transport process.

1. Instrument Report -- Suspended Sediment Sensors

Suspended sediment concentration was measured with optical backscatter probes (ID: 0BS-1 & 0BS-2). These probes consist of a cylindrical shaped source detector array (1.2 cm 0.D. x 8.0 cm long) mounted on a watertight housing containing source driving -- photocurrent detection circuitry. The source/detector array consists of three infrared LED's mounted alternately at 120° intervals with three silicon photo cells in a ring about the probe axis. Variations of sediment concentration in the illuminated volume (\sim 150 cm³) modulate the photocurrent through the photo cells. This current is converted to an analog voltage (15 v) by a transconductance amplification stage.

The movement of sediment near the bed was detected with a passive acoustic impact probe, designated IT-1. This device consists of a wire "whisker" (1 mm x 25 mm) coupled to a piezo-electric transducer; the acoustic noise produced by a moving sand grain when it strikes the whisker is converted to an analog signal that is conditioned and processed as shown in Figure 4D-1. The output of the signal processing and conditioning circuit is related to the grain momentum prior to impact and the occurrence rate of grain impacts. The output signal voltage swings from -5 v to +5 v. The accuracy and resolution of the impact probe is under evaluation.

For field calibration purposes, 17 suspended sediment samples were taken in the vicinity of our sensors. These samples were collected with a mechanical water coring device activated by a pressure cartridge on remote command. All of these sensors plus two Marsh-McBirney electromagnetic current meters

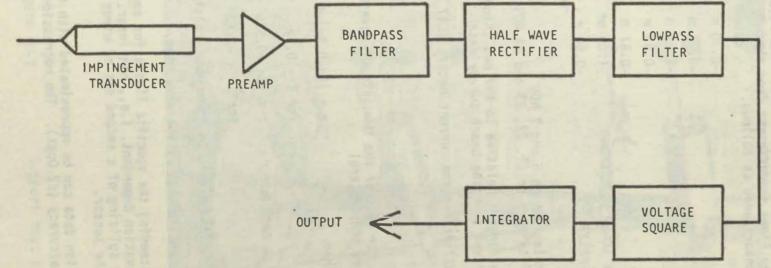


Figure 4D-1 Block diagram of impingement transducer signal processing system.

(I.D.: C-47, C-49) were mounted on a guyed mast that was located at -100 m longshore (Y) and +170 m offshore (X) from bench mark SIO-4. A SIO-SPL resistance wave sensor (I.D.: W-48) was used to measure the true surface elevation and was located on the guy wires. A photograph of the mast and the attached sensors is provided in Figure 4D-2. The relative position of the probes used at Torrey Pines is different from that in the photograph. The elevations of the sensors were as follows:

C47	-0.30 m
C49	-0.74 m
OBS-1	-0.74 m
OBS-2	-0.45 m
IT-1	-0.87 m
W48 (ELEV. OF LOWER WIRE ENDS)	-1.03 m* -0.76 m+
MECHANICAL SAMPLER	-0.64 m (-2.10 ft)

*for data runs on 5 and 7 NOV +for data runs on 21, 22, 23 and 24 NOV

The elevations of the sensors relative to the bed changed day to day. These elevations can be derived from the beach survey data.

The still water offset for the current meters (C47 and C49) was \emptyset and the gain

 0.62 mv^{-1} .

The gains and offsets for each of the two sets of wave wires used with the SIO-SPL resistance wave sensors are:

NOV 5 AND 7 DATA RUNS
$$z = |E_0 - 0.9v| \ 0.493m \cdot v^{-1} - 0.43m$$
 for $E \le 0.9v$
$$NOV 21, 22, 23, \& 24 \text{ DATA RUNS}: \qquad z = |E_0 + 0.52v| \ 0.459m \cdot v^{-1} - 0.07m$$
 for $E_0 \le -0.53$

where: z = free surface elevation in meters (relative to MSL)

Eo = DC output voltage of the wave gage.

For output voltages exceeding the specific limits for each of the equations above, the gain is elevation dependent, i.e., nonlinear. The gains differ by about 7% due to the splicing of a second set of wires that changed the series resistance of the sensor.

The OBS-1 calibration data can be approximated with two linear relationships with reasonable accuracy $(\pm 2.0 \text{ppt})$. The regressions are as follows:

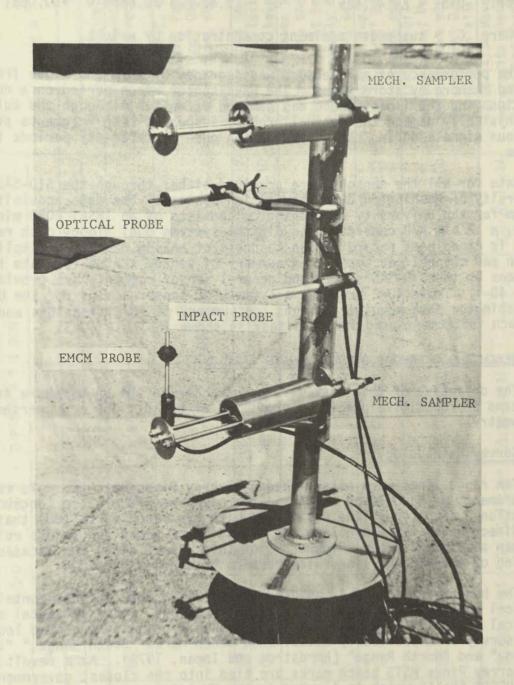


Figure 4D-2

Support Mast and Sensors

for: $+2.42v \le E_0 \le +4.94v$ $C_S = (4.94-E_0) 16.4ppt \cdot v^{-1} +8.7ppt$

for: $-013v \le E_0 \le 2.42v$ $C_s = (2.42-E_0) 20.6ppt \cdot v^{-1} + 50.0ppt$

where C_s = suspended sediment concentration by weight.

The performance of all sensors was degraded by kelp and algae fragments carried onshore by storm waves. The wave-sensor wires parted on a number of occasions and the impact probe was damaged as well. Although the kelp did not physically damage the optical probes, suspended kelp fragments produced spurious signals during storms and during one- to three-day periods following storms.

Data for all the sensors were acquired either through the SIO-SAS or University of Washington data acquisition systems. The data acquisition system for the University of Washington consists of an IMSAI 8080 microprocessor, a 12 bit A/D converter and digital systems dual floppy disk recorder which is capable of recording ten channels of analog data at a sampling rate of ten per channel per second. A summary of sensor status for data transmissions by the SIO-SAS system and general sensor comments are provided in Table 4D-1. Table 4D-2 provides a summary of sensor status for the University of Washington data acquisition runs. A summary of specifications and calibrations for each instrument used for this task is shown in Table 4D-3.

E. BEACH AND OFFSHORE SURVEYS (NSTS TASK 3-A)

The objective of this task was to characterize the on-offshore transport by means of repetitive precision profiling of beach slope and nearshore bathymetry.

1. Survey Methodology

Ten range lines were established on Torrey Pines Beach to make repeated measurements of sand level change in the onshore-offshore and longshore direction. Each range line was marked with two bench marks (BM) that define the direction of the range line and elevation of two fixed points relative to mean sea level (MSL). Figure 3-2 of this report shows the location and spacing of these range lines with respect to bench mark SIO-4.

The bench mark at SIO-4 was used to establish both the horizontal and vertical control for all other profile range lines. The horizontal and vertical control for BM SIO-4 was established by running a closed loop level line survey from previously established bench marks "South Range," "Indian Canyon," and "North Range" [Nordstrom and Inman, 1975]. As a result, all the Torrey Pines NSTS bench marks are tied into the closest government bench mark USCGS "Ball" which is located in the NW 1/4 of Section 12, Township 15 South Range 4 West from the San Bernardino meridian and base line. The horizontal and vertical control for USCGS "Ball" and SIO-4 are as follows:

USCGS "BALL"

Latitude: 32°53'14" N Longitude: 117°15'01" W

TABLE 4D-1

SUMMARY OF SENSOR STATUS FOR DATA TRANSMISSIONS BY SCRIPPS-SAS SYSTEM

DURING NOVEMBER 1978 NSTS TORREY PINES BEACH EXPERIMENT

			но	URS OF	OPERAT	ION		
DA	TE	W48	C47 (UEV)	C49 (U&W)	OBS-1	OBS-2	IT-1	COMMENTS
7	NOV	09:56-15:25	09:56-15:25	09:56-15:25	09:56-15:25	d aunife, med	(-10 YHANGS	
8	NOV		12:30-17:00			HIII	0111	Tracer Experiment
10	NOV		06:47-11:45	06:47-11:45	06:47-11:45	Carte 2 A	TO H	07:35-08:05 Sensor Outputs grounded to record D.C. offsets.
11	NOV		06:45-12:11	06:45-12:11	18475	06:45-12:11	4 Leg	C49 W has D.C. Offset of about 450mV. Possible ground loop? OBS-2 had intermittent short in connector.
17	NOV		08:06-14:17	08:06-14:17*	08:06-14:17		08:06-14:17	Kelp was bad on this day.
18	NOV		08:00-14:10	08:00-14:10*	08:00-14:10	- William (a)	08:00-14:10	11:00-14:00 instruments fouled with kelp.
19	NOV	NEW THEORY	08:30-14:03	08:30-14:03*	08:30-14:03	18.01-10.19 18.00-10.19 18.00-10.19	08:30-14:30	Kelp and other algae fragments in scour depression at base of tower probably degraded OBS-1 & IT-1 data.
20	NOV		08:55-14:01	08:55-14:01*	08:55-14:01	MITCHES .	08:55-14:01	Whisker of impact probe was bent ≃30° but operation appears unaffected.
21	NOV	08:18-16:00	08:18-16:00	08:18-16:00*	08:18-16:00	or street of	08:18-16:00	11:11-11:26 Off line, generator out of fuel. 14:00 Kelp on wave wires. 13:30 Intermittent D.C. offsets (~200mV) on all channels.
	NOV	08:20-14:34	08:20-14:34	08:20-14:34*	08:20-14:34	4	08:20-14:34	12:00-14:34 Wave wires were quite slack but signal looked reasonable.
	MOA	1 09:00-15:00	09.00-15:00	03.00-13.00-1	03.00-13.00		09.00-15:00	

*049 Probe was operated in a damaged condition during these periods (probe axis bent slightly ~65° relative to mounting sting).
U&V = horizontal

U&W = vertical

TABLE 4D-2

SUMMARY OF SENSOR STATUS DURING UNIVERSITY OF WASHINGTON DATA ACQUISITION RUNS -- 1978 NSTS TORREY PINES BEACH EXPERIMENT

		но	JRS OF	OPERAT	ION		COMMENTS
DATE	W48	C47 (UEV)	C49 (U&W)	OBS-1	IT-1	DISK NOS.	
5 NOV	23:29-23:49	23:29-23:49	23:29-23:49	23:29-23:49	1 2.5 to 10	20	Mark- M
7 NOV	00:31-01:31 09:56-11:14	00:31-01:31 09:56-11:14	00:31-01:31 09:56-11:14	00:31-01:31 09:56-11:14		22,23 24,25,26	WE SEE NO
10 NOV		08:05-10:38	08:05-10:38	08:05-10:38		27-32	HULES - Au
19 NOV	Transfer in the second	23:15-23:58	22:15-23:58	22:15-23:58	22:15-23:58	33-35	Wave-Sensor Wires Parted
20 NOV	Emanu de	23:25-23:56	23:25-23:56	23:25-23:56	23:25-23:56	36	See Comments in Table 4D-1
21 NOV	11:32-16:50 23:36-02:14	11:32-16:50 23:36-02:14	11:32-16:50 23:36-02:14	11:32-16:50 23:36-02:14	11:32-16:50 23:36-02:14	37-45 46-55	See Comments in Table 4D-1
22 NOV	09:12-14:10	09:12-14:10	09:12-14:10	09:12-14:10	09:12-14:10	56-67	See Comments in Table 4D-1
23 NOV	10:30-13:10	10:30-13:10	10:30-13:10	10:30-13:10	10:30-13:10	68-74	See Comments in Table 4D-1

TABLE 4D-3

SPECIFICATIONS OF INSTRUMENTATION USED BY THE UNIVERSITY OF WASHINGTON TORREY PINES BEACH EXPERIMENT

INSTRUMENT NBR.	SENSOR TYPE - MODEL NO./ (SERIAL NO.)	DYNAMI C RANGE	ACCURACY/ RESOLUTION	GAIN/OFFSET RELATIONSHIP
C47	Electromagnetic Current Meter #512 OEM/(S-139)	±3.44 ms ⁻¹	±5 -10% of [†] value	C47-Y: Gain=0.66 m·s ⁻¹ ·V ⁻¹ ;offset = 0.0V C47-Y: Gain=0.69 m·s ⁻¹ ·V ⁻¹ ;offset = 0.0V Output Filter: 3 pole, 4 Hz
C49	Electromagnetic Current Meter #512 OEM/(S-140)	±3.44 ms ⁻¹	±5 -10% of [†] value	C49-X: Gain=0.69 m·s ⁻¹ ·V ⁻¹ ;offset = 0.0V C49-Z: Gain=0.71 m·s ⁻¹ ·V ⁻¹ ;offset = 0.0V Output Filter: 3 pole, 4 Hz
W48	Surface Piercing Resistance Wave Gage	2.5 m	±3% of + value	Gain=0.46 m·s ⁻¹ ·V ⁻¹ Zero Drift: 0.3 cm per week †
OBS-1	Optical Backscatter Suspended Sediment Sensor	8.7-50 ppt*	±0.5 ppt*	$C_s = (4.94V-E_0) 16.4 \text{ ppt} \cdot V^{-1} + 8.7 \text{ ppt};$ $2.42V \le E_0 \le 4.94V$ $C_s = (2.42V-E_0) 20.6 \text{ ppt} \cdot V^{-1} + 50.0 \text{ ppt};$ $-0.13V \le E_0 \le 2.42V$
OBS-2	Optical Backscatter Suspended Sediment Sensor	1.0-60 ppt*	±1.0 ppt*	$C_s = 35 \text{ ppt} - (E_0 + 1.45V) \ 30.3 \text{ ppt} \cdot V^{-1};$ $-3.62V \le E_0 \le 1.45V$ $C_s = -(E_0 - 0.23V) \ 20.8 \text{ ppt} \cdot V^{-1};$ $-0.23V \le E_0 < -1.45V$
IT-1	Grain Impact Suspended Sediment Sensor	0.7-100 ppt*	±50% of value	$C_s = 17.5 [X]; X \le 0.40$ $C_s = 332 (X - 0.40) + 7 ppt; 0.40 < X \le 0.71$ $X = [(4.31V - E_0)/(U_X^2 + U_y^2)]^{-1}$

E₀ = Analog voltage output

- + Based on tests conducted by Shore Processes Lab (SIO)
- * Sediment concentration is by weight

California Lambert Coordinates, Zone 6:

N 263,653 E 1,692,936

Elevation: 326.30 feet MSL

"510-4"

Latitude: 32°53'55" N Longitude: 117°15'10" W

California Lambert Coordinates, Zone 6:

N 268,150 E 1,692,000

Elevation: 10.02 feet above MSL

All NSTS survey range lines were oriented normal to the offshore contours resulting in a bearing of 4.5° south of true west or 265.5° true. Beach profile data of the backshore and upper foreshore were measured using a level, surveyor's rod, and tape. The method described here is identical to that explained by Nordstrom and Inman [1975]. Elevations were measured to 0.3 cm and distances to 3 cm. Alignment along the range line was achieved by using flags to mark the two bench marks on the range. Rod stations were measured at six-meter intervals seaward of the bench mark except where pronounced changes in slope occur. Measurements were made out into the water by the tapeman paying out the tape in six-meter increments from a fixed point at the water's edge. The land or wading profile survey was terminated when the water became too deep for the rodman to wade or the breaking waves made it impossible to plumb the rod.

Surveys of the offshore profile were obtained through the use of a 16-foot boat equipped with a Raytheon Model DE719 survey depth fathometer and a Motorola Miniranger III line of sight microwave range positioning system.

The portable fathometer allows for calibration of seawater temperature and salinity as well as draft. Other corrections needed to eliminate wave and tide errors were also performed to correct the raw fathometer readings to the actual bottom profile (corrected to MSL), as described in the following sections.

The Miniranger III system outputs distances from two portable shore referenced stations located at known geographic positions to trilaterate the exact position of the boat to within one meter at distances less than two kilometers. The computer program used to perform these calculations is contained in Appendix G.

The offshore profiles were measured at high tide on November 9 and 18, 1978. The beach profiles were measured on the following day at low tide to provide continuous elevation data through the surf zone, foreshore, and backshore. The offshore and beach surveys are combined into a single profile by referencing all data points to the MSL datum.

Wading and offshore profile dates and a list of all ranges surveyed for each date are provided in Tables 4E-1 and 4E-2. Figure 4E-1 provides a sketch of the survey procedure that was used for the beach and offshore surveys.

2. Positioning System (MRS III) Calibration Methodology

The Minimager system was calibrated using a known range of 304.8 meters (Scripps Pier). During the calibration for the 9 November survey, difficulty was experienced in maintaining consistent calibration settings and drifting on the order of four to six meters $(\pm 2\%)$ was observed. When the data from this survey were analyzed, using the mean value of the calibration factor, it was apparent that drifting had occurred during the survey. As part of the fathometer calibration check, marks were made on the fathometer record when certain spar buoys and wave poles were directly abeam. The position of these fixed references had been carefully determined in prior surveys. In addition, on two occasions, the fathometer passed directly over pressure sensors of known position and these appeared as spikes on the fathometer record. By cross-comparisons of time marks, it was possible to determine the actual position for several positions indicated by the Miniranger. Further, there was overlap, or near overlap, with several of the wading surveys so that a number of fits could be obtained in this manner. Using all available data, "best fit" calibrations were obtained for each Miniranger survey line. These calibrations ranged from 1.00 to 1.04, a total variation of 4%, which was consistent with the observed drift during the pier calibration.

The 18 November survey required no ad hoc adjustment of the calibration factors.

3. Fathometer Calibration and Bar Check Methodology

The fathometer was calibrated against two references. The first was a standard lead line which was employed several times during each survey. The second was by means of bottom-mounted pressure sensors. The average value of sea surface elevation was obtained from fifteen minute records centered at the time of the survey boat passing the sensor. The height of the sensor above the bottom was obtained by diver measurements.

There was excellent agreement between calibrations obtained by both methods for both surveys as well as lead line checks made on the same instrument during surveys on 14 and 15 August 1978. The calibration factor during all surveys was 1.075 and there was no offset.

4. Wave Smoothing and Digitizing Methodology

The strip chart records from the fathometer were filtered manually to remove the effects of waves. This was accomplished by sketching a smoothed line through the visually determined mean. All records were smoothed by the same operator to insure that any bias would be consistently applied.

Time marks at approximately one minute intervals were applied to the strip chart using the Miniranger time base. Interpolations were made between these marks to ten-second intervals and the uncalibrated depth was read at these points and transferred to IBM cards along with the corresponding ranges from the Miniranger paper tape record.

TABLE 4E-1

WADING PROFILES

DATE	RANGES COMPLETE						
OCTOBER 27	All						
29	SIO-4						
NOVEMBER 3	A11						
4	SIO-4						
5	SIO-4; R-24, 25, 27, 28, 35, 32, 33						
6	SIO-4						
7	A11						
8	SIO-4; R-24, 25,26, 27, 28						
10	SIO-4; R-24, 26, 28, 35, 32, 33						
12	SIO-4						
13	All						
14	SI0-4						
15	SIO-4; R-24, 25, 27, 28, 35, 32, 33						
16	SIO-4						
17	SIO-4; R-24, 26, 27, 28, 34, 32, 33						
19	A11						
20	SIO-4						
21	SIO-4; R-34, 35, 32, 33						
22	SIO-4						
24	A11						

TABLE 4E-2 OFFSHORE PROFILES

NOVEMBER 9, 1978

RANGES:

SIO 4 (UPPER BEACH SURVEY OCT 29)

R 24

R 26

R 27

R 28

R 32

R 33

R 34

R 35

NOVEMBER 18, 1978

PANCES:

SIO 4

R 24

R 25

R 26

R 27

R 28

R 32

R 33

R 34

R 35

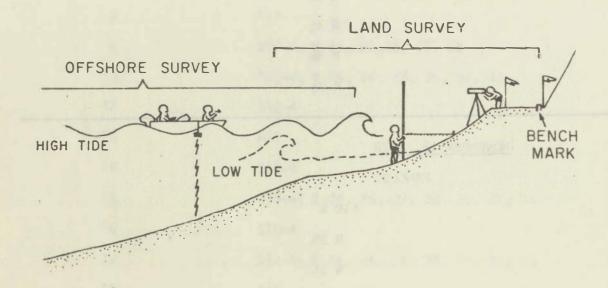
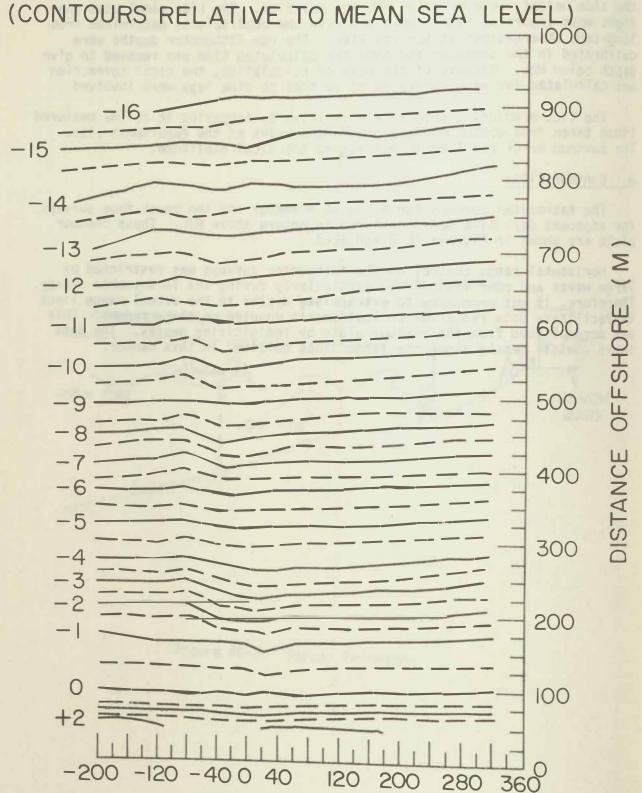


Figure 4E-1. Survey Procedure

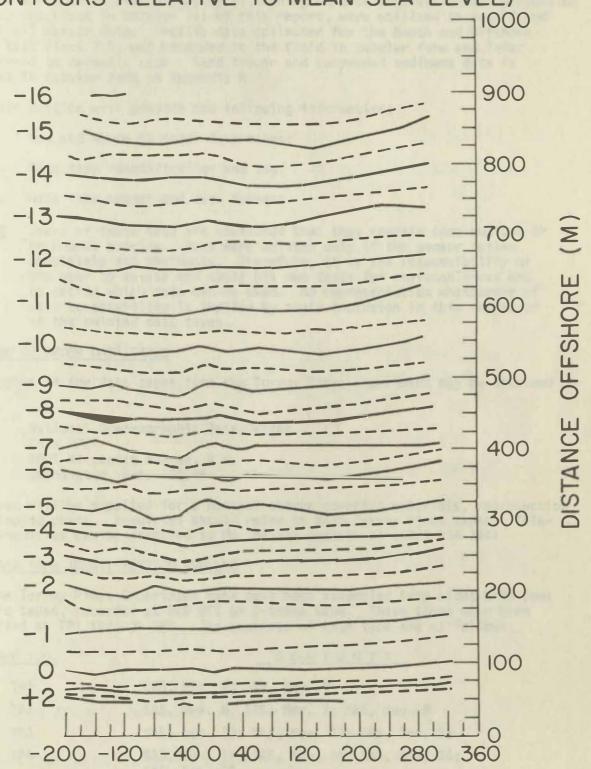
5. Tide Corrections and Methodology

A computer program, contained in Appendix G, was written to calculate the tide height above or below MSL for any time. The tide model uses the eight most important tidal functions with the coefficients determined from long-term observations at Scripps Pier. The raw fathometer depths were calibrated in the computer and then the calculated tide was removed to give depth below MSL. Because of the ease of calculation, the tidal correction was calculated for each survey point so that no time lags were involved.


The tide predicting program was verified by comparing it to the measured tides taken from bottom-mounted pressure sensors at the experiment site. The maximum error was 6 cm in predicting the tidal amplitude.

6. Contour Plots

The fathometer surveys for 9 and 18 November and the beach face surveys for adjacent days have been contoured in meters above MSL. These contour plots are shown in Figures 4E-2 and 4E-3.


Horizontal range control on the fathometer surveys was restricted by large waves and poor visibility, particularly during the 18 November survey. Therefore, it was necessary to extrapolate depths to the actual range lines to facilitate data reduction on instruments mounted on these ranges. This was accomplished from the contour plots by redigitizing depths. The data tapes contain depths along the range lines obtained in this manner.

NEARSHORE BATHYMETRY-TORREY PINES BEACH SURVEY OF 9 NOVEMBER 1978

LONGSHORE DISTANCE (M) RELATIVE TO MAIN RANGE

NEARSHORE BATHYMETRY-TORREY PINES BEACH SURVEY OF 18 NOVEMBER 1978 (CONTOURS RELATIVE TO MEAN SEA LEVEL)

LONGSHORE DISTANCE (M) RELATIVE TO MAIN RANGE

V. TORREY PINES DATA TAPES

The Scripps SAS and University of Washington data acquisition and processing systems, described in Section III of this report, were utilized to record and process all sensor data. Profile data collected for the Beach and Offshore Survey task (Task 3-A) was recorded in the field in tabular form and later transferred to magnetic tape. Sand tracer and suspended sediment data is provided in tabular form in Appendix A.

This section will provide the following information:

- A. How and where to order data tapes;
- B. Data tape identification and log;
- C. Data tape header and data formats.

WARNING
Users of these data are cautioned that they contain some dubious or erroneous entries. Data were deleted only if the sensor failed completely and obviously. Therefore, it is the responsibility of the user to devise and apply his own tests for reasonableness and to decide which data can be used. No representation whatsoever of data acceptability is implied by their inclusion in this report or in the related data tapes.

A. HOW TO ORDER DATA TAPES

Copies of the data tapes from the Torrey Pines Experiment may be obtained from:

National Oceanographic Data Center Code D781 2001 Wisconsin Avenue, N.W. Washington, D.C. 20235

The tapes will be supplied for a nominal charge covering materials, reproduction and shipping costs. Inquiries should refer to NSTS Torrey Pines tapes. Telephone inquiries can be directed to Ms. Maxine Jackson at (202) 634-7441.

B. DATA TAPE IDENTIFICATION AND LOG

The Torrey Pines Experiment data have been assembled into eight 2400 foot magnetic tapes, recorded at 800 BPI on 9-track tape. These tapes have been identified as TPl through TP8. The contents of each tape are as follows:

TAPE I.D.	CONTENTS
TPI	SAS, Nov. 4; SAS, Nov. 5
TP2	SAS, Nov. 6; SAS, Nov. 7; SAS, Nov. 8
TP3	SAS, Nov. 10; SAS, Nov. 11; SAS, Nov. 12
TP4	SAS, Nov. 13; SAS, Nov. 14; SAS, Nov. 15; SAS, Nov. 16

TAPE I.D.	CONTENTS
TP5	SAS, Nov. 17; SAS, Nov. 18
TP6	SAS, Nov. 19; SAS, Nov. 20
TP7	SAS, Nov. 21; SAS, Nov. 22
TP8	SAS, Nov. 24; SAS, Dec. 6; all University of Washington data recorded separately from the SAS system; and all Beach and Offshore Survey data

C. TAPE FORMATS

1. Scripps SAS Tapes

Each day's data forms a logical tape on the master tape. A logical tape is defined as a number of files with the last file denoted by an extra end of file mark (EOF).

The twenty Scripps SAS logical (daily) tapes each contain two types of files. The first file is a header file and the remaining each contain up to 90 data records.

a) Header File

The header file consists of three records. The first contains 108 unformatted binary integers. The second and third each contain 540 unformatted binary integers. The only significant data contained in the first (108 word) record are the number of active transmitters and the date and time of the run.

Word (41) is the starting day of the month.

Word (42) is the starting month number.

Word (43) is the starting hour (24 hour basis) PST and,

Word (45) is the starting minute. Similarly,

Word (53) is the ending day.

Word (54) is the ending month.

Word (55) is the ending hour, PST.

Word (57) is the ending minute, and,

Word (61) is the number of active transmitters.

The end times are accurate to within a few minutes. The starting times are accurate.

The second and third (540 word) records should be spliced together to form a 1080 word array. In this array are contained 90 groups of 12 consecutive words. Each of these sets of 12 words describes one data channel.

A 12 word sequence is arranged as follows:

- Word (1) = ID, the first integer in a pair that forms the sensor type and numerical designation.
- Word (2) = NO, second word in channel designation.

The two integers, "ID" and "NO" when written into a "2A2" format should produce an alphanumeric code identifying the sensor. Most computers will make this conversion directly. However, some experimentation may be required [for example, on a Prime Computer, it was necessary to perform the following conversions: ID = AND (ID, :077577)

NO = AND (ID, :077577)

in which the additional bits resulted in the proper alphanumeric conversion]. To test your machine, "17204" should convert to "C4" and "1288" should convert to "2X."

- Word (3) = TK, original transmitter number.
- Word (4) = CH, original channel number.

"TK" and "CH" are not necessary to use on these tapes. However, if TK is set to zero, it means that no data are available in this logical tape for this sensor.

- Word (5) = LX, offshore location relative to coordinate system in meters (+ is offshore direction).
- Word (6) = LY, longshore location relative to coordinate system in meters (+ is north).
- Word (7) = COND, a dummy variable without significance.
- Word (8) = RECNO, the number of the corresponding record within each data file.
- Word (9) = integer part of the sensor gain value.
- Word (10) = fractional part of gain value X 1000 [i.e., to recover the gain divide Word (10) by 1000 and add to Word (9)].
- Word (11) = integer part of offset
- Word (12) = decimal part of offset X 1000 [i.e., combine Word (11) and Word (12) to get the sensor offset in the same manner as for the gain].

A sample of the proper conversion of the header records to a useful format is shown in Table 5-1.

SAMPLE MAGNETIC TAPE HEADER

SEORE PROCESSES BUILDING
START 171178 810 PST
END 171178 1330 PST
6 TRANSMITTERS

IDNO	TK CH	LX	LY	COND	RECNO	GAIN	OFFSET	IDN	O TK	CH	LX	1.Y	COND	RECHO	CAIN	OFFSET
AIS	2 1	43	0	0	2		0.00	P1	- 1		540	-202	0		-143.10	
AID	2 2	43	0	0	8	108.00	0.00	P2		1 2	539	-134	0		-140.20	574.20
C40X	2 3	99	0	3	14	104.00	0.00	P3		1 3	538	-69	0			1086.10
C40Y	2 4	99	0	0	20	104.00	0.00	P4		_	538	0	3			1083.20
C39X	2 5	115	0	0	26	104.00	0.00	P5		1 5	540	162	3		-142.10	600.00
C39 Y	2 6	115	0	0	32		0.00	P7		-	442	2	0	31	-137.70	582.00
C37X	2 7	129	0	0	38	105.00	0.00	P7		1 7	385	-2	0	37		1101.00
C37Y	2 8	129	0	0	44	102.00	0.00	NC	_	1 8	0	0	0	43	0.00	0.00
C36X	2 9	143	0	0	50	103.00	0.00	NC		1 9	0	0	0	49	0.00	0.00
C36Y	2 10	143	0	0	56	103.00	0.00	NC		1 10	0	0	0	55	0.00	0.00
C35X		149	60	3	62	63.00	0.00	NC		1 11	0	0	0	61	0.00	0.00
C35 Y	2 12	149	60	3	68	63.00	0.00	NC		1 12	0	0	0	67	0.00	0.00
C34X	2 13	139	20	0	74	104.00	0.00	NC		1 13	0		0	73	0.00	0.00
C34Y	2 14	139	20	0	80	103.00	0.00	NC		1 14	0	9	0	79	0.00	0.00
W41	2 15	99	0	3	86	-55.80	157.00	NC		1 15	A	8	0	85	0.00	9.00
C33X		143	320	0	3		0.00	C4		4 1	143	-100	3	4	62.00	0.00
C33Y		143	320	0	9	103.00	0.00	C4		4 2	143	-100	3	10	62.00	0.00
C32X		144	160	0	15	108.00	0.00	G4		4 6	140	-100	3	10	02.00	0.00
C32Y		144	160	0	21	105.00	0.00					100				
C31X		155	0	0	27	103.00	0.00	17	_	4 3	143	-100	3	16		0.00
C31Y		155	0	3	33	101.00	0.00	OB		4 4	143	-100	3	22		0.00
C28X		146	-40	0	39	109.00	0.00			4 5	143	-100	3	28		0.00
C28Y	3 8	146	-40	0	45	103.00	0.00			4 6	143	-100	_	34		0.00
C27X	3 9	145	-80	0	51	105.00	0.00	NC		4 7	0	0	0	40	0.00	0.00
C27Y	3 10	145	-80	0	57	104.00	0.00	HF		4 8	0	0	0	46	0.00	0.00
C26X	3 11	141	-120	_	63			NC		4 9	0	0	_	52	0.00	0.00
	3 12			3		103.00	0.00	NC		4 10	0	0	0	58	0.00	0.00
C26Y		141	-120	0	69	102.00	0.00	NC		4 11	0	0	0	64	0.00	0.00
C25X	3 13	137	-160	0	75	101.00	0.00	NC		4 12	0	0	0	79	0.00	0.00
C25Y	3 14	137	-160	0	81	100.00	0.00	NC		4 13	0	0	0	76	0.00	0.00
W38	3 15	129	0	0	87	-46.80	153.00	NC.		4 14	0	0	0	82		
C24X	6 1	148	-200	0	6	121.00	0.00	NO		4 15	0	0	0			
C24Y	6 2	148	-200	0	12	117.00	0.00	P1		5 1	315	-6				-117.90
C23X	6 3	170	0	0	18	103.00	0.00	Pi		5 2	241	2				-131.90
C23Y	6 4	170	0	0	24	104.00	0.00	NC		5 3	0	0				
C22X	6 5	185	0	0	30	100.00	0.00	NC		5 4	0	0	_	-		
C22Y	6 6	185	0	0	36	101.00	0.00	NO		5 5	0	0				
R1	6 7	17	0	2	42	4169.10 -	-735.20	NC		5 6	0	0				
P30	6 B	157	0	0	48	-137.10	559.00			5 7	0	0				
W21	6 9	155	0	0	54	-55.50	224.00	NO		5 8	0	0	_			
W29	6 10	185	0	0	60	-45.00	228.00	NO			_	_	_	-		
C43X	6 11	129	-7	3	66	62.00	0.00		9 Y 9 X	5 9 5 10	210	0				
C43Y	6 12	129	-7	3	72	62.60	0.00			5 11	241	2				
P44	6 13	129	-7	0	78	250.00-	1015.00		5 Y 5 X	5 12	241	2				
C42X	6 14	0	0	1	84	1.00	0.00	Co		5 13	315	-7				
C42Y	6 15	85	0	1	90	1.00	0.00	C9		5 14	315	-7				
								NO		5 15	0	0				

The "IDNO" designation is coded as follows:

P = pressure sensor

W = surface piercing wave staff

C = electromagnetic current meter

R = runup meter

Als = wind speed

AlD = wind direction

IT1 = impact probe (suspended sediment) (Task 2-B)

OBS1 = optical backscatter sensor (suspended sediment) (Task 2-B)

SS = optical suspended sediment meter (Task 2-A)

NC = not active

(NOTE: EXCEPT WHERE NOTED IN TEXT.)

With respect to the current meter identification, the X notation is the on-offshore direction and Y notation the longshore direction. The current meter data indicates a (+) for offshore and (-) for onshore flow and (+) north and (-) south flow.

The gain and the offset provide information to convert from the computer units contained in the data records to physical (C.g.S.) units.

value in physical units = offset + (gain X volts)

For current meters and anemometers, the physical unit is cm/sec. For wave staffs, pressure sensors and runup meters, the physical unit is cm.

Using the sample header for 17 NOV shown in Table 5-1, Sensor P2 (the number two pressure sensor) was located at: X = 539 m. and Y = 134 m. It is record number 7, its gain is: -140.20 and its offset is: 574.20. Therefore, all of the data in record number 7 of each data file must be calibrated in the following way:

The same methodology would be used with current meters except that the physical units would be cm/sec.

b) Data Files

The number of records in each data file is given by:

number of records = number of active transmitters X 15

Note that the last file in a logical tape may contain less than this number of records.

The number of files in each logical tape can be approximated from the start and finish times recognizing that each file represents 256 seconds of data. The number of data files is a variable and is not contained in the header so that search programs must be able to recognize the double EOF at the end of the logical tape.

Each data file (with the possible exception of the last) contains one 256 second long, 512 word record for each active sensor. The record number for a specific sensor within each data file remains constant for a complete logical tape and is given by RECNO as discussed under the header above.

The first file on the logical tape contains the first 256 seconds of data from all active sensors. The second file contains the second 256 seconds, etc.

To construct a time history for a particular sensor, on a given day, the following sequence should be used:

- 1. Read the three records in the header file.
- 2. Verify that this is the proper logical tape for the desired day.
- 3. Construct ID and NO, the two code integers for defining the sensor.
- 4. Search the header file to find RECNO, the record number associated with IDNO.
- 5. Extract the gain and offset values.
- 6. Check the location coordinates. These can change between logical tapes.
- 7. Advance to the next file, the first data file.
- 8. Skip RECNO-1 records.
- 9. Read the 512 unformatted binary integer words in the data record.

- 10. Advance to the next data file.
- 11. Repeat 8, 9 and 10 until double EOF is reached signifying the end of the logical tape.

Each 512 word record, if added sequentially to an array, will provide a time history of that sensor for the day.

2. University of Washington Data Tapes

The twenty-first logical tape, the first logical tape following the Scripps SAS tapes, contains the data recorded from the University of Washington instruments at times when the SAS system was not being operated. This logical tape consists of 389 files. Each file contains 7 records with 512 unformatted binary integers in each record.

The seven records are simultaneous time series from each of seven instrument channels, as follows:

RECORD	CHANNEL DESCRIPTION					
1	W48	Wave Staff				
2	C47X	Current Meter (on-off)				
3	C47Y	Current Meter (longshore)				
4	C49X	Current Meter (on-off)				
5	C49Z	Current Meter (vertical)				
6	IT-1	Impact Type Sediment Sensor				
7	OBS-1	Optical Backscatter Type Sediment Sensor				

The data are sampled at 10 Hz so that each 512 word record represents 51.2 seconds. Data for several days are contained within the 389 files as follows:

FILE NUMBERS	MONTH AND DAY	START TIME	APPROX. END TIME
1-30	NOV 05	23:29:38	23:55:33
31-60	NOV 07	00:57:39	01:23:34
61-150	NOV 19	22:26:06	23:59:46
151-210	NOV 20	23:00:05	23:56:19
211-389	NOV 23	10:30:25	13:18:44

The calibrations for the various channels, as described in a previous section, are given in Table 4D-3.

3. Beach and Offshore Survey Tapes

The records of the wading surveys and the offshore fathometer surveys are contained in the <u>twenty-second logical tape</u> which contains three files. The first file, with 150 records, contains all of the beach face wading survey data. Each record represents a single survey line. The second and third files, containing 443 and 230 records, respectively, contain the results of the two fathometer surveys on 9 and 18 November 1978.

a) Beach Face Surveys

Each record within the first (150 record) file consists of 67 unformatted binary integers. The arrangement of data within the record is as follows:

- Word (1) = range number (the range designations used in the text contained letter prefixes, but the numberical part of the designation is unique).
- Word (2) = month and day written in 14 format (MMDD).
- Word (3) = time in 14 format (HHMM).
- Word (4) = offshore distance of first survey point from coordinate system measured in centimeters.
- Word (5) = elevation of the first survey point above MSL in centimeters.
- Word (6) through Word (67) = the even numbered words are distances followed by the next odd numbered word which is the matching elevation.

The record is filled with zeros after the last survey point.

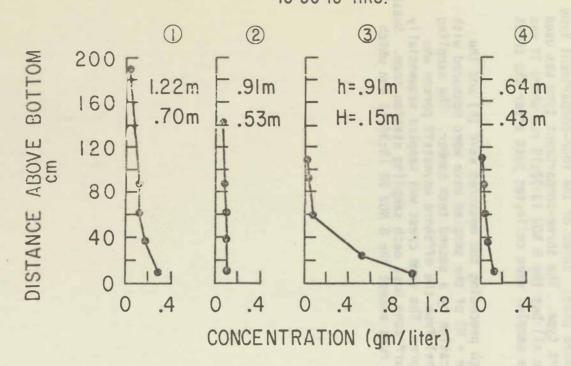
b) Fathometer Surveys

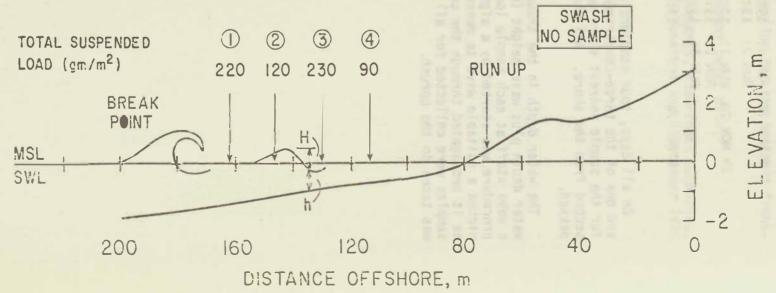
The second file in this logical tape (443 records) contains the results of the 9 November survey. Each record represents an individual depth observation and each record contains five unformatted binary integers. The arrangement of the data within each record is as follows:

- Word (1) = date in 14 format (MMDD) (should be 1109 in second file).
- Word (2) = time in 14 format (HHMM).
- Word (3) = offshore distance in meters relative to coordinate system.
- Word (4) = longshore position in meters relative to coordinate system.
- Word (5) = depth below MSL in centimeters (notice that wading surveys are elevations and these are depths).

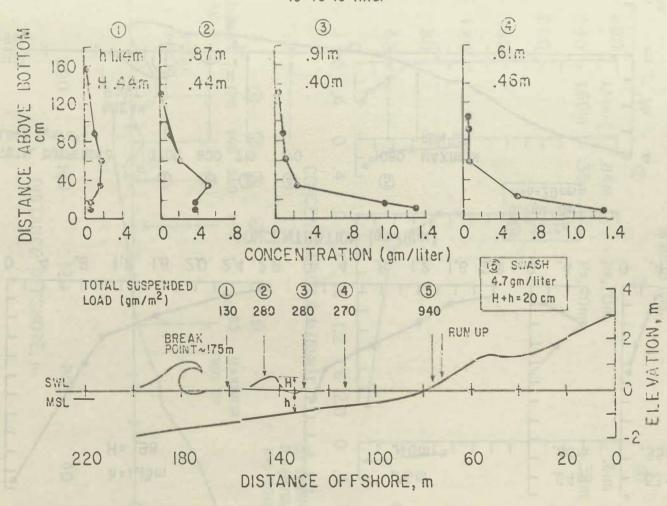
The third (230 record) file contains an identical arrangement for the survey of 18 November.

VI. REFERENCES CITED

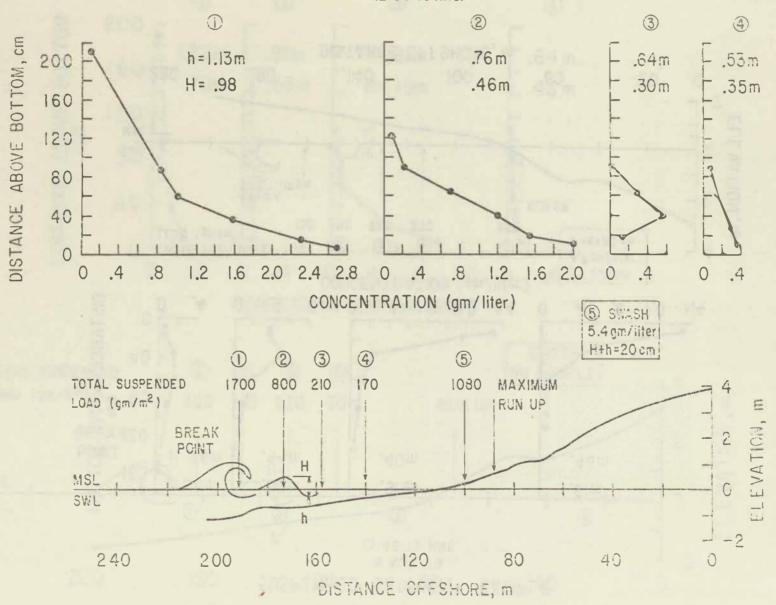

- CHAMBERLAIN, T. K., "Mechanics of Mass Sediment Transport in Scripps Submarine Canyon," Ph.D. Dissertation, University of California, Los Angeles, CA, unpublished, June 1960.
- ELFORD, C. R., "Climates of the States -- California," Climatography of the United States, No. 60-4, 1970.
- FLICK, R. E., LOWE, R. L., FREILICH, M. H., BOYLES, J. C., "Coastal and Laboratory Wavestaff System," Proc. Oceans '79, September 17-19, 1979, San Diego, California.
- FLICK, REINHARD E. AND D. MERLE PARKER, "Optical Suspended Sediment Meter," unpublished.
- INMAN, D. L., "Areal and Seasonal Variations in Beach and Nearshore Sediments at La Jolla, California," TM-39, U.S. Army, Corps of Engineers, Beach Erosion Board, Washington, D.C., March 1953.
- INMAN, D. L. AND R. E. FLICK, NSTS Proposal, "Sediment Transport Studies in Nearshore Environment," unpublished, 1979.
- KLEIN, S., "Optical Measurement of Suspended Sediment Concentrations," Shore Processes Study Group, unpublished manuscript, 16 pp., 1972.
- LOWE, R. L., D. L. INMAN AND B. M. BRUSH, "Simultaneous Data System for Instrumenting the Shelf," Proc., 13th Coastal Engineering Conference, July 10-14, 1972, Vancouver, B.C., Canada, ASCE.
- Data for San Diego, "National Climatic Center, 1977.
- NORDSTROM, C. E. AND D. L. INMAN, "Sand Level Changes on Torrey Pines Beach, California," U.S. Army, Corps of Engineers, Coastal Engineering Research Center, Misc. Paper No. 11-75, December 1975.
- PAWKA, S. S., D. L. INMAN, R. L. LOWE AND L. HOLMES, "Wave Climate at Torrey Pines Beach, California," U. S. Army, Corps of Engineers, Coastal Engineering Research Center, Technical Paper TP-76-5, May 1976.
- STATE OF CALIFORNIA, "Interim Report on Study of Beach Nourishment Along the Southern California Coastline," Department of Water Resources, Southern District, Sacramento, California, July 1969.
- WHITAKER, T. W., "Torrey Pines State Reserve," La Jolla, CA, The Torrey Pines Association, 1964.

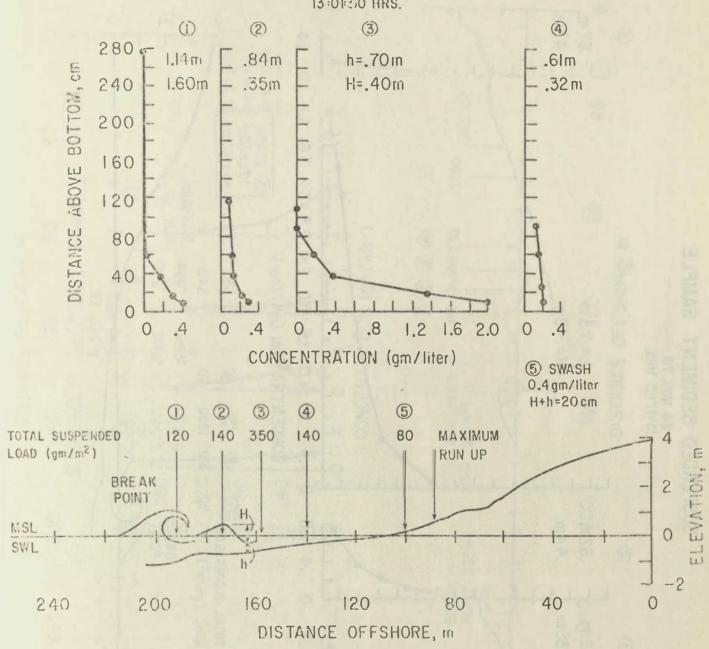

APPENDIX A

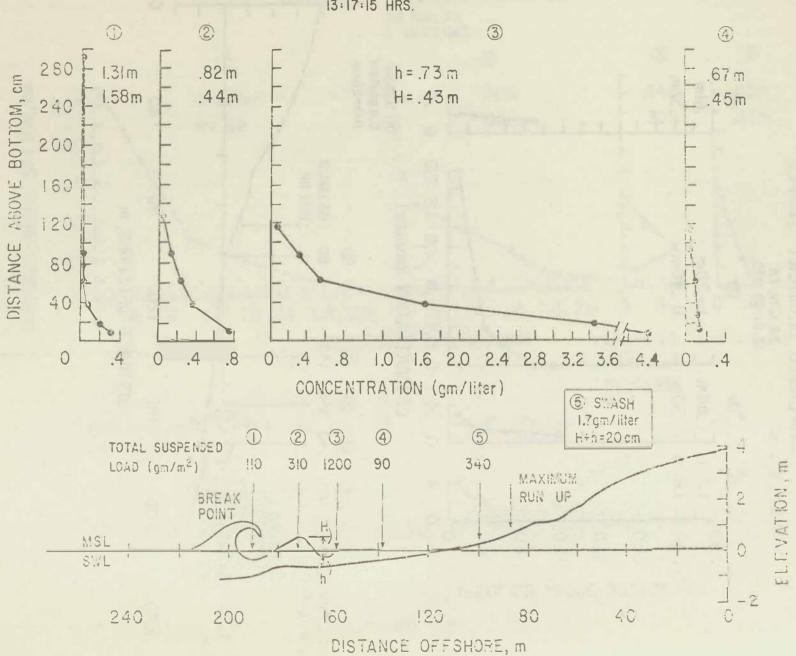
SEDIMENT TRANSPORT STUDIES

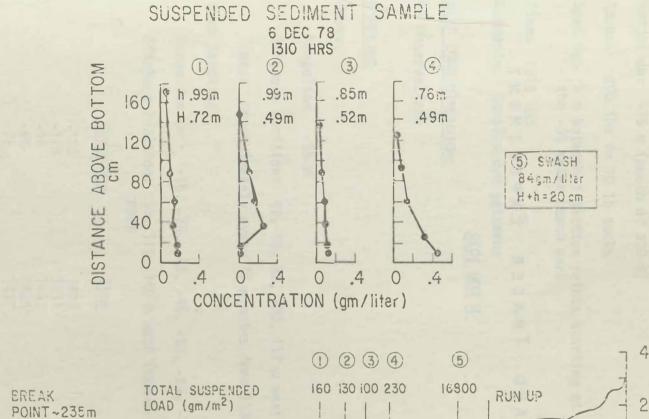

(NSTS TASK 2-A)

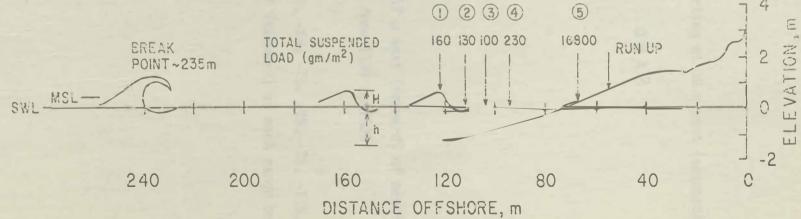
SUSPENDED SEDIMENT SAMPLE 8 NOV. 78 13:30:15 HRS.




SUSPENDED SEDIMENT SAMPLE 8 NOV. 78 13:46:15 HRS.


SUSPENDED SEDIMENT SAMPLE 24 NOV. 78 12:34:40 HRS.




SUSPENDED SEDIMENT SAMPLE 24 NOV. 78 13:01:30 HRS.

SUSPENDED SEDIMENT SAMPLE 24 NOV. 78 13:17:15 HRS.

SAND TRACER EXPERIMENT 8 NOV 1978

SUMMARY OF 8 NOVEMBER 1978 SAND TRACER EXPERIMENT

INJECTION OF DYED SAND

Rangeline: -35 m (south of SIO-4)

Amount: 200 lbs in 10 lb sacks

Spacing: 5 m between injection points starting at 80 m west (seaward) of

the -35 meter bench mark

Time: 1316 HRS

Comments: Complex dye patterns

SURF ZONE DIMENSIONS

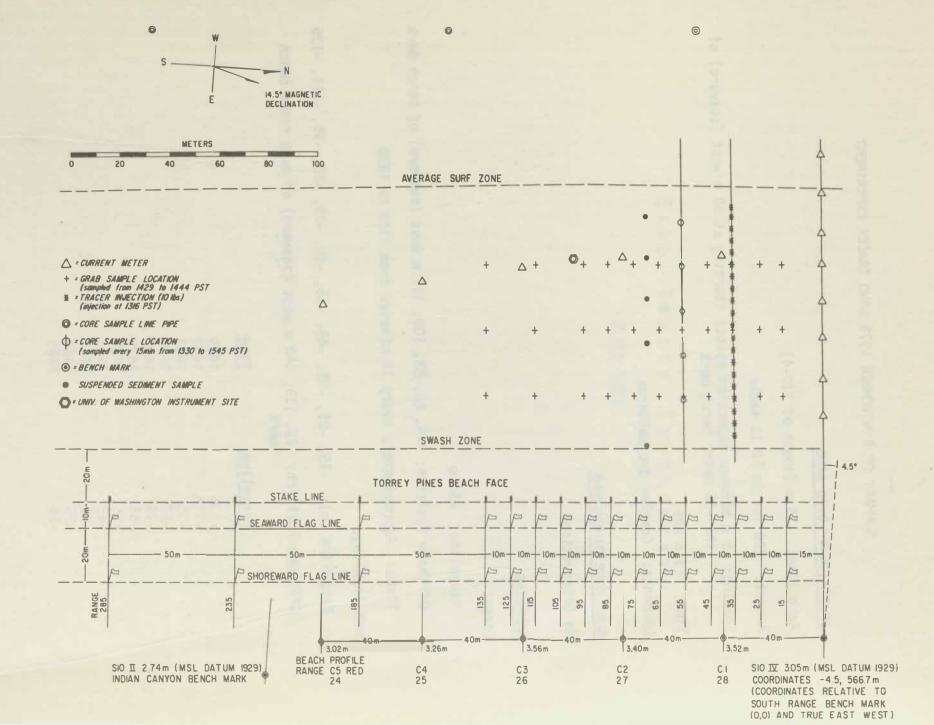
No Observations

SAMPLING

Cores:

Rangeline: -55 m

Offshore Position: 49, 66, 83, 100, 117 m west (seaward) of bench mark


Times: Approximately every 15 minutes from 1330 to 1530

Grab Sampling:

Rangeline (m): -15, -25, -35, -45, -55, -65, -75, -85, -95, -115, -135

Offshore Position: 93, 115, 140 m west (seaward) of each range bench mark

Rangeline	Time
-135 -115	1429 1431
-95	1433
-85 -75	1435 1437
-65 -55	1438 1439
-45 -35	1441
-25	1443
-15	1445

DYE PATTERN

8 NOV 78

(TOO COMPLEX TO PLOT)

8 NOV 1978

GRAB SAMPLES (DYED GRAINS/KG OF SAND)

INJECTION TIME: 1316 INJECTION LOCATION: Y = 35 METERS SOUTH SAMPLING TIME: 1429-1446

LONGSHORE LOCATION (Y, METERS)

		15 _s	25 _s	35 _s	45 _s	55 _s	65 _s	75 _s	85 _s	95 _s	115 _s	135 _s
METERS)	93 -	330	720	168,900	2340	0	170	260	57	0	339	201
X, M									The second			
LOCATION	115 -	2970	1060	8,700	3370	1920	0	1000	830	317	0	0
OFFSHORE	140 -	560	3170	0	480	400	120		266	2273	145	0

INJECTION TIME: 1316 PST INJECTION LOCATION: Y = 35 METERS SOUTH

SAMPLE LOCATION: Y = 50 METERS SOUTH

SAMPLING TIME: 1330 PST

DEPTH IN BED (CM)

-	0 - 3	之 - 1	1 - 15	12 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
49 -	0	86	0	0 - 10 H	ad by	L 101 3			- 5 6	1	2 0	
66 -	0	R		DE	1.18		BED	(0.6)				
83 -	0											
100 -	0	nie in		IS IST			SAME	LOCAT	1: 1	n ie	EHE 200	н
117 -	91	0		16 est			PECLE	FROM	DAG A	2 10		

INJECTION TIME: 1316 PST INJECTION LOCATION: Y = 35 METERS SOUTH

SAMPLING TIME: 1345 PST

SAMPLE LOCATION: Y = 50 METERS SOUTH

DEPTH IN BED (CM)

	0 - 1/2	1 - 1	1 - 13	13 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
49 -	341	0	0	0	59	0						
66 -	0		Table		0 0 %				(65)			
83 -	0											
100 -	0	18451	o Light	Tag	sal, g			MAG .	ja igu	Z AN	hug	o water
117 -	274	93	237	203	0							

INJECTION TIME: 1316 PST

INJECTION LOCATION: Y = 35 METERS SOUTH

SAMPLING TIME: 1400 PST

SAMPLE LOCATION: Y = 50 METERS SOUTH

DEPTH IN BED (CM)

	0 - 1/2	1 - 1	1 - 1½	1/2 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
49 -	343	350	254	0	60	0	- 2 2	-6 4		1 5	5 6	
66 -	478	0		1.5	LH	14	BED	(00)				
83 -	0	Kint										
100 -	0	1007 1.11	E IV	5 vsr			2000	Locati'i	Ne a	EU NE	ass and	
117 -	461	0	LE IN	I EL	0		MECLIC	TOOM		77 10	ne sun	

INJECTION TIME: 1316 PST INJECTION LOCATION: Y = 35 METERS SOUTH

SAMPLING TIME: 1415 PST SAMPLE LOCATION: Y = 50 METERS SOUTH

DEPTH IN BED (cm)

	0 - 3	支 - 1	1 - 11/2	12 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
49 -	6229	636	111	0								
66 -	123	107	119	0					(24)			
83 -	4611	1592	0									
100 -	86	0	92	160	0			-046	e de la constante de la consta	- 14	O ISS	E REPED
117 -	398	0		Care				ROATO	N- E-60	7 7/2		

INJECTION TIME: 1316 PST INJECTION LOCATION: Y = 35 METERS SOUTH

SAMPLING TIME: 1430 PST

SAMPLE LOCATION: Y = 50 METERS SOUTH

DEPTH IN BED (CM)

47-10	0 - 3	1/2 - 1	1 - 11/2	12 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
49 -	2439	764	0	- 113	- 1 1	-4	- 910	- 1 2	- 5 5	- 0 2		
66 -	569	123	0	DE	6.131	1M	BED	(03)				
83 -	2712	1074	0									
100 -	903	0	etti I	Sing			Sweet	E FOOT	IOA: A	- 30 te	DS2 251	
117 -	114	0	115	127	0							

INJECTION TIME: 1316 PST

INJECTION LOCATION: Y = 35 METERS SOUTH

SAMPLING TIME: 1445 PST

SAMPLE LOCATION: Y = 50 METERS SOUTH

DEPTH IN BED (CM)

	0 - 1/2	1 - 1	1 - 1½	1/2 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
49 -	9372	8520	4554	1581	63	0						
66 -	2247	0	110		Der.	W. 1	# 18	ep-				
83 -	980	95	0									
100 -	0	511	214	102	0			DALLY :	oryzio:	A - I		9010
117 -	0		CM LINE	1310				25.357 (25.	and mile			

INJECTION TIME: 1316 PST INJECTION LOCATION: Y = 35 METERS SOUTH

SAMPLING TIME: 1500 PST

SAMPLE LOCATION: Y = 50 METERS SOUTH

DEPTH IN BED (cm)

ā - T	0 - 1	½ - 1	1 - 13	12 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
49 -	1361	1218	0	- 9 2	- 2 2	- 1					1 A	
66 -	270	0		DE	BLB	111	BED	(di)	10			
83 -	114	307	ŋ									
100 -	97	672	750	115	0		2057	E TOCKE	91 3	200	ENS SIL	Qt
117 -	936	1962	110	111	0		MECHIO	(Just	OH: X	32 18	elis vai	

INJECTION TIME: 1316 PST INJECTION LOCATION: Y = 35 METERS SOUTH

SAMPLING TIME: 1530 PST SAMPLE LOCATION: Y = 35 METERS SOUTH

DEPTH IN BED (cm)

	0 - 3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 - 13	11/2 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
49 -	7470	1747	95	216	57	125	240	0				7 -
66 -					6.01			5 11	(30)			
83 -	36,268	3232	0									
100 -		WE O	e sher	Taxo:	EL I			otoli i	eşerin.	L A se	G WELEN	a sound
117 -	10,437	5032	0	109	401	463	0	ELLICATI	CULLIN		I JE II.	E EVILLE

SAND TRACER EXPERIMENT

24 NOV 1978

m (south) and +250 m (morth), Dunin

International resources

the rente and the feet of the to the State of the state o

of states and the court of the special resident and the court of the best of t

Name of the Contract of the Co

Then to federate and in the four ters for resistant around

OLS of DEAL word, and anything of the neighboundary to any

The state of the second state of the second second

- deer (2-012 to spront on-

1340 (4-015 to think) 05

SUMMARY OF 24 NOVEMBER 1978 SAND TRACER EXPERIMENT

INJECTION OF DYED SAND

Rangeline: -170 m (south of SIO-4)

Amount: 160 lbs in 10 lb sacks

Spacing: 7 m between injection points starting at 96 m west (seaward)

of the -170 meter bench mark

Time: 1215 HR

COMMENTS

There were persistent rip currents over the duration of the experiment located at -300 m (south) and +250 m (north). During the morning there was a weak rip at -100. This rip was present at injection time and started to weaken and drift northward at approximately 1300. At 1335 the rip was at -30 m and at 1345 it had weakened to where it was unobservable.

SURF ZONE DIMENSIONS (approximate)

The width and location of the surf zone varied during the experiment. At 1135 the maximum surf zone covered 95 m to 205 m west of the bench mark. By 1508 it was from 66 to 178 m. The typical maximum surf zone width was 110 meters located between 78 m and 188 m west of the bench mark.

SAMPLING

Cores:

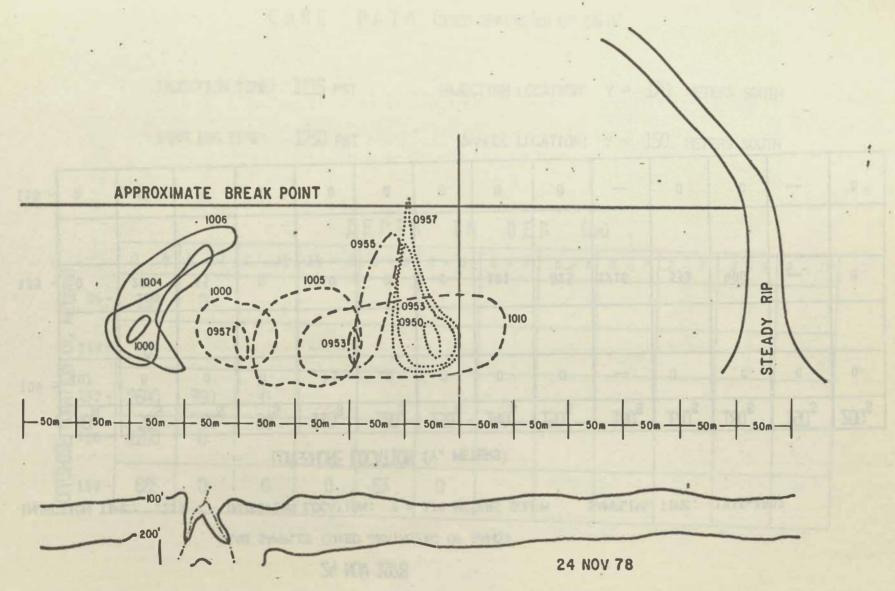
Rangeline: -150 m

Offshore Position: 96, 114, 132, 150, 168 m west (seaward) of bench mark

Times: Approximately every 15 minutes from 1230 to 1530

Grab Sampling:

Offshore Positions: 108, 133, 158 m west (seaward) of the following bench marks


Rangeline	Time
+40 (north of SIO-4)	1335
-50 (south of SIO-4)	1340
-80	1343
-90	1344

Rangeline	<u>Time</u>
-100 -110 -120 -130	1346 1347 1348 1350
-140 -150 -160	1351 1352 1354
-170 -180 -190	1355 1400 1401 1402
-200	1402

EXPERIMENT GRID 24 NOV 78 0 14.5° MAGNETIC DECLINATION METERS 20 40 60 80 100 AVERAGE SURF ZONE A = CURRENT METER + = GRAB SAMPLE LOCATIONS (sampled from 1340 to 1402 PST) # = TRACER INJECTION (10 lbs) (injection at 1215 PST) O = CORE SAMPLE L'NE PIPE D = CORE SAMPLE LOCATION (sampled every 15min from 1230 to 1530 PST) Δ @ = BENCH MARK Δ Δ (= UNIV. OF WASHINGTON INSTRUMENT SITE • SUSPENDED SEDIMENT SAMPLE Δ SWASH 4.50 TORREY PINES BEACH FACE STAKE LINE SEAWARD FLAG LINE 40m - 30m -SHOREWARD FLAG LINE E 0 80 3.40m 3.52 3.02 m 3.26m 3.56 m SIO II 2.74 m (MSL DATUM 1929) INDIAN -SIO IX 3.05m BEACH PROFILE C 4 C3 C 2 CI CANYON BENCH MARK (MSL DATUM 1929) RANGE C5 RED 25 26 27 28

BENCH MARK

DYE DISPERSION IN THE SURF ZONE 24 NOV 78

Dye motion in the surf zone prior to 24 November 1978 sand tracer injection.

24 NOV 1978

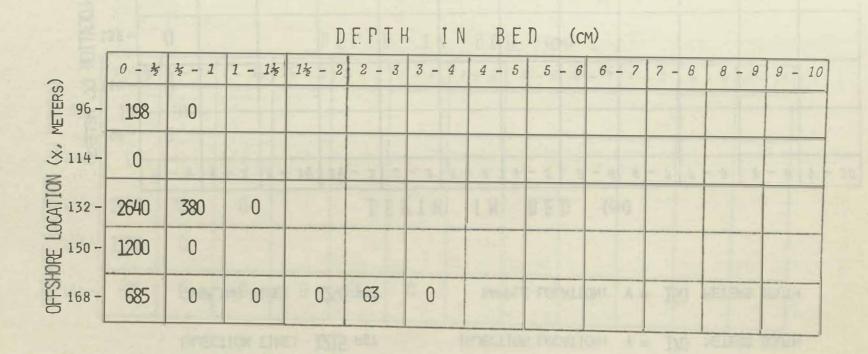
GRAB SAMPLES (DYED GRAINS/KG OF SAND)

INJECTION TIME: 1215

INJECTION LOCATION: Y = 170 METERS SOUTH

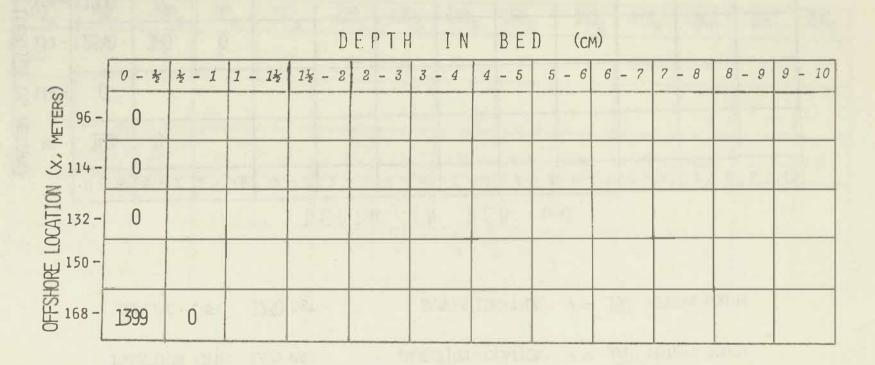
SAMPLING TIME: 1335-1402

LONGSHORE LOCATION (Y, METERS)


	40 _N	50 _s	80 _s	90 _s	110 _s	120 _s	130 _s	140 _s	150 _s	160 _s	170 _s	180 _s	190 _s	200 _s
108 -	107	0	0	0	73	0	0	0	0		0	0	0	0
			(4:24)	4)-	100	1-31/2	1	168				13	7	
133 -	0	284	35	0	0	0	0	121	823	1716	532	400		0
			P											
158 -	0	0	0	0	0	0	0	0	0		0	0		0

OFFSHORE LOCATION (X, METERS)

INJECTION TIME: 1215 PST INJECTION LOCATION: Y = 170 METERS SOUTH


SAMPLING TIME:

1230 PST SAMPLE LOCATION: Y = 150 METERS SOUTH

INJECTION TIME: 1215 PST INJECTION LOCATION: Y = 170 METERS SOUTH

SAMPLING TIME: 1245 PST SAMPLE LOCATION: Y = 150 METERS SOUTH

INJECTION TIME: 1215 PST INJECTION LOCATION: Y = 170 METERS SOUTH

SAMPLING TIME: 1230 PST SAMPLE LOCATION: Y = 150 METERS SOUTH

	E III	0		D	EPTH	IN	BE	D (c	M)			
	0 - ½	き-1	1 - 13	13 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
METERS)	198	0										
× 114 -	0				34.5		2 2					
OFFSHORE LOCATION 120 -	2640	380	0									
150-	1200	0	n					Barr		o Ok al	Till 18	THE RE
TS 168 -	685	0	0	0	63	0						100 2

INJECTION TIME: 1215 PST INJECTION LOCATION: Y = 170 METERS SOUTH

SAMPLING TIME: 1245 PST SAMPLE LOCATION: Y = 150 METERS SOUTH

		31				D	E.P	TH		IN	I	BE	D	(CN	1)							
	0 - 3	之 - 1	1 -	- 11/2	15 -	2	2	- 3	3 -	4	4 -	- 5	5 -	6	6 -	7	7 -	. 8	8 -	. 9	9 -	- 10
% WETERS)	0																					
× 114-	0																					
OI 132 -	0			1 0		to company of																
의 일 150 -						1																
NOLL 132 - 150 - 150 - 168 -	1399	0																				

INJECTION TIME: 1215 PST INJECTION LOCATION: Y = 170 METERS SOUTH

SAMPLING TIME: 1330 PST SAMPLE LOCATION: Y = 150 METERS SOUTH

	3000	-		D	EPTH	IN	BE	D (cr	4)			
	0 - 1/2	1 - 1	1 - 13	13 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
% WETERS 96 -	0			100-						L. FR		
× 114 -	345	131	0		LLI	4 11						
NOT 132 - 150 - 168 -	890	0			10.		, Mi	-ba				
150 -	2445	100	224	108	173	61	0	61	0	0	62	0
168 -	3077	4544	104	108	0	0	0	0	0	58	0	0

INJECTION TIME: 1215 PST INJECTION LOCATION: Y = 170 METERS SOUTH

SAMPLING TIME: 1345 PST SAMPLE LOCATION: Y = 150 METERS SOUTH

	302	17		D	EPTH	IN	BE	D (cr	1)			
	0 - 1/2	1 - 1	1 - 11/2	13 - 2	2 - 3	3 - 4	4 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
METERS)	0											
× 114-	3050	0					PEI					
OI 132 -	2538	554	0									
의 150 -	310	111	dr l	20 147			AY FOO			KELO	320.0	
NOTE 1250 - 120 -	0	cellal-				The	ini roc	C VANE.	de D			

24 NOV 78

INJECTION TIME: 1215 PST INJECTION LOCATION: Y = 170 METERS SOUTH

10 10 10 10

SAMPLING TIME: 1400 PST SAMPLE LOCATION: Y = 150 METERS SOUTH

	TEND.	30	0	D	EPTH	IN	BE	D (ci	M)			
	0 - 3	支 - 1	1 - 15	13 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
METERS)	0								Tre s	1117	1 = 1	
× 114-	9/0							1				
0ZA7I0	790	120	0	0	0	0	60	0				
NOTT 135 - 120 - 1	0	0	117	112	0			CALIBRE	A.E.			
168 -	0	e ITEL I II	HILL	Salit or								

INJECTION TIME: 1215 PST INJECTION LOCATION: Y = 170 METERS SOUTH

SAMPLING TIME: 1415 PST SAMPLE LOCATION: Y = 150 METERS SOUTH

				D	EPTH	IN	BE	D (cı	M)			
	0 - 3	1 - 1	1 - 13	13 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
(X METERS)	0	240	0	0	0	0	0					
× 114-	1570	370	0			1 2	351	129				
OLY 132 -	3760	100	0									
当150-	0	110	0	0 141			239					
NOTE 1932 - 150 - 150 - 168 -	0	120	0	0	0	60	0					

INJECTION TIME: 1215 PST INJECTION LOCATION: Y = 170 METERS SOUTH

SAMPLING TIME: 1430 PST SAMPLE LOCATION: Y = 150 METERS SOUTH

	1	- 100		D	EPTH	IN	B E	D (c	cm)			
~	0 - 12	表 - 1	1 - 13	15 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
METERS)	0			, TAIL								
× 114 -	5730	130	0		Bit L							
OFFSHORE LOCATION 120 -	17880	3190	2220	340	1210	0	60	0				
150 -	1390	130	0	PALE			inter a					
168 -	0			July 1						181.1		

24 NOV 78

INJECTION TIME: 1215 PST INJECTION LOCATION: Y = 170 METERS SOUTH

SAMPLING TIME: 1445 PST SAMPLE LOCATION: Y = 150 METERS SOUTH

	28			D	EPTH	IN	BE	D (cr	4)			
	0 - 1	1 - 1	1 - 15	13 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
METERS)	0											
×114-	12740	4870	0									
NOLL 132 -	530	330	0	0	110	0	130	0				
150 -	0		F									
168 -	0											

INJECTION TIME: 1215 PST INJECTION LOCATION: Y = 170 METERS SOUTH

SAMPLING TIME: 1500 PST SAMPLE LOCATION: Y = 150 METERS SOUTH

	200			D	EPTH	IN	BE	D (c	m)			
	0 - 3	\$ - 1	1 - 13	13 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
96 - WEJERS)	510	640	240	300	0							
≥ 114 -	3730	240	0		Et l	HOL	8 . 3	1	80			
NOT 132 - 150 - 168 -	13110	1060	120	0								
150-	8540	2340	0	PER :	LEST				***			
168 -	6160	120	250	130	260	0	60	0	60	60	0	0

INJECTION TIME: 1215 PST INJECTION LOCATION: Y = 170 METERS SOUTH

SAMPLING TIME: 1515 PST SAMPLE LOCATION: Y = 150 METERS SOUTH

		115			D	EPTH	I IN	BE	D (cr	1)			
		0 - 3	1 - 1	1 - 11/2	12 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
METERS	96 -	100	0										
×1	14-	380				118	12						
CATION	32 -	9600	2020	0	0			- 197	1				
ONE CO	50 -	290	380	110	120	0	110	0	0	110			
OFFSHORE LOCATION	68 -	1500	380	110	0								

INJECTION TIME: 1215 PST INJECTION LOCATION: Y = 170 METERS SOUTH

SAMPLING TIME: 1530 PST SAMPLE LOCATION: Y = 150 METERS SOUTH

			D	EPTH	IN	ВЕ	D (c	M)			
0 - 3	支 - 1	1 - 12	13 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
280	0						The state of				
1000	120	0	0	180	0						
84140	83750	25370	6130	210	120	0					
1840	110	0	130	120	0						
2130	810	230	130	120	0						
	280 1000 84140 1840	280 0	280 0	280 0 120 0 0	0 - ½ ½ - 1 1 - 1½ 1½ - 2 2 - 3 280 0 1000 120 0 0 180	0 - ½ ½ - 1 1 - 1½ 1½ - 2 2 - 3 3 - 4 280 0 1000 120 0 0 180 0	0 - ½ ½ - 1 1 - 1½ 1½ - 2 2 - 3 3 - 4 4 - 5 280 0 1000 120 0 0 180 0	0 - ½ ½ - 1 1 - 1½ 1½ - 2 2 - 3 3 - 4 4 - 5 5 - 6 280 0 0 180 0	0 - ½ ½ - 1 1 - 1½ 1½ - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 280 0 1000 120 0 180 0	0 - ½ ½ - 1 1 - 1½ 1½ - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 280 0 1000 120 0 180 0	0 - ½ ½ - 1 1 - 1½ 1½ - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 280 0 0 1000 120 0 180 0

SAND TRACER EXPERIMENT 6 DEC 1978

SUMMARY OF 6 DEC 1978 SAND TRACER EXPERIMENT

INJECTION OF DYED SAND

Rangeline: -20 m (south of SIO-4)

Amount: 200 lb in 10 lb sacks

Spacing: 7 m between injection points starting at 67 m west (seaward) of

SIO-4 bench mark

Time: 1250 HR

COMMENTS

Due to adverse surf conditions approximately 5 of the people injecting sand were grouped together approximately 15 m inside the deepest injection point. Injection was within 5 m of rangeline.

SURF ZONE DIMENSIONS (approximate)

Maximum Width: 200 m [55 to 255 m west (seaward) of bench mark]

Deepest Breakpoint: 255 m west (seaward) of bench mark

SAMPLING

Cores:

Rangeline: -50 m

Offshore Position: 70, 90, 110, 130 m west (seaward) of bench mark

Times: Approximately ever 10 to 15 minutes from 1305 to 1505. Surf conditions prevented core samplers from sampling entire surf

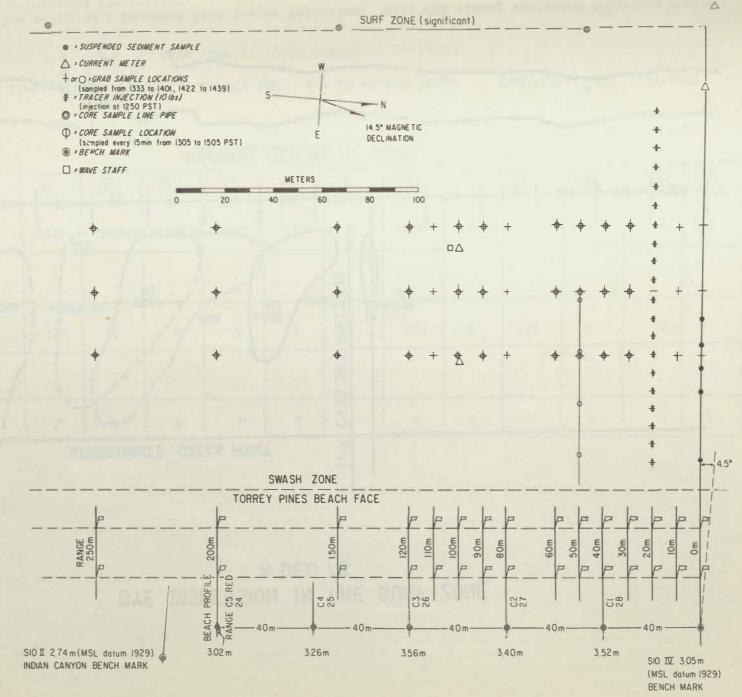
zone width.

Note: Cores marked 5 DEC should be marked 6 DEC 78.

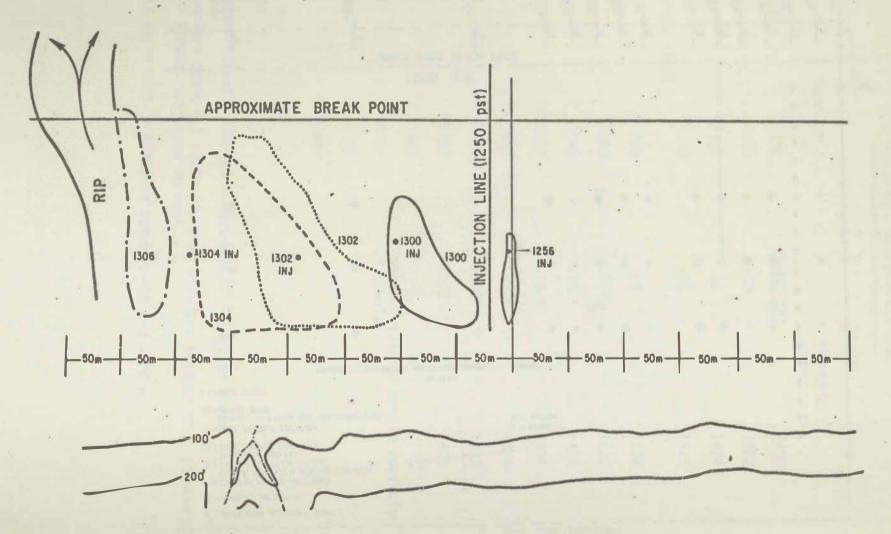
Grab Sampling:

Offshore Positions: 108, 133, 158 m west (seaward) of bench mark.

The grab sample grid was occupied twice as


noted on the following page.

GRAB SAMPLING


TR	AVERSE 1	TRAVERS	SE 2
RANGE (M)	TIME	RANGE (M)	TIME
-0	1331	-30	1422
-10	1333	-40	1424
-20 (injection line)	1335	-50	1426
-30	1338	-60	1428
-40	1343	-90*	1432
-50	1345	-100*	1433
-60	1347	-120*	1434
-80	1349	-150*	1436
-100	1352	-200*	1437
-110	1353	-250	1439
-120	1355	teamples succeet	due to confusion
-150	1357	*samples suspect of labels	due to contustor
-200	1359		
-250	1401		

Comments:

- 1. Second traverse started downstream of injection point.
- Samplers could not sample further offshore because of high wave conditions and strong, southward current.
- 3. Mix up in tags in traverse between -90 and -200 m.

DYE DISPERSION IN THE SURF ZONE 6 DEC 78

Dye motion prior to 6 December 1978 tracer injection. Note the strong southward longshore current and the pronounced rip-current.

6 DEC 1978

GRAB SAMPLES (DYED GRAINS/KG OF SAND)

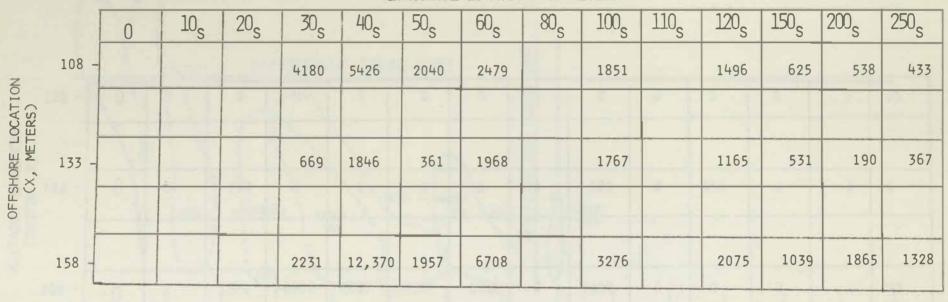
INJECTION TIME: 1250

INJECTION LOCATION: Y = 20 METERS SOUTH

SAMPLING TIME: 1331-1401

LONGSHORE LOCATION (Y, METERS)

	0	10 _s	20 _s	30 _s	40 _s	50 _s	60 _s	80 _s	100 _s	110 _s	120 _s	150 _s	200 _s	250 _s
108 -	0	0	7950	2980	6581	4206	2326	0	1866	0	0	0	0	161
SATION (SS)				114			177							
OFFSHORE LOCATION (X, METERS)	0	0	118	0	0	0	0	0	768	0	920	0	0	0
OFFSH (X							7407							
158 -	0	0	0	0	0	0	0	0	0	0	0	0	0	92


6 DEC 1978

GRAB SAMPLES (DYED GRAINS/KG OF SAND)

INJECTION TIME: 1250

INJECTION LOCATION: Y = 20 METERS SOUTH SAMPLING TIME: 1422-1439

LONGSHORE LOCATION (Y, METERS)

INJECTION TIME: 1250 PST

INJECTION LOCATION: Y = 20 METERS SOUTH

SAMPLING TIME: 1305 PST

DEPTH IN BED (cm)

RS)		0 - 3	z - 1	1 - 15	12 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
METERS)	70 -	4677	5248	6287	6496	4260	0	4.1	1	4-5			Table 1
ON CK	90 -	2777	1120	875	113	709	1600	305	167	0			
LOCATION	110 -	1611	0										
OFFSHORE	130 -				1707				Mark In		4-1	le sier	
R				1117	237				141				

INJECTION TIME: 1250 PST

INJECTION LOCATION: Y = 20 METERS SOUTH

SAMPLING TIME: 1315 PST

SAMPLE LOCATION: Y = 50 METERS SOUTH

DEPTH IN BED (cm)

(S		0 - 3	3 - 1	1 - 13	11/2 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
METERS)	70 -	2095	4504	4423	6941	6628	8285	6959	1600	0			
LOCATION (x.	90 -	420	707	106	315	165	58	0	56	0	53	0	0
	110 -	6373	3516	0									
OFFSHORE	130 -	3833	2394	1433	432	60	0	62	0	stali, i	- 81		
告			ELIO)	LIDE I									

INJECTION TIME: 1250 PST

INJECTION LOCATION: Y = 20 METERS SOUTH

SAMPLING TIME: 1330 PST

DEPTH IN BED (cm)

ERS)		0 - 15	½ - 1	1 - 13	15 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
METERS)	70 -	3191	2437	4137	286	59	0						
OCATION (x.	90 -	2559	615	718	231	151							
LOCATI	110 -	124	0	96	0	78	0						
OFFSHORE	130 -	5567	10592	3326	811	0				uiw	Lu X		
告			mu e		NEO 4								

INJECTION TIME: 1250 PST INJECTION LOCATION: Y = 20 METERS SOUTH

SAMPLING TIME: 1345 PST

DEPTH IN BED (cm)

RS)		0 - 5	2 - 1	1 - 13	1½ - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
METE	70 -	3353	617	0									
LOCATION (X, METERS)	90 -	1366	3900	3852	6751	384	0	- DE		9 . 6			
LOCATI	110 -	114	117	0									
OFFSHORE	130 -	264	0								A man		
R				-inel									

INJECTION TIME: 1250 PST

INJECTION LOCATION: Y = 20 METERS SOUTH

SAMPLING TIME:

1354 PST

DEPTH IN BED (cm) OFFSHORE LOCATION (x, METERS) 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10 1 - 1/2 1/2 - 2 2 - 3 3 - 4 0 - 5 5 - 1 70 -2750 959 0 90 -2700 4320 1660 430 60 470 110 0 60 110 -130 -0

INJECTION TIME: 1250 PST

INJECTION LOCATION: Y = 20 METERS SOUTH

SAMPLING TIME: 1405 PST

					D	EPTH	IN	BEI	D (cr	1)			
RS)		0 - 3	2 / ₂ - 1	1 - 1½	1/2 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
METE	70 -	1428	827	2406	797	0							
JN (X,	90 -	4210	1360	3410	3252	1743	478	60	0				
LOCATION (x, METERS)	110 -	829	94	0				- 8 6					
OFFSHORE	130 -	0										4	
SHO.									ne-lie	Asque -			

INJECTION TIME: 1250 PST INJECTION LOCATION: Y = 20 METERS SOUTH

SAMPLING TIME: 1412 PST SAMPLE LOCATION: Y = 50 METERS SOUTH

DEPTH IN BED (cm) 5 - 6 6 - 7 OFFSHORE LOCATION (x, METERS) 0 - 3 1 - 1/2 1/2 - 2 3 - 4 4 - 5 7 - 8 8 - 9 9 - 10 3 - 1 2 - 3 70 -2186 739 0 90 -52 0 0 0 0 0 0 0 0 58 389 0 110 -232 102 0 130 -510 0

INJECTION TIME: 1250 PST

INJECTION LOCATION: Y = 20 METERS SOUTH

SAMPLING TIME: 1420 PST

DEPTH IN BED (CM)

(S)		0 - 1/2	½ - 1	1 - 11/2	1½ - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
METER	70 -	2799	1864	1354	1512	374	0	0 1			8		
LOCATION (x, METERS)	90 -	760	0	year	332		441						
OCATI	110 -	226	114	0	3 - 10			0.0					
OFFSHORE L	130 -	191	0										
SH.										mak			

INJECTION TIME: 1250 PST

INJECTION LOCATION: Y = 20 METERS SOUTH

SAMPLING TIME: 1430 PST

SAMPLE LOCATION

SAMPLE LOCATION: Y = 50 METERS SOUTH

					D	EPTH	IN	BEI	D (cr	۱)			
(\$2)	115 -	0 - 3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 - 13	1½ - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
METE	70 -	1093	1588	1864	2587	2082	2792	122	0				
ON CX.	90 -	4688	3643	282	171	0	B	0					
LOCATION (x, METERS)	110 -	625	0										
OFFSHORE 1	130 -	0	458	498	0								
OFFS										en rias		Lair g	

DECTION THE: 1250 PST

B.A. T. A. (DVST. GSALMS/Mr. OC SAME

INJECTION TIME: 1250 PST INJECTION LOCATION: Y = 20 METERS SOUTH

SAMPLING TIME: 1441 PST

					D	ЕРТН	IN	BEI	D (cn	1)			
(\$)		0 - 3	½ - 1	1 - 15	12 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
METER	70 -	336	677	567	1434	1586	654	0					
LOCATION (X, METERS)	90 -	1897	0					133	N. I				
LOCATI	110 -	0	0	0	0	0	334	515	0				
OFFSHORE	130 -	0											
OH!												ME	

INJECTION TIME: 1250 PST INJECTION LOCATION: Y = 20 METERS SOUTH

SAMPLING TIME: 1450 PST SAMPLE LOCATION: Y = 50 METERS SOUTH

5 - 6 6 - 7 9 - 10 7 - 8 8 - 9 2 - 3 3 - 4 4 - 5 1 - 1 1 - 1 1 1 - 2 OFFSHORE LOCATION (x, METERS) 70 -954 0 1646 1306 816 837 90 -86 110 -226 116 0 967 1193 491 746 130 -966

DEPTH IN BED (cm)

INJECTION TIME: 1250 PST

INJECTION LOCATION: Y = 20 METERS SOUTH

SAMPLING TIME: 1457 PST

DEPTH IN BED (cm)

(\$2)		0 - 3	2 - 1	1 - 13	12 - 2	2 - 3	3 - 4	4 - 5	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10
METERS)	70 -	1915	363	0						Ball			
ON CX.	90 -	1950	1420	986	0								
LOCATION	110 -	113	0	0	196	0							
OFFSHORE	130 -	3216	495	0					10				
品													

APPENDIX B

CURRENT METER ELEVATIONS, LOCATION AND CONDITION

INSTRUMENT	ELEVATION (MSL) (CM)	XLOC (OFFSHORE) (METERS)	YLOC (LONGSHORE) (METERS)	CONDITION
C40	19	99.4	0	
C39	0	115.2	0	
C37	-18	129.1	0	
C36	-43	143.2	0	
C35	-40	149.1	60	
C34	-43	139.1	20	
C33	-46	142.8	320	
C32	-61	144.5	160	
C31	-31	155.4	0	
C28	-44	146.3	-40	
C27	-40	145.0	-80	
C26	-43	141.4	-120	
C25	-40	137.3	-160	
C23	-60	170.2	0	
C22	-98	184.7	0	
C24	-41	127.7	-200	
C42	56	85.0	0	
C43	-20	141.0	-29	X AXIS ORIE

[&]quot;NOTATION GIVES DEGREES BENT FROM VERTICAL TOWARDS DIRECTION GIVEN.

INSTRUMENT	ELEVATION (MSL) (CM)	XLOC (OFFSHORE) (METERS)	YLOC (LONGSHORE) (METERS)	CONDITIONS
C40	19	99.4	0	-4
C39	0	115.2	0	
C37	-18	129.1	0	
C36	-43	143.2	0	
C35	-40	149.1	60	
C34	-43	139.1	20	
C33	-46	142.8	320	
C32	-61	144.5	160	10°
C31	-31	155.4	0	
C28	-44	146.3	-40	
C27	-40	145.0	-80	100
C26	-43	141.4	-120	
C25	-40	137.3	-160	
C23	-60	170.2	0	
C22	-98	184.7	0	200
C24	-41	127.7	-200	
C42	56	85.0	0	
C43		Die 44 De		
C15				450
C19				450

[&]quot;NOTATION GIVES DEGREES BENT FROM VERTICAL TOWARDS DIRECTION GIVEN.

INSTRUMENT	ELEVATION (MSL) (CM)	XLOC (OFFSHORE) (METERS)	YLOC (LONGSHORE) (METERS)	CONDITION
C40	19	99.4	0	
C39	0	115.2	0	
C37	-18	129.1	0	
C36	-43	143.2	0	
C35	-40	149.1	60	
C34	-43	139.1	20	
C33	-46	142.8	320	
C32	-61	144.5	160	
C31	-31	155.4	0	
C28	-44	146.3	-40	
C27	-40	145.0	-80	
C26	-43	141.4	-120	
C25	-40	137.3	-160	
C23	-60	170.2	0	
C22	-98	184.7	0	50
C24	-41	127.7	-200	
C42	56	85.0	0	
C43	-26	141.0	-29	

[&]quot;NOTATION GIVES DEGREES BENT FROM VERTICAL TOWARDS DIRECTION GIVEN.

RELATIVE TO MEAN SEA LEVEL

INSTRUMENT	ELEVATION (MSL) (CM)	XLOC (OFFSHORE) (METERS)	YLOC (LONGSHORE) (METERS)	CONDITION
C40	19	99.4	0	-
C39	0	115.2	0	
C37	-18	129.1	0	
C36	-43	143.2	0	
C35	-40	149.1	60	
C34	-43	139.1	20	
C33	-46	142.8	320	
C32	-61	144.5	160	
C31	-31	155.4	0	BENT
C28	-44	146.3	-40	
C27	-40	145.0	-80	
C26	-43	141.4	-120	
C25	-40	137.3	-160	
C23	-60	170.2	0	
C22	-98	184.7	0	BENT
C24	-41	127.7	-200	
C42	56	85.0	0	
C43				

[&]quot;NOTATION GIVES DEGREES BENT FROM VERTICAL TOWARDS DIRECTION GIVEN.

INSTRUMENT	ELEVATION (MSL) (CM)	XLOC (OFFSHORE) (METERS)	YLOC (LONGSHORE) (METERS)	CONDITION
C40	19	99.4	0	ALL O.K.
C39	0	115.2	0	
C37	-18	129.1	0	
C36	-43	143.2	0	
C35	-40	149.1	60	
C34	-43	139.1	20	
C33	-46	142.8	320	
C32	-61	144.5	160	
C31	-31	155.4	0	
C28	-44	146.3	-40	
C27	-40	145.0	-80	
C26	-43	141.4	-120	
C25	-40	137.3	-160	
C23	-60	170.2	0	
C22	-98	184.7	0	
C24	-11	127.7	-200	
C42				
C43	-3	123.4	-16	

[&]quot;NOTATION GIVES DEGREES BENT FROM VERTICAL TOWARDS DIRECTION GIVEN.

INSTRUMENT	ELEVATION (MSL) (CM)	XLOC (OFFSHORE) (METERS)	YLOC (LONGSHORE) (METERS)	CONDITION
C40	19	99.4	0	
C39	0	115.2	0	
C37	-18	129.1	0	
C36	-43	143.2	0	
C35	-40	149.1	60	
C34	-43	139.1	20	
C33	-46	142.8	320	
C32	-61	144.5	160	
C31	-31	155.4	0	
C28	_44	146.3	-40	
C27	-40	145.0	-80	
C26	-43	141.4	-120	
C25	-40	137.3	-160	
C23	-60	170.2	0	
C22	-98	184.7	0	
C24	-41	148.3	-200	
C42		-		
C43	6	123.4	-16	

SNOTATION GIVES DEGREES BENT FROM VERTICAL TOWARDS DIRECTION GIVEN.

INSTRUMENT	ELEVATION (MSL) (CM)	XLOC (OFFSHORE) (METERS)	YLOC (LONGSHORE) (METERS)	CONDITION:
C40	19	99.4	0	ID
C39	0	115.2	0	
C37	-18	129.1	0	
C36	-43	143.2	0	
C35	-40	149.1	60	
C34	-43	139.1	20	
C33	-46	142.8	320	
C32	-61	144.5	160	
C31	-31	155.4	0	
C28	-44	146.3	-40	
C27	-40	145.0	-80	
C26	-43	141.4	-120	
C25	-40	137.3	-160	
C23	-60	170.2	0	
C22	-98	184.7	0	
C24	-41	148.3	-200	
C42			Consultation in	
C43	2	123.4	-16.0	

[&]quot;NOTATION GIVES DEGREES BENT FROM VERTICAL TOWARDS DIRECTION GIVEN.

INSTRUMENT	ELEVATION (MSL) (CM)	XLOC (OFFSHORE) (METERS)	YLOC (LONGSHORE) (METERS)	CONDITION
C40	19	99.4	0	- Publish
C39	0	115.2	0	
C37	-18	129.1	0	
C36	-43	143.2	0	15° E
C35	-40	149.1	60	30° N
C34	-43	139.1	20	
C33	-46	142.8	320	
C32	-61	144.5	160	5° NE
C31	-31	155.4	0	
C28	-44	146.3	- 40	20° N, 5° OUT OF VERTICAL
C27	-40	145.0	-80	
C26	-43	141.4	-120	
C25	-40	137.3	-160	5° OFF IN HORIZONTAL
C23	-60	170.2	0	
C22	-98	184.7	0	COULDN'T SEE
C24	-41	148.3	-200	25° NE
C42	THE STATE OF THE S			
C43				

[&]quot;NOTATION GIVES DEGREES BENT FROM VERTICAL TOWARDS DIRECTION GIVEN.

INSTRUMENT	ELEVATION (MSL) (CM)	XLOC (OFFSHORE) (METERS)	YLOC (LONGSHORE) (METERS)	CONDITION
C40	19	99.4	0	
C39	0	115.2	0	
C37	-18	129.1	0	
C36	-43	143.2	0	10° S
C35	-40	149.1	60	10° NE
C34	-43	139.1	20	
C33	-46	142.8	320	
C32	-61	144.5	160	
C31	-31	155.4	0	45° NE
C28	-44	146.3	-40	5° N
			WRAPPED A	FISHING LINE ROUND SENSOR
C27	-40	145.0	-80	
C26	-43	141.4	-120	
C25	-40	137.3	-160	
C23	-60	170.2	0	
C22	-98	184.7	0	
C24	-41	148.3	-200	
C42	****			
C43	00 00 10 10			

[&]quot;NOTATION GIVES DEGREES BENT FROM VERTICAL TOWARDS DIRECTION GIVEN.

INSTRUMENT	ELEVATION (MSL) (CM)	XLOC (OFFSHORE) (METERS)	YLOC (LONGSHORE) (METERS)	CONDITION
C40	19	99.4	0	The trainery?
C39	0	115.2	0	
C37	-18	129.1	0	
C36	-43	143.2	0	
C35	-40	149.1	60	
C34	-43	139.1	20	
C33	-46	142.8	320	15° E
C32	-61	144.5	160	5° E
C31	-31	155.4	0	
C28	-44	146.3	-40	
C27	-40	145.0	-80	
C26	-43	141.4	-120	
C25	-40	137.3	-160	
C23	-60	170.2	0	
C22	-98	184.7	0	
C24	-41	148.3	-200	
C42				
C43				

"NOTATION GIVES DEGREES BENT FROM VERTICAL TOWARDS DIRECTION GIVEN.

INSTRUMENT	ELEVATION (MSL) (CM)	XLOC (OFFSHORE) (METERS)	YLOC (LONGSHORE) (METERS)	CONDITION
C40	19	99.4	0	11 50.0
C39	0	115.2	0	
C37	-18	129.1	0	
C36	-43	143.2	0	
C35	-40	149.1	60	
C34	-43	139.1	20	
C33	-46	142.8	320	
C32	-61	144.5	160	
C31	-31	155.4	0	
C28	-44	146.3	-40	
C27	-40	145.0	-80	
C26	-43	141.4	-120	
C25	-40	137.3	-160	
C23	-60	170.2	0	
C22	-98	184.7	0	5° W (OFFSHORE)
C24	-41	148.3	-200	
C42			*****	
C43	10.00 FE TO	200 M 100 M		

[&]quot;NOTATION GIVES DEGREES BENT FROM VERTICAL TOWARDS DIRECTION GIVEN.

INSTRUMENT	ELEVATION (MSL) (CM)	XLOC (OFFSHORE) (METERS)	YLOC (LONGSHORE) (METERS)	CONDITION
C40	19	99.4	0	- distribute
C39	0	115.2	0	
C37	-18	129.1	0	
C36	-43	143.2	0	
C35	-40	149.1	60	
C34	-43	139.1	20	
C33	-46	142.8	320	
C32	-61	144.5	160	
C31	-31	155.4	0	
C28	-44	146.3	-40	
C27	-40	145.0	-80	
C26	-43	141.4	-120	
C25	-40	137.3	-160	
C23	-60	170.2	0	
C22	-98	184.7	0	
C24	-41	148.3	-200	
C42			-1122	
C42		r du	79-	
(4)				

"NOTATION GIVES DEGREES BENT FROM VERTICAL TOWARDS DIRECTION GIVEN.

INSTRUMENT	ELEVATION (MSL) (CM)	XLOC (OFFSHORE) (METERS)	YLOC (LONGSHORE) (METERS)	CONDITION
C40	19	99.4	0	
C39	0	115.2	0	
C37	-18	129.1	0	
C36	-43	143.2	0	
C35	-40	149.1	60	
C34	-43	139.1	20	
C33	-46	142.8	320	
C32	-61	144.5	160	10° SHOREWAR
C31	-31	155.4	0	
C28	-44	146.3	-40	
C27	-40	145.0	-80	
C26	-43	141.4	-120	
C25	-40	137.3	-160	
C23	-60	170.2	0	
C22	-98	184.7	0	5° SHOREWARD
C24	-41	148.3	-200	6° SHOREWARD
C42	-56	129.1	-0.3	
C43	20	129	- 7	

[&]quot;NOTATION GIVES DEGREES BENT FROM VERTICAL TOWARDS DIRECTION GIVEN.

RELATIVE TO MEAN SEA LEVEL

INSTRUMENT	ELEVATION (MSL) (CM)	XLOC (OFFSHORE) (METERS)	YLOC (LONGSHORE) (METERS)	CONDITION
C40	19	99.4	0	SHEARED OF @ ∿ 1300 HRS
C39	0	115.2	0	
C37	-18	129.1	0	
C36	-43	143.2	0	
C35	-40	149.1	60	
C34	-43	139.1	20	
C33	-46	142.8	320	
C32	-61	144.5	160	
C31	-31	155.4	0	
C28	-44	146.3	-40	
C27	-40	145.0	-80	
C26	-43	141.4	-120	
C25	-40	137.3	-160	
C23	-60	170.2	0	
C22	-98	184.7	0	
C24	-41	148.3	-200	
C42	-56	129	-3	
C43	20	129.1	-7	

[&]quot;NOTATION GIVES DEGREES BENT FROM VERTICAL TOWARDS DIRECTION GIVEN.

INSTRUMENT	ELEVATION (MSL) (CM)	XLOC (OFFSHORE) (METERS)	YLOC (LONGSHORE) (METERS)	CONDITIONS
C40	19	99.4	0	
C39	0	115.2	0	
C37	-18	129.1	0	
C36	-43	143.2	0	5° SHOREWARD
C35	-40	149.1	60	
C34	-43	139.1	20	
C33	-46	142.8	320	
C32	-61	144.5	160	
C31	-31	155.4	0	
C28	-44	146.3	-40	
C27	-40	145.0	-80	
C26	-43	141.4	-120	
C25	-40	137.3	-160	
C23	-60	170.2	0	
C22	-98	184.7	0	
C24	-41	148.3	-200	
C42	-56	129.1	-3	
C43				

[&]quot;NOTATION GIVES DEGREES BENT FROM VERTICAL TOWARDS DIRECTION GIVEN.

INSTRUMENT	ELEVATION (MSL) (CM)	XLOC (OFFSHORE) (METERS)	YLOC (LONGSHORE) (METERS)	CONDITION
C40	19	99.4	0	THE CHARLES
C39	0	115.2	0	
C37	-18	129.1	0	
C36	-43	143.2	0	
C35	-40	149.1	60	
C34	-43	139.1	20	
C33	-46	142.8	320	
C32	-61	144.5	160	
C31	-31	155.4	0	
C28	_44	146.3	-40	
C27	-40	145.0	-80	
C26	-43	141.4	-120	
C25	-40	137.3	-160	
C23	-60	170.2	0	
C22	-98	184.7	0	8° SHOREWARD
C24	-41	148.3	-200	
C42	31	85.0	0	
C43		-	200 MAR AND AND	

[&]quot;NOTATION GIVES DEGREES BENT FROM VERTICAL TOWARDS DIRECTION GIVEN.

INSTRUMENT	ELEVATION (MSL) (CM)	XLOC (OFFSHORE) (METERS)	YLOC (LONGSHORE) (METERS)	CONDITION
C40	19	99.4	0	
C39	0	115.2	0	
C37	-18	129.1	0	
C36	-43	143.2	0	
C35	-40	149.1	60	
C34	-43	139.1	20	
C33	-46	142.8	320	
C32	-61	144.5	160	
C31	-31	155.4	0	
C28	-44	146.3	-40	
C27	-40	145.0	-80	
C26	-43	141.4	-120	
C25	-40	137.3	-160	
C23	-60	170.2	0	
C22	-98	184.7	0	
C24	-41	148.3	-200	5° SHOREWARD
C42	10	85.0	0	
C43	-4	132	-190	

[&]quot;NOTATION GIVES DEGREES BENT FROM VERTICAL TOWARDS DIRECTION GIVEN.

INSTRUMENT	ELEVATION (MSL) (CM)	XLOC (OFFSHORE) (METERS)	YLOC (LONGSHORE) (METERS)	CONDITION
C40	-20	99.4	0	FIXED DURING RUN
C39	-18	115.2	0	
C <mark>37</mark>	-44	129.1	0	
C36	-64	143.2	0	
C35	-40	149.1	60	
C34	-43	139.1	20	
C33	-46	142.8	320	
C32	-61	144.5	160	
C31	-71	155.4	0	
C28	-44	146.3	-40	
C27	-40	145.0	-80	
C26	-43	141.4	-120	STARTED BAD, BUT GOOD AT END
C25	-40	137.3	-160	
C23	-60	170.2	0	
C22	-98	184.7	0	
C24	-14	148.3	-200	
C42	10	85.0	0	
C43				

[&]quot;NOTATION GIVES DEGREES BENT FROM VERTICAL TOWARDS DIRECTION GIVEN.

INSTRUMENT	ELEVATION (MSL) (CM)	XLOC (OFFSHORE) (METERS)	YLOC (LONGSHORE) (METERS)	CONDITION
C40	-20	99.4	0	
C39	-18	115.2	0	
C36	-64	143.2	0	
C35	-40	149.1	60	
C34	-43	139.1	20	
C33	-46	142.8	320	
C32	-61	144.5	160	
C31	-71	155.4	0	
C28	-44	146.3	-40	
C27	-40	145.0	-80	
C26	-43	141.4	-120	
C25	-40	137.3	-160	
C23	-60	170.2	0	
C22	-98	184.7	0	
C24	-14	148.3	-200	
C42	10	85.0	0	
C43	for set on set			

"NOTATION GIVES DEGREES BENT FROM VERTICAL TOWARDS DIRECTION GIVEN.

INSTRUMENT	ELEVATION (MSL) (CM)	XLOC (OFFSHORE) (METERS)	YLOC (LONGSHORE) (METERS)	CONDITION%
C40	-20	99.4	0	
C39	-18	115.2	0	
C37	-44	129.1	0	
C36	-64	143.2	0	
C35	-40	149.1	60	
C34	-43	139.1	20	
C33	-46	142.8	320	
C32	-61	144.5	160	
C31	-71	155.4	0	
C28	-44	146.3	-40	
C27	-40	145.0	-80	
C26	-43	141.4	-120	
C25	-40	137.3	-160	
C23	-60	170.2	0	
C22	-98	184.7	0	
C24	-14	148.3	-200	
C42	10	85.0	0	
C43				

"NOTATION GIVES DEGREES BENT FROM VERTICAL TOWARDS DIRECTION GIVEN.

APPENDIX C

VISUAL BEACH OBSERVATIONS

BEACH OBSERVATIONS

DATE 3 Nov Cine Start Time 0909:00

2 min blank Stop Time 2 min sequence; sequence preceeds

			I amount of the same of the sa		1.7	4			
Time	X _B	НЬ	Breaker Type	Currents	Weather	Wave Staff Overtop	E.M. out of H ₂ 0	Run Up MAX	Run Up MIN
0730		100cm				ws4 by larges:	C42		
0810	C42	plugged	in	•	Light onshore wind, very clear, surny day		C42		
0830									
0840	ws 4 overtop	ped					1		
0920								4m mean = 16	26m
0950				lsc so at 48cm	/sec				
1005	dye inj	ected @ 2	OmN SIO4	1sc so @ 20cm/	sec				
1019				dye flowed so extending offs	as a line snore just so.	of U. of W.		1	
1023				dye flowed so	at 16cm/sec				
1027				dye release 65m no. of SIO4 at 60m offshore	weak wind from west				
1035	between ws 3&4 to ws 2	1		dye spread of: 60m to 145m	shore from	*	•		
1039 * w.s. 1.s.c. SAS		staff ore curr station		main blob of a north of SIO4	dye 35m	40 cm/s 8cm/s	Brenker lind		

BEACH OBSERVATIONS

Time	XB	Н	Breaker Type	Currents	Weather	Wave Staff Overtop	E.M. out of H ₂ 0	Run Up MAX	Run Up
1044		-	Breaker line		No visible	rips			
					1				
			Beach						
1058	145m		waves plunge bar or spil	on front of or ing on bar	shore 6 knots	*			
1100						ws 3 overtopped			
109	The Party							9m	25m
1110					THE PERSON NAMED IN		C42		
1125	weak cus	ps 20cm	high just in	front of tower	: 25m, 19m, 2	4m, 23m			
1213		85 cm	wave periods	10 1 5 - peak	onshore bree 4 knots	ze DLI pressur sensor out of		15m	35m
1235				8 - mean			C42		
1233			r - mi			- L	C42		
315	no appar	ent surf	beat			TOTAL STREET	· C39	30	54
			Total Control	MARKET A		al al	reference to	The last of	236
	- wave s - longsh - shelf			of TOT or	Tipe The	His way been	100 17/		

Time	ХB	Нь	Breaker Type	Currents	Weather	Wave Staff Overtop	E.M. out of H ₂ 0	Run Up MAX	Run Up MIN
0744			naj jest				C40, C42		
0814	between ws 2&4		Mild surf			No overtop	C33 not working		
1034	@ ws 2		spilling	1 3 - 5	light breeze from SE		e or person		
1050	interm	ediate sta	tion off; fix	on C33	100000				
				Dye injected a 60 mN; Dye spr		ections.	- 685		
1137 -	- 15 min	after dye	injection			Breaker lin	e		
			long crested breakers	405 3104	20 60N				
1250	Average	cusp spa	e of 26m, 0.3	m high		m 4270		15m surf	33m beat
1335	Shut of	anemome	er		slight onshor breeze; very sunny warm da	10000 300		4	
* w.s. l.s.c. SAS	- longs	ore curr			To survivo				

0855.35 start cina film pack #2- bad start two min. blank to indicate new start

DATE 5 Nov Cine Start Time 0841:0 Stop Time

Time	ХB	НЬ	Breaker Type	Currents	Weather	Wave Staff Overtop	E.M. out of H ₂ 0	Run Up MAX	Run Up MIN
0807	Turn on	transmitt	ers, Anemomet	er turned on a	6 830				
0915	Ridge a	nd runnels	at C24 and C	25					
0935		eft on all		nt work	sunny day,slighaze, breezw SW at 4 kts.		C42		
1025		100 cm	longcrested					10 m	31 m
1027	4			no well defin	≱d		Cancar, 1	surf beat	at 30 and 60 s
1036	Dye inj	ection at	5 m south of	SI04 at C40	wind picking from so. at 8		Only 4 wave	staffs up	
				IM		BREAKER			
1115	Dye pat		spilling	105 / SIOH	501	_^			
1120	Traisite in	1			6 knots from	#3 and #4			
1158		0			SW	and profits	C42	9 m	29m
		staff hore curr station			STREET, THE	#3 and #4 Big wave over W14 offshore	topped		

DATE 5 Nov

Cine Start Time ____ Stop Time 1533

Time	ХB	НЬ	Breaker Type	Currents	Weather	Wave Staff Overtop	E.M. out of H ₂ 0	Run Up MAX	Run Up MIN
1240		up to 180	cm	c. to no. at I	18				
1305	Generat	or surgin	g when runnin	g out of gas	M	A Person No.	and the same		
1315				Blue water out	side ws #4; tu	rbulent inside	C42	3m ==	42 m
1328	Retreive	d 2 deep	staffs.	Cusp spacing	near top of be	rm (24m,22m,27	n) height= 30	Surf beat	105 sec.
1445	27		plunging at ws.#4 at from of bar		of the party con-		C42,C40,C39	19m	49m
1505					The same of	Land	C42,640,C39,	1000	6 (N m)
1512		eve hour e	Tukeng market	Spar tilting	north	3		1."	
1533	erell erell	surf inc	reasing	1	light breeze from Sw	another deep staff broke			
	and a	The same	THE RE LESS ASS	W 744					
	144		STATE NAME	the company	- cos	4			
			The state of	- phone	Tenor	is and	· Paralle	1	No. of
		staff Hore curre station		DIE TES				to per-	

DATE 7 Nov Cine Start Time1234:0 Stop Time

		Aires and a second			1			4	
Time	ХB	Нь	Breaker Type	Currents	Weather	Wave Staff Overtop	E.M. out of H ₂ 0	Run Up MAX	Run Up MIN
1156	Turn o	f transmi	tter						
1157				Dye injection					
1300		33 cm small wa	√ _b -3° - ni	e wave angle	light breeze				
1337	Time co	de reesta	blished		bright sunny d	ay			
1515				week day				run up met	er turned of
1616	Shut do	own 40 cm			wind 5 kts. from NW	•			
							Land I		
		-	de la companya de la						(4)
							Lamba mile	1 4	
			11: 4			4	100		
		44					*		
			Alexander and a	Valence	ALCOHOL:	owered !	100		
		taff hore curr station		News of Street, or other teams of the street, or other teams or ot	MELIUS IN				

DATE 11/8 Cine Start Time

Time	х _В	НР	Breaker Type	Currents	Weather	Wave Staff Overtop	E.M. out	Run Up MAX	Run Up MIN
1022	Transmi	tters on							
1037				Lan natural			C40, C39, C37 N-S range okay		
1105		Two wav	e trains hort-		-		Downing; no waves today		
1325			AT DO	Inshore to South,	Service and				
	grag			SAS to south	AND 2 MAY	4	10		
	Diene .		-		Line house	Andrew Core			
		772	W-1, -	CO AND DESCRIPTION	Con bress				
			anna.	Loke milesty	05 830s				
	75	I.A.	J. Marie	- puiding	- profil	Mary Staff	11 mg	107x	
		-		DUL THE	The Same				
								Err 1 1/9	

DATE 11/10 Cine Start Time

Time	ХB	Нь	Breaker Type	Currents	Weather	Wave Staff Overtop	E.M. out of H ₂ 0	Run Up MAX	Run Up MIN
0735		up to			South wind Sea - S.W. Swell - west	01.00			
1039 1041	4			offshore flow at D.L.I. offshore flow at U.W. tower					
					P100				
ic pi					Pine				
					THE PARTY IN	Section 1			10
-		Post f		A THE PERSON NAMED IN	Axer one	ising that i	381		

DATE 11/11 Cine Start Time 6:48:40 Stop Time 9:21

			-		1	sec			
Time	хв	НЬ	Breaker Type	Currents	Weather	Wave Staff Overtop	E.M. out of H ₂ 0	Run Up MAX	Run Up MIN
7:10	w.s. 3 2 4		T=8.6-120 sec	North	Stormy; wind from so., waves from S.W. many rips				
8:45	X _b ∿10m west of #3 w.s.	100 ∿ 130 cm		Northerly	S.E. wind	,		16m west of anemome (59m)	ter
1000									
				At I.L.I.					*
				consumit a		4			
					257.5984	0 me 100		1000	
* w.s. 1.s.c. SAS	- wave - longs - shelf	staff hore curr	ent spar	1000					

DATE 13 Nov Cine Start Time 0803:0 Stop Time

Time	х _В	НЪ	Breaker Type	Currents	Weather	Wave Staff Overtop	E.M. out of H ₂ 0	Run Up MAX	Run Up MIN
0650				diate station of broken, only i		es left			
0858	Offshor	e station	turned off				C33 not worl	ting yet	
0845 1009				Rip current be C33 and north		cast	C32 turned	n	
1010	Station		the air Waves not lon surf going do	P	light 1-3 knot wind from so.			n'en	
					opper m	market	Parly		
	- wave		ent	BENCH SHE	September 1	COMMIN - E	a fabric Ting	main to	

DATE 15 Nov Cine Start Time0811:0 Stop Time

1				DATE 15 NOV	OTTIC OLUTE TO	meodii.o Stop	1 THE		
Time	ХB	НЬ	Breaker Type	Currents	Weather	Wave Staff Overtop	E.M. out of H ₂ O	Run Up MAX	Run Up MIN
0645	Turn on	transmit	ters	i				The second of th	, i
0655	Flowmet	ers and w	ave guages al	turned on					
0710	Big wav		d on plunging nice swell		offshore wind 5-6 knots	ws#4 (W29)			
0735							Kelp on W38	leaned off	
0910	10-12	Trim and	in the san				Plug in C47	ind C49	
0915				1.s. north		W29 knocked d	own		
0924	Run up	turned on	long crested swell		dead calm			52 m	37 m
0958			SWEII	100	M. Allensia		C47 & C49 tu	ned off	
1025			THE RESIDE				C47 & C49 tu	ned on	
1027		H appea	rs to decreas	at high tide					
1050	W21	Long cre	sted waves	l.s.c. variabl	e Wind from WNW 5-6 kts			35 m small run	26 m up
						Land Horn	H THE		
* w.s.	- wave	taff						1	
1.s.c.	- longs	ore curre					1		
SAS	- shelf	station	spar						

DATE 16 Nov Cine Start TimeO852 Stop Time Time Breaker Weather Wave Staff E.M. out Run Up Run Up XB Hb Currents MIN of H₂0 MAX Type Overtop C42 moved in line with \38 &c37, DLI 0852 Large amounts of sea grass on bottom between W38 & W29 wind 1 kn from no overtopping 0910 NW, clear sky very clear and sunny 1020 C42 connected offshore current 1038 W38 at SAS = 0* w.s. - wave staff 1.s.c. - longshore current SAS - shell station spar

DATE 11/17 Cine Start Time 9:09:00 Stop Time

Time	x _B	НЬ	Breaker Type	Currents	Weather	Wave Staff Overtop	E.M. out of H ₂ O	Run Up Run Up MAX MIN
8:38	Breaker at wave staff 4 & off shore		sets 2.5 min interval	SAS slightly to north				Start 8:18
3:40	@ 2							
10:06	*		T = 6.6 s	SAS to				10:02 slack wires
11:00				lsc to so. SAS vertical				1:00 -off
12:45				SAS to no. lsc to so.				Surf zone from old 42 to bracking between w.s. 2 & 3
12:50				rip at C24-C25			C39	
1:10							C37	
* w.s. 1.s.c. SAS		staff nore curr station			*/			

DATE 18 Nov Cine Start Time 0906:0 Stop Time

Time	XB	НЬ	Breaker Type	Currents	Weather	Wave Staff Overtop	E.M. out of H ₂ 0	Run Up MAX	Run Up MIN
1057	w29			Rip @ C25 Dye injection Strong current inshore of C	to south	Offshore array	suspect	Top Bac	
							DIG DAY		
				Section 1			000		
								ALCOHOL:	
		177 - 17	1.00	Special Int model	A STATE OF THE PARTY OF THE PAR		100		
	Laboration	rote Day		and the latest of	THE PERSON		lean .		
							CIO 74		
	rest b	Mannet	gentler.	CONTRACTOR SALAR	Agric stray			Spir sir sind	
		Signed	amountpar	Tot but					
		1-2-	gliber of	Chrysley	Auren	Name Acade	LAL SOT	i prop	
* w.s. 1.s.c.	- longs	staff hore curr	ent	INVESTIGATION OF THE PARTY OF T	Consequentings				

DATE 11/20 Cine Start Time 0857

Time	ΧB	НЬ	Breaker Type	Currents	Weather	Wave Staff Overtop	E.M. out of H ₂ 0	Run Up MAX	Run Up MIN
0915	changed	filter c	haracteristic	s of S45					
1002	Staff 3	70-150cm groupy	Plunging	Strong north longshore current	West wind			70m to SWL	
1020							C42 out C40 in		
1106	Breakers @ wave staff#3	100-150ст		longshore current in- shore to south	light westerly		C42 intermittant		
1117			3	longshore current revers with sets	es.			correlates	with groups
1325				S II res			C40 out		
1330		80-100 cm		north	west wind				
1408	w.s. 3&4			No. of Parties			C39		
1433							Ç37		
	2		politica de la constanta de la	Cattlebase	Million I	MAN STREET	9,7%		
				Date To 15					* 7.

DATE 11/21 Cine Start Time 9:30:00 Stop Time

Time	ХB	НЬ	Breaker	Currents	Weather	Wave Staff Overtop	E.M. out of H ₂ 0	Run Up MAX	Run Up MIN
8:55	w.s. 3 to outside ws 4	1-1.5m (groups)		lsc north, SAS to north	SE wind (strong)		(Coro'Elo	Rip 25m	no. of \$194
9:18				ACCRETO		10 S 10	C42		
9:50	3 & 4 to 4	70 - 150 cm	plunge - spill		strong so. wind	THE PERSON NAMED IN	C42 in & out	1	
averag	e cusps	spacing (20, 19,	20.5m 22 m)			i t			
			LEYON.		AND THE RESERVE OF THE PERSON	Lini rob			
* W.S.	- Wave	staff		CALL IN MEN					
* W.S. 1.S.C.		staff hore curr	ent						

f-stop changed at 1411

DATE 24 Nov Cine Start Time 0940:05 Stop Time

Time Breaker XB Hb Currents Weather Wave Staff E.M. out Run Up Run Up Type Overtop of H₂0 MAX MIN SAS 30° to So, wind N-NW 1056 outside 70 cm C42 under sand ws#4 C40, C39 plunge @C20 southerly 1cs 1110 rip @ C28 NW wind 5 kts 1130 plume to no. SAS 25° south C32 and C33 low batteries, 2 second interrupt to fix batteries at 1153 1155 sediment plume 1207 W41 out of C42, C40, C39 flows no. @C35 water 1sc so.@SIO4 1220 W41 out C42, C40, C39 W29 plunging 1230 1322 ws. #3 SAS to so. 60 cm 1329 so. swell: T=1.5 s from no. Sediment plume longerested from WSW out SI04 1333 rip @ C27 1350° w.s. #3 1sc no. 1400 C39 SAS to 80. * W.S. - wave staff - longshore current 1.s.c. SAS - shelf station | spar

DATE 24 Nov Cine Start Time ____ Stop Time ____

Time	x _B	НЬ	Breaker Type	Currents	Weather	Wave Staff Overtop	E.M. out of H ₂ 0	Run Up MAX	Run Up MIN
1418				large rip 300 no. of SIO4	m				
1535		50 cm groupy		SAS to so.	wind from so		C42		
	+								
								4.7	
					#				
1.s.c.	- wave	staff nore curr station	ent						
SAS	- shel	fstation	spar		L I				

APPENDIX D

TIDE DATA

TIDES

The tidal cycle in the San Diego area is semi-diurnal with two high and two low waters in a tidal day. Since the tides follow the moon more closely than the sun, the lunar or tidal day is about 50 minutes longer than the solar day. This causes the tide to occur later each day. The mean tidal range is 3.6 feet and the mean tide level is 2.7 feet (MLLW). During the month of November 1978 the tides ranged from -.7 feet to +6.8 feet (MLLW). The mean lower low water (MLLW) datum is -2.7 feet (-75.5 cm) relative to MSL at the study site so that all elevations can be cross-referenced to MLLW.

Table D-1 provides the predicted tide tables for October, November and December 1978 for the San Diego area. The tidal difference and correction to be made on the predicted tidal curve for the Torrey Pines area is provided in Table D-2.

SAN OIEGO, CALIFORNIA, 1978

TIMES AND HEIGHTS OF HIGH AND LOW WATERS

		ОСТ	OBER					NOV	EMBER					DEC	EMBER		
DAT	TIME h.m.	HT.	DAY	TIME h.m.	HT.	DAY	TIME h.m.	HT.	DAY	TIME	HT.	DAY	TIME h.m.	HT.	DAY	TIME	HT.
SU SU	0219 0830 1439 2043	0.4 5.8 0.5 5.6	16 M	0238 0851 1521 2130	0.5 6.7 -0.5 5.3	1 W	0240 0853 1541 2155	1.2 6.7 -0.7 4.7	16 TH	0312 0925 1627 2249	1.8 6.5 -0.5 4.2	1 F	0257 0913 1617 2240	1.5 7.2 -1.4 4.5	16 SA	0325 0934 1643 2312	2.1 6.2 -0.5 4.0
2 N	0245 0856 1511 2118	0.6 6.0 0.3 5.4	17 TU	0310 0924 1603 2212	0.9 6.6 -0.4 4.9	Z TH	0313 0927 1623 2243	1.4 6.7 -0.7 4.5	17 F	0341 0953 1705 2338	2.1 6.1 -0.3 3.9	SA SA	0340 0956 1704 2336	1.8 7.0 -1.3 4.4	17 SU	0357 1004 1717 2354	2.3 5.9 -0.3 4.0
TU	0313 0922 1550 2157	0.8 6.1 0.2 5.1	18	0342 0956 1642 2258	1.4 6.4 -0.2 4.5	3 F	0351 1006 1712 2339	1.8 6.6 -0.6 4.2	18 SA	0414 1025 1747	2.5 5.8 0.1	SU SU	0433 1043 1755	2.0 6.6 -1.0	18 M	0436 1038 1752	2.5 5.5 0.1
4 W	0341 0953 1632 2241	1.1 6.2 0.2 4.7	19 TH	0413 1027 1727 2352	1.9 6.0 0.1 4.0	SA	0433 1051 1811	2.1 6.3 -0.4	19 SU	0027 0451 1102 1833	3.8 2.8 5.3 0.4	4 H	0037 0531 1139 1853	4.4 2.3 6.0 -0.6	19 TU	0039 0518 1113 1831	3.9 2.7 5.0 0.4
5 TH	0411 1030 1720 2,334	1.5 6.1 0.3 4.2	20 F	0445 1102 1819	2.3 5.6 0.5	SU SU	0050 0533 1148 1917	4.0 2.5 5.8 -0.1	20 M	0138 0542 1142 1927	3.7 3.1 4.8 0.7	5 TU	0141 0653 1245 1953	4.5 2.4 5.3 -0.1	20 W	0128 0619 1155 1913	4.0 2.9 4.5 0.8
6 F	0449 1110 1820	2.0 5.9 0.4	21 SA	0056 0523 1142 1919	3.7 2.8 .5.1 0.8	6 M	0215 0656 1300 2028	4.1 2.8 5.3 0.1	21 TU	0255 0712 1245 2030	3.8 3.2 4.3 0.9	6 W	0253 0831 1407 2057	4.8 2.3 4.7 0.3	21 TH	0224 0749 1256 2001	4.1 2.9 3.9 1.1
SA	0045 0534 1203 1935	3.8 2.4 5.6 0.5	2 2 SU	0234 0623 1238 2035	3.6 3.2 4.7 1.0	7	0335 0846 1433 2141	4.4 2.7 5.0 0.2	2 2 W	0401 0915 1415 2129	4.1 3.1 3.9 1.1	7 TH	0355 1007 1541 2159	5.1 1.8 4.3 0.6	22 F	0320 0938 1427 2100	4.4 2.6 3.5 1.4
SU	0222 0650 1319 2058	3.7 2.8 5.4 0.5	23 N	0418 0830 1404 2153	3.7 3.3 4.3 1.1	8	0435 1023 1602 2242	4.9 2.2 4.8 0.2	23 TH	0446 1044 1551 2223	4.4 2.6 3.8 1.1	8 F	0448 1124 1706 2258	5.6 1.1 4.2 0.9	23 SA	0412 1058 1615 2159	4.7 2.0 3.3 1.5
9 M	0403 0844 1452 2218	4.0 2.9 5.2 0.3	24 TU	0514 1021 1541 2250	4.1 3.1 4.3 1.0	9 TH	0527 1132 1719 2334	5.4 1.4 4.9 0.3	24 F	0521 1137 1705 2308	4.8 2.0 3.9 1.2	SA	0537 1219 1817 2350	6.0 0.4 4.2 1.1	24 SU	0455 1153 1737 2255	5.2 1.2 3.5 1.6
10 TU	0509 1024 1621 2317	4.4 2.5 5.4 0.0		0546 1124 1653 2335	4.4 2.6 4.4 0.8	10 F	0605 1224 1821	5.9 0.7 5.0	25 SA	0550 1219 1804 2350	5.3 1.3 4.1 1.2	10 SU	0617 1308 1913	6.4 -0.1 4.3	25 M	0537 1238 1838 2343	5.7 0.4 3.7 1.6
11 W	0556 1134 1730	5.0 1.8 5.7	26 TH	0614 1206 1749	4.8 2.0 4.6	11 SA	0020 0643 1313 1915	0.4 6.3 0.0 5.0	26 SU	0618 1257 1854	5.7 0.6 4.3	11 H	0033 0654 1350 2002	1.3 6.6 -0.6 4.3	26 TU	0614 1318 1929	6.3 -0.3 4.0
1 2 TH	0006 0634 1230 1829	-D.2 5.6 1.1 5.9	27 F	0009 0636 1243 1834	0.8 5.2 1.4 4.8	1 2 SU	0059 0719 1355 2000	0.6 6.7 -0.4 5.0	27 M	0026 0649 1333 1939	1.2 6.2 -0.1 4.4	12 TU	0111 0731 1429 2044	1.4 6.7 -0.8 4.3	27 W	0033 0654 1400 2015	1.6 6.8 -1.0 4.3
113 F	0051 0710 1315 1918	-0.2 6.0 0.4 6.0	28 SA	0040 0702 1317 1915	0.7 5.6 0.8 4.9	13 M	0134 0751 1434 2045	0.8 6.8 -0.7 4.9	28 TU	0102 0721 1412 2022	1.2 6.6 -0.6 4.5	13 W	0147 0803 1504 2123	1.6 6.7 -0.9 4.3	28 TH	0118 0736 1439 2101	1.5 7.2 -1.5 4.5
14 SA	0128 0745 1400 2005	-0.1 6.4 -0.1 5.9	29 SU	0109 0726 1351 1952	0.7 6.0 0.3 5.0	14 TU	0209 0822 1513 2126	1.1 6.8 -0.8 4.7	29 W	0136 0755 1452 2108	1.3 7.0 -1.1 4.6	14 TH	0220 0831 1536 2158	1.8 6.6 -0.9 4.2	29 F	0203 0818 1521 2143	1.4 7.4 -1.7 4.7
15 SU	0206 0817 1441 2049	0.1 6.7 -0.4 5.7	30 M	0137 0753 1424 2032	0.8 6.3 -0.1 5.0	15	0240 0853 1548 2209	1.5 6.7 -0.7 4.4	30 TH	0216 0831 1532 2154	1.4 7.2 -1.3 4.6	15 F	0254 0903 1611 2237	1.9 6.5 -0.7 4.1	30 SA	0248 0902 1604 2227	1.4 7.4 -1.8 4.8
			31 TU	0209 0823 1501 2111	1.0 6.5 -0.5 4.9										31 SU	0337 0949 1649 2315	1.4 7.2 -1.6 4.9

TIME MERIDIAN 120° W. 0000 IS MIDNIGHT. 1200 IS NOON. HEIGHTS ARE RECKONED FROM THE DATUM OF SOUNDINGS ON CHARTS OF THE LOCALITY WHICH IS MEAN LOWER LOW WATER.

TIDAL DIFFERENCES AND OTHER CONSTANTS

	POS	HOIT				DIF	FERE	NCES		RAN	IGES	
PLACE	I I				Tim	10		Hei	ight			Meon
	Lot.	1	_					High water	Low	Mean	Spring	
CALIFORNIA	• /		'	A.	19k.	A.	m.	feet	feet	foet	foet	feet
Point LomaSan Diego, Quarantine StationSAN DIEGO (Broadway)	32 42	117	14	-0	07	-0	02	0.96	*0.96	3.9	5.6-	2.8
National City, San Diego Bay Quivira Basin, Mission Bay Crown Point, Mission Bay La Jolla (Scripps Institution Wharf)	32 40 32 46 32 47	117 (117 :	07 14 14	+0	01 02 06	+00+0	06 00 12	+().2 •0.95 •0.96	0.0 *0.95 *0.96	4.3 3.8 3.9	5.9 5.4 5.5	3.0
SSNOCL	CALIFORNIA Doint Loma an Diego, Quarantine Station AN DIEGO (Broadway) betional City, San Diego Bay uivira Basin, Mission Bay crown Point, Mission Bay	CALIFORNIA CALIFORNIA Coint Loma	CALIFORNIA CALIFORNIA Coint Loma	CALIFORNIA CALIFO	CALIFORNIA CALIFO	CALIFORNIA CALIFO	CALIFORNIA CALIFO	Lot. Long. High water Low water W. W. W. W. W. W. W. W	Lot. Long. W. W. Water w	Lot. N. W. High water water water water water water water water feet CALIFORNIA CALIFORNIA CALIFORNIA CALIFORNIA CALIFORNIA 32 40 117 14 -0 12 -0 06 *0.92 *0.96 *	Lot. N. W. High Low water feet feet feet water feet feet feet standard feet water water water water water water water feet feet feet water feet feet feet water feet feet feet feet water feet feet feet feet feet water feet feet feet feet feet feet feet f	Lot. Long. W. W. High water feet feet feet call for the control of the control of the control of the call feet water water water water water feet feet feet feet call feet call feet call feet feet feet feet feet call

"Ratlo .-

tfor places on the Caribbean Sea and Gulf of Mexico, see Tide Tables, East Coast of North and-South America.

\$The bore in the Colorado River above Philips Point is reported to have a height of severalfeet at times of large tides.

¹Tide is chiefly diurnal.

APPENDIX E

WEATHER OBSERVATIONS

Weather observations were taken at Lindbergh Field (San Diego International Airport) by the National Weather Service. Temperature, wind, and visibility measurements are provided at 3-hour intervals, precipitation measurements at hourly intervals, and daily and monthly weather statistics are provided for the months of November and December 1978.

The approximate distance between Lindbergh Field and Torrey Pines Beach is 12 miles.

NOVEMBER 1978 SAN DIEGO. CALIFORNIA NATIONAL WEATHER SERVICE OFC

1 Prepare Reast T 11 1 ()

Local Climatological Data

MONTHLY SUMMARY

CREMERORA

NOVEMB

ER

9

78

AN

0

m GO

CAL

IFORN

LATTITUDE 32 44 'N LONGTTUDE 117 10 'W ELEVATION LONGUND! STANDARD TIME USED: PACIFIC BASE 850 OCCURRENCE TEMPERATURE "F HEATING ISEASON BEGINS MITH JULY! F FOO
2 MERTY FOO
3 PRINTERSTORM
4 FCE PELLETS
5 MB IL
6 GLAPE
7 DUSTSTORM
9 NORE, MARE
9 NORE 34000 SPEED HRTER RESULTANT SPEED M.P.H. 1%. PERCENT OF POSSIBLE SUMPLISE TO SUMSET DEPARTURE FROM MORMAL AVERAGE DEM POINT COOL ING 156 EQUIYA ICE RESULTANT MIDNIGHT 28 /EE! #.9.L. AVERAGE RYERACE LENT PELLET 0441 pr. DATE Įų. 1 12 13 14 15
0 30.11 32 4.3 6.3
0 30.11 32 4.3 6.3
0 30.11 32 2.6 7.1
0 30.08 31 5.5 6.0
0 20.08 12 5.7 4.9
0 30.01 32 4.7 5.6
0 30.01 32 4.7 5.6
0 30.02 33 6.4 7.5
0 20.01 17 9.0 10.4
0 20.71 20 11.6 14.2
0 30.04 28 3.2 6.2
0 30.04 28 3.2 6.2
0 30.09 33 4.4 6.8
0 30.15 31 3.5 4.9
0 30.09 33 4.4 6.8
0 30.15 31 3.5 4.9
0 30.09 33 4.4 6.8
0 30.09 33 4.4 6.8
0 30.09 33 4.4 6.8
0 30.09 33 4.4 6.8
0 30.09 33 4.4 6.8
0 30.09 33 4.4 6.8
0 30.09 33 4.4 6.8
0 30.09 33 4.4 6.8
0 30.09 33 4.4 6.8
0 30.09 33 4.4 6.8
0 30.09 33 4.4 6.8
0 30.09 33 4.4 6.8
0 30.09 33 4.7 6.8
0 20.99 31 6.9 10.6
0 20.99 31 7.7 6.8
0 20.99 31 7.7 6.8
0 20.99 31 7.7 6.8
0 20.99 31 7.7 6.8
0 20.99 31 7.7 6.8
0 20.99 31 7.7 6.8
0 20.99 31 7.7 6.8
0 20.99 31 7.7 6.8
0 20.99 31 7.7 6.8
0 20.99 32 7.7 6.8
0 20.99 31 7.7 6.8
0 20.99 31 7.7 6.8
0 20.99 31 7.7 6.8
0 30.09 32 3.2 6.3
0 20.99 35 7.7 6.8
0 30.99 35 7.7 6.8
0 30.99 35 7.7 6.8
0 30.99 35 7.7 6.8
0 30.99 35 7.7 6.8
0 30.99 35 7.7 6.8
0 30.99 35 7.7 6.8
0 30.99 35 7.7 6.8 70 78 11 12 69 70 74 00000 86 90 100 96 32 76 94 93 2 0 70 0 52 100 79 70 74 76 74 69 209 466 600 604 10 0 .10 .50 .01 .35 .15 0 0 0 0 10 17 20 26 17 7 16 14 11 25 9 11 12 17 8 140 15 2 10 11 12 13 14 15 16 17 18 20 21 22 23 24 29 26 27 26 29 30 69 61 63 62 64 66 68 67 73 65 66 66 67 70 65 66 66 67 70 70 58 54 53 54 53 49 49 50 10 6 0 0 1 0 4 6 9 10 4 9 5 4 3 5 6 4 1 1 329 629 626 516 625 401 399 131 476 130 379 435 550 611 507 100 64 64 34 31 77 21 62 71 91 100 63 100 10 51 58 58 57 58 57 58 57 58 50 48 49 51 20 21 22 23 24 25 28 27 29 30 2.09 DEP. -1018L 2 12369 FOR TOTAL FOR THE MONT 0 29.99 27 1.8 7.1 TOTAL | 101A | 101A | 101A | 100 | 1 NUMBER OF CAYS
PRECIPITATION
5.01 INCN
\$NON : ICE PELLETS
1.0 INCN
THUNDERSTORMS 2049 1549 Avg. avg. avg. oep. 60-3 55.0 61.7 Q.6 26 SH_ 10002 88 4.5 4.6

NORE OBSERVATIONS PER ONY AT 3-MOUR INTERVALS.
FASTEST MILE WIND SPEEDS ARE FASTEST OBSERVED
ONE-ALMUTE VALUES WHEN DIRECTIONS ARE IN TENS
OF DEGREES, THE / WITH THE DIRECTION INDICATES
PEAR OUST SPEED.

O PRECIPIATION SHOW, ICE PELLES

2 52 19-11

PARTLY CLOUDY & CLOUDY &

CHANGES IN SUMMER DATE WILL BE CHARECTED AND CHANGES IN SUMMER DATE WILL BE ANNOTHED IN THE ANNUAL SUMMER

SUMMARY BY HOURS

CREATEST DEPTH ON GROWNO OF SMON.

		n	YE	RAC	ES				HO	
	OK.		TEMP	ERAT	URE	24	0			
1.18	BAG	SURE N.		-	-	NE TY	PEE.	100		ı
HOUR AL TI	TEM	Der 1/5 mm		- 0	-4	101		EC T	SPEED M.P.H	ı
100	SK	STA	B	MET	DE	EL I	IND M.	DIREC	S. H	
-		-	-		-	0. T	-	-		ı
01	5	30.00	59	55	52	79	8.3	14	1.1	П
04	5	29.99	57	53	50	79	5.2	05	.6	ı
07	5	30.01	58	52	49	77	5.4	06	1.5	п
10	4	30.03	63	56	51	65	8.7	22	2.7	ı
13	4	29.97	67	59	52	59	11.2	27	7.5	ı
16	4	29.96	66	59	54	68	10.7	28	7.4	
19	4	29.98	62	58	54	75	6.0	27	.7	ı
22	5	30.00	60	55	53	78	5.7	09	.8	

HOURLY PRECIPITATION CHATER EQUIVALENT IN INCHEST

-			a.	#, MOUI	ENDIN	RT.		-	500	-	-	Acres 1	354	-	P. H	MOUR.	ENDING	91	200	447			-
	_ 2	3	4	5_	9	7	8	9	10	н	12_		2_	3	4	5_	6	7	8	9_	10	11	12
.13	.04		r . 0	1 .04	.06	No. of Persons	.05	.01 T	.03	T	T T	T .06	.02 T	.02	.01 T	Т	.02	T .03		.02		.01	.02 T
					.01										т	.12	.27	Т	т	.05	T	T	T
.02 T	.03	Т	Т	.01		. 15	.02	Т	.08	.06	Т									H			
																				ľ	-4	H	

SUBSCRIPTION PRICE: 82-55 PER TEAR INCLUDING ANNUAL SUMMARY. FOREIGN HAILING 81-86 EXTRA. SINGLE COPY: 20 CENTS FOR MONTHLY OR ANNUAL ISSUE. THERE IS A MINIMUM CHARGE OF 82-00 FOR EACH ORDER OF SHELF-STOCKED ISSUES OF PUBLICATIONS. MAKE CHECKS PAYABLE TO DEPARTMENT OF COMMERCE. NOAD. SEND PAYMENTS. ORDERS. AND INDUIRIES TO MATIONAL CLIMATIC CENTER. FEDERAL BUILDING. ASHEVILLE. NORTH CAROLINA 28801.

| CERTIFY THAT THIS IS AN OFFICIAL PUBLICATION OF THE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION. AND IS COMPILEO FROM RECORDS ON FILE AT THE NATIONAL CLIMATIC CENTER. ASMEVILLE. NORTH CAROLINA 28801.

NATIONAL OCEAN(C AND / ENVIRONMENTAL DATA AND ATMOSPHERIC ADMINISTRATION / INFORMATION SERVICE

B. mitelell DIRECTOR . NATIONAL CLIMATIC CENTER

A U U U V V V V V V V V V V V V V V V V	OBSERV		3-HOUR INT	2 g = 1151 811,111	HIND STATE OF THE
0: 9 25 10 04 4 UNL 10 07 4 UNL 12 10 5 UNL 12 10 1 UNL 25 18 0 UNL 25 19 0 UNL 19 22 4 UNL 10	62 57 53 73 00 4 60 56 53 76 07 4 7 67 59 54 63 36 6 60 50 60 50 60 50 60 50 60 50 60 60 50 60 50 50 60 50 60 50 50 50 60 60 60 60 50 60 60 60 60 60 60 60 60 60 60 60 60 60	0 OAY 03 1 CML 12 0 UML 15 0 UML 10 0 UML 10	60 56 50 76 05 4 58 54 51 76 04 3 58 54 50 75 04 3 66 59 53 63 24 7 70 61 55 59 20 12 69 56 50 51 20 10 65 59 50 70 36 65 59 59 70 36 65 59 57 036 65 12 61 57 54 70 12 6	0 UNL 12 0 UNL 12 0 UNL 12 0 UNL 12 0 UNL 12 0 UNL 6 0 UNL 6 0 UNL 10 0 UNL 15 0 UNL 15	99 95 51 75 33 3 96 92 49 772 02 3 70 98 49 46 28 5 74 62 93 59 311 11 68 98 51 55 31 5 64 98 93 56 00 0
01 0 UNL 10 0AY 04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	59 54 90 72 33 3 16 59 54 49 70 09 3 17 73 62 55 53 25 3 77 66 59 54 30 9 16 72 67 65 79 31 7 16 67 65 64 90 00 0	OAY 09 10 6 8 FN 10 10 5 M 10 10 5 M 10 10 5 M 10 250 6 M 10 250 10 250 10 7 250 10	69 63 62 90 15 6 65 62 60 64 15 7 63 60 98 64 11 6 67 63 60 76 21 80 8 70 64 60 77 21 9 66 63 60 76 21 10 4 66 63 61 61 10 4 66 63 61 64 11 4	0AY 08 4 UNL 7 10 1 0 8 F 0 UNL 5 0 UNL 7	64 62 60 87 04 4 61 60 60 97 01 3 61 602 60 97 30 4 66 63 91 64 28 5 72 65 10 68 32 9 71 65 62 73 59 7 68 65 64 67 33 4 85 62 60 64 32 3
01 0 LNL 7 00 07 07 07 07 07 07 07 07 07 07 07 0	59 57 59 87 36 4 10 60 54 49 67 36 6 73 64 56 59 32 6 76 67 61 60 28 6 72 67 64 76 32 10 67 64 63 67 33 7 10	OAY 08 O 1 0 2 F O UNL 7	63 62 62 97 02 5 96 98 96 100 36 4 96 96 94 87 32 3 71 83 58 84 31 10 72 65 61 66 33 10 71 86 63 76 22 6 66 63 62 67 16 8 63 61 60 90 16 5	OAY DG 10 7 6 M 10 9 4 M 10 10 4 M 10 10 4 M 10 17 6 M 10 17 6 M 10 17 10 M 7 16 7 9 20 7	03 61 59 67 18 7 03 60 58 64 20 6 02 59 57 64 08 7 69 60 57 75 18 12 66 63 60 76 16 12 67 63 61 61 76 63 67 63 67 76 16 12 67 63 67 76 16 12
O1 10 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	67 02 59 76 18 0 16 16 16 16 16 16 16 17 17 17 18 18 11 19 18 18 18 18 18 18 18 18 18 18 18 18 18	OAY 11 0 35 3 RM 0 36 8 0 37 14 0 36 16 0 31 19 0 38 19 0 38 19 0 38 19 0 38 19 0 38 19	50 57 55 67 23 17 96 95 52 78 23 6 90 97 47 82 34 10 90 98 61 76 16 8 90 98 53 81 22 11 80 94 48 65 23 15 59 94 40 70 22 16 94 90 75 28 12	DAY 13 10 33 13 4 UNL 13 3 UNL 13 7 39 20 5 UNL 20 3 UNL 30 7 UNL 13 6 29 10	97 90 44 62 26 11 99 49 44 7 28 8 80 49 44 11 3 80 93 40 60 19 3 80 93 40 60 19 3 82 54 40 56 30 9 82 54 47 56 28 8 98 91 44 67 00 00 0
01 5 UNI 12 04 6 25 12 07 10 29 12 10 10 25 12 13 10 26 12 16 10 26 12 16 10 19 7 22 10 18 12	94 49 45 72 13 8 6 95 90 45 69 15 5 15 59 52 46 62 18 5 16 62 54 46 56 22 7 2 62 54 46 60 20 7 6 56 95 55 84 22 8	DAY 14 8 30 10 8 36 17 8 36 12 0 29 20 2 UNL 20 0 UNL 20 0 UNL 20 0 UNL 20 0 UNL 20	57 55 54 90 12 8 57 98 53 67 03 7 90 54 52 87 05 7 98 53 46 70 9 7 98 53 46 72 04 8 63 54 46 54 34 3 63 53 43 48 27 6 66 52 46 65 28 8 90 51 48 69 04 4	OAY 15 O UNL 12 O UNL 12 O UNL 19 O UNL 10 O UNL 20 O UNL 20 O UNL 10 O UNL 20 O UNL 10	92 49 40 80 01 3 90 40 46 86 834 3 61 47 44 77 11 3 81 93 44 56 31 8 89 93 42 43 30 12 84 96 90 61 31 12 80 96 93 75 00 9
DAY 16 01 0 UNL 12 04 0 UNL 12 10 0 UNL 12 10 0 UNL 19 13 0 UNL 19 16 0 UNL 19 16 0 UNL 19 22 0 UNL 10	91 47 44 77 00 0 49 49 41 74 36 3 60 91 43 54 19 3 67 96 47 49 31 10 69 99 94 68 30 10 61 96 92 72 03 5	OAY 17 O UNL 7 O UNL 10 O UNL 10 O UNL 10 O UNL 7 O UNL 7	54 51 40 63 25 3 51 46 48 63 15 3 51 46 49 60 02 3 60 55 50 70 31 3 67 56 52 59 30 10 64 50 55 59 81 04 4 59 58 54 64 29 4	O UNL 7 0 UNL 12 0 UNL 7 0 UNL 6	98 93 90 80 11 5 53 49 46 77 34 5 51 47 44 77 26 4 62 54 46 60 23 3 73 55 36 26 31 12 70 56 46 46 31 9 63 59 56 76 02 6 66 57 58 90 00 0
01 0 UNL 8 FN 04 10 04 5 UNL 7 10 0 UNL 8 10 0 UNL 10 10 UNL 10 10 UNL 10 10 10 10 10 10 10 10 10 10 10 10 10	54 49 49 72 05 3 10 54 40 42 64 05 3 10 63 57 53 70 31 3 10 67 61 56 68 30 10 6 63 99 57 81 31 9 6 62 58 56 68 3 4 4 10	DAY 20 10 14 7 10 16 10 0 17 6 H 0 17 8 H 6 UNL 15 0 UNL 15 0 UNL 19 0 17 19 10 23 19	80 66 93 78 01 4 99 55 92 78 09 3 58 54 91 78 06 7 82 58 51 67 18 6 55 57 91 61 28 9 63 98 90 63 30 10 60 99 90 70 30 5 61 55 90 67 30 3		81 54 49 65 17 4 60 55 50 70 11 6 98 54 90 75 11 7 63 56 50 63 17 10 66 59 53 63 18 17 64 59 56 75 16 18 60 56 57 90 06 3
01 10 100 10 09 23 09 01 00 00 00 00 00 00 00 00 00 00 00 00	98 96 99 90 11 4 4 6 6 7 99 54 90 D9 3 10 6 2 97 94 75 12 7 14 4 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	5 UNL 19 4 UNL 10 0 100 19 1 UNL 29 2 UNG 49 4 UNL 25 4 UNG 15 0 33 19 RM	90 93 90 80 11 4 97 63 49 75 08 3 95 62 48 78 04 3 8 00 80 61 65 8 65 8 65 8 65 8 65 8 65 8 65 8 6	10 23 10 RM 10 23 10 RM 10 23 10 RM 10 33 10 RM 10 33 7 R 4 60 10 6 80 20 7 17 19 2 UNL 12	61 96 53 75 29 3 96 56 54 67 35 7 57 55 54 60 32 6 97 98 94 97 311 8 98 95 94 97 31 8 98 95 94 97 16 7 98 95 17 0 16 7 61 95 51 70 16 7 61 96 53 75 10 5 98 54 91 70 16 10
01 4 UNL 12 0AY 25 0A 3 UNL 12 0A 12	59 55 52 78 22 8 10 99 55 91 75 26 3 6 63 54 47 56 22 8 6 64 56 49 58 24 7 4 62 55 49 63 28 7 6 60 54 49 67 25 3 6	OAY 28 0 21 12 8M 0 17 12 8M 6 19 10 4 UNL 10 0 UNL 10 0 UNL 12 0 UNL 12	96 94 50 75 12 8 57 53 50 76 05 3 56 53 50 80 12 3 59 59 91 75 16 5 64 58 53 68 27 10 63 57 53 70 30 6 60 55 50 70 02 4 56 54 50 75 02 7	1 UNL 7	54 51 40 83 32 4 53 49 46 77 31 3 51 40 45 80 01 3 60 52 44 56 00 4 85 56 40 56 27 6 85 57 91 61 32 10 61 56 53 75 07 3 57 53 40 75 36 3
01 4 UML 10 0AY 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	61 48 41 89 03 3 3 4 40 44 39 71 32 4 10 60 50 41 50 28 5 6 6 6 53 38 33 30 11 0 66 59 49 47 31 11 6 6 1 52 44 54 03 4 0	O UNL 10 0 0 UNL 12 9 UNL 12 9 UNL 12 9 UNL 12 9 UNL 13 0 UNL 15 0 UNL 15 0 UNL 17 0 UNL 17 0 UNL 17 0 UNL 10 0 UNL 10 0 UNL 10 0 UNL 7	93 49 45 74 26 3 92 48 39 61 10 3 90 45 39 66 02 3 90 92 44 96 22 9 97 97 40 93 23 7 98 96 96 97 97 97 97 97 97 97 97 97 97 97 97 97	0 UNL 7 0 UNL 7 0 UNL 6 H	94 51 90 83 34 4 92 50 48 86 35 4 52 94 47 83 01 3 62 54 48 80 17 4 89 59 52 55 32 8 86 81 57 73 30 8 82 37 54 75 33 3 58 35 52 61 16 3
		SAL DIEGO		YERR & MONE) 78 13	

NOTES CETLING

WEATHER

MIND

MINU

OIRECTIONS ARE INOSE FROM
MICH THE MINO BLOWS. INOICATED IN TENS OF OCCRESS
FROM TALE MORTH: 1.E. 09
FOR EAST. 18 FOR SOUTH. 27
FOR MEST. EMIRY OF 00 IN
THE OIRECTION COLUMN INOICATES CALM.

SPEED IS EXPRESSED IN ANDIST MULTIPLY BY 1.15 TO CONVERT TO MILES PER HOUR.

UECEMBER 1978 SAN DIEGO. CALIFORNIA NATIONAL HEATHER SERVICE OFC LINDBERGH FIELD

1011tune 12° 44 m 10001tune 117° 10'11 million 1000000

Local Climatological Data

HONTHLY SUMMARY

RINEW TOF COMPARE

DECEMBER

9 78

AN 0 1EGO

CALIFORNI

		TEMPE	RATURE	1.		DE GAE E		MERTHER TIPES ON OPIES OF OCCURATING	9400.	PRECIPI	#D] TR1	818*10m			#1%B			SUNSHI	ME	SKY (
Daft	Max Philm	# DRING#	a yt hact	DEPARTURE FROM NORMAL	OEM POINT	HERTING ISCASON BEGINS AITH JULTI	COOL ING 158850W BEGINS milm JAN.1	1 :00 2 Men : *20 3 Men : *20 3 Men : *20 3 Men : *20 5 Men : *20 5 Men : 6 Cantt 7 DUSTSTORM 8 SMORT. Men : 9 BLOWING SHOW	On ICE ON GROUND	143.4 143.4	SHOW. ICE PELLETS IN.	FLEX. 28 FEET MARKET	RESULTANT DIR	RESULTANT SPEED N.P.M.	AVERGE SPEED R.P.H.	SPEED HIP IN	DIRECTION	MINUTES	PERCENT OF POSSIBLE		MIDNIGHT TO	DATE
1	2	1		5	6	78	78	8	9	10	11	12	13	[4	15	16	17	18	19	20	21	22
1 21 3 4 4 5 1 6 6 7 7 8 9 10 11 12 13 11 15 16 17 18 19 20 20 20 20 20 20 20 20 20 20 20 20 20	64 67 67 62 98 55 561 73 75× 70 74 72 66 63 62 61 69 63 64 64 65 61 61 61 61 63 64 64 65 63	54 521 47 47 50 42 38 38 42 50 48 46 47 54 54 48 43 44 45 44 45 44 45 45 47 47 48 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49	50 60 57 57 56 40 47 48 58 60 50 57 55 58 58 58 58 58 58 58 58 58 58 58 58	1 2 2 1 1 1 2 2 2 1 1 2 2 2 2 2 2 2 2 2	54 477 30 40 45 19 19 12 25 34 36 35 34 46 57 7 43 48 40 90 50 50 50 48 90 48	6 5 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	000000000000000000000000000000000000000	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	29.90 30.12 30.15 29.62 29.63 30.12 30.35 30.11 30.11 30.11 30.15 30.25 30.02 29.66 30.02 30.02 30.03 30.02 29.86 30.02 29.86 30.02 30.03 30.02 29.86 30.02	311 32 34 35 32 31 31 33 17 26 17 26 17 22 31 31 31 31 31 31 31 31 31 31 31 31 31	4.0 3.6 4.1 3.6 6.3 4.3 1.9 3.6 7 1.9 3.7 1.9 3.7 1.1 1.3 2.7 1.3 3.7 1.9 3.7 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	10.4 7.5 5.2 5.0 9.4 9.9 7.3 6.0 3.0 3.0 3.2 6.5 9.0 4.3 4.6 4.6 4.6 4.6 4.6 4.6 4.6 6.5 6.2	18 12 12 17 16 11 17 16 12 12 12 10 12 12 12 10 11 1 6 12 12 10 11 1 6 10 17 6 17 7 6 17 7 6 17 7 7 7 7 7 7 7 7 7	NU N	35 6007 502 117 470 605 509 502 509 601 379 439 0 104 430 600 540 569 600 540 557 707 707 707	6 999 1000 97 78 1000 97 97 93 96 1000 97 1000	10 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 21 0 0 0 6 2 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 21 3 4 51 6 7 6 9 10 11 12 13 14 15 16 17 16 19 20 21 22 23 24 27 26 27 26 30 31
	1982	1443		010		297	0	NUMBER OF ORY		2.19		30.03		2.1	5.8	28	NH	14676	FOR	147	130	
	87G. 83.9	46.5	55.2	OEP.	42	DEP.	DEP.	PRECIPITATION . OI INCH		0.46			=			DWIT	19+	18672	79	4.7	4.5	
	NUMB	ER OF DE	ITS			TOTAL	TOTAL	SNOW. ICE PEL	0	ORES	RIEST IN	1 24 HOU	RS RI	0 0076	5	DRE	ATEST	DEPTH O	N GROL	HO OF	SHOW.	
	MAX [MU			IMUM TE		399	1278	THUNDERSTORMS	0	PRECIPIE	HOITA	SH	ON.	ICE PE		101	E PELL	ETS OR	ICE AL	0 0141E		
	90 0	£ 32	2 3	2	0	O€P. -63	DEP. 554	HERYT FOG	PDBTL	Y CLOUDY	36-1	7	0					0 1				L
					- 34			- 00-mn - 101					45									

. EXTREME FOR THE MONTH - LAST OCCURRENCE IF

• EXTREME FOR THE MORTH - LAST OCCURRENCE IN MORE INAN DHE.

T TARCE ANOUNT - - ALSO ON AN ENRLIER DATE. OR DATES.

**MEAVY FOC: - VISIBILITY 1/4 MILE OR LESS.

**FLOURES FOR WIND DIRECTIONS ARE TEMS OF DEGREES CLOCKHISE FROM TRUE MORTH. OO - CALM.

ORTA IN COLS. 6 AND 12-15 ARE BASED ON 7 OR

NORE OBSERVATIONS PER DAT AT 3-MOUR INTERVALS.
FASTEST MILE MIND SPEEDS ARE FRSTEST OBSERVED
OWE-MINUTE YALLES WHEN DIRECTIONS ARE IN TENS
OF DEGREES. THE / MITH THE DIRECTION INDICATES
PEAR OLST SPEED.
ANY ERRORS DETECTED MILL BE CORRECTED AND
CHANGES IN SUMMARY DATA MILL BE MANUTATED IN
THE MANUAL SUMMARY

SUMMARY BY HOURS	
------------------	--

		- 4	y E	H A C	E S				10
HOUR TIME	SAT COVER	STAFION PRESSURE IN.	DIR OF	ERAT L. O'NO	DEM PT. BE	RELATIVE X	MIND SPEED B.P.H.	DIRECTION	SPEED M.P.M
01		30.03	51	47	41	72	4.2	35	1.6
04		30.02	49	45	39	72	3.3	31	.8
07	5	30.05	48	44	39	72	3.7	01	1.1
10	5	30.07	57	49	40	57	1 6.1	20:	1.41
13	1.5	30.01	1 62	52	41	51	9.5	28	6.6
16	5	30.00	61	53	45	59	9.4	29	7.5
19	5	30.02	57	52	46	89	5.7	34	1.6
53	-4	30.04	54	49	43	70	4.1	01	1.4

HOURLY PRECIPITATION I WATER EQUIVALENT IN INCHEST

			A. H.	NUUR	ENGINE	AT.									P. R.	HOUR	ENDING	RT					
	2	3	4	5	6	7	8	3	10		2		2	_3	0.4	5	6	7	8	9	10	11	12
										Ŋ					.03	T	.01	.04					
													HINDER			- 12.54				T	T		
.29	.12	.03	.05	.02	.05	.08	.06	.06 T	.02	.02	.12	.06	.11	.07	.02	TT		.01 T	T .11 .02 T	.01	.02 T	.05	

SUBSCRIPTION PRICE: 92.55 PER TEAR INCLUDING ANNUAL SUNMART. FOREIGN MAILING \$1.85 EXTRA. SINGLE COPTS 20 CENTS FOR MONTHLY OR ANNUAL ISSUE. THERE IS A MINIMUM CHARGE OF \$2.00 FOR EACH ORDER OF SHELF-STOCKED ISSUES OF PUBLICATIONS. MAKE CHECKS PASABLE TO DEPARTMENT OF COMMERCE, MORA. SEND PATHENTS. OPDERS. AND INDUIRIES TO MATIONAL CLIMATIC CENTER. FEDERAL BUILDING. ASMEVILLE. MORTH CARDLINA 29901.

I CEPTIFY THAT INTS IS AN OFFICIAL PUBLICATION OF THE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION. AND IS COMPILED FROM RECORDS ON FILE AT THE NATIONAL CLIMATIC CENTER. ASMEVILLE. NORTH CAROLINA 28801.

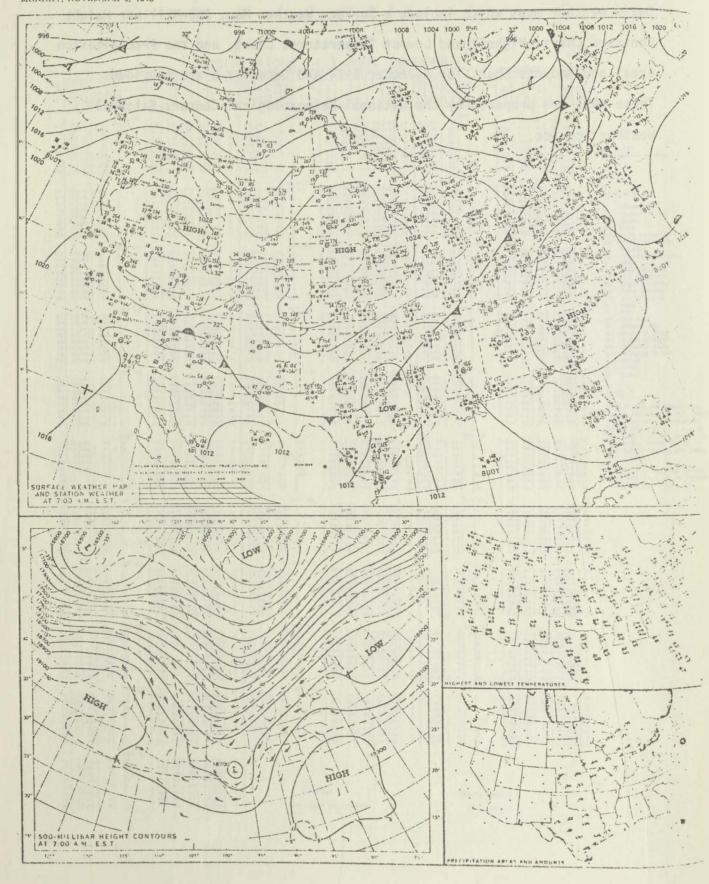
NATIONAL OCEANIC AND / ENVIRONMENTAL DATA AND ATMOSPHERIC ADMINISTRATION / IMPORMATION SERVICE

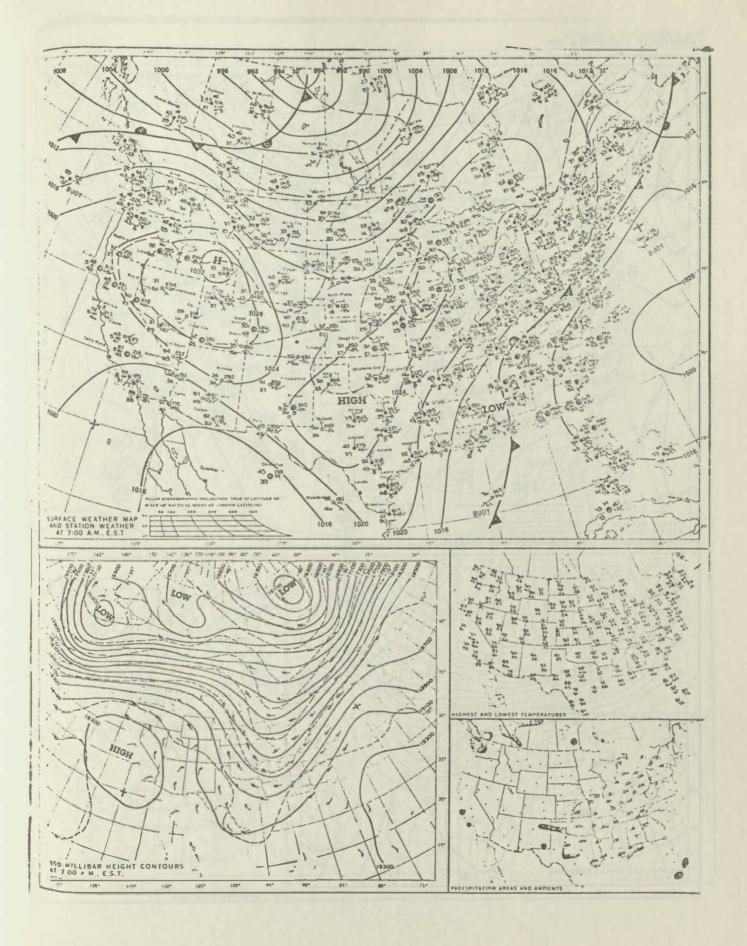
Saniel B. Mitchell DIRECTOR. MATIONAL CLIMATIC CENTER

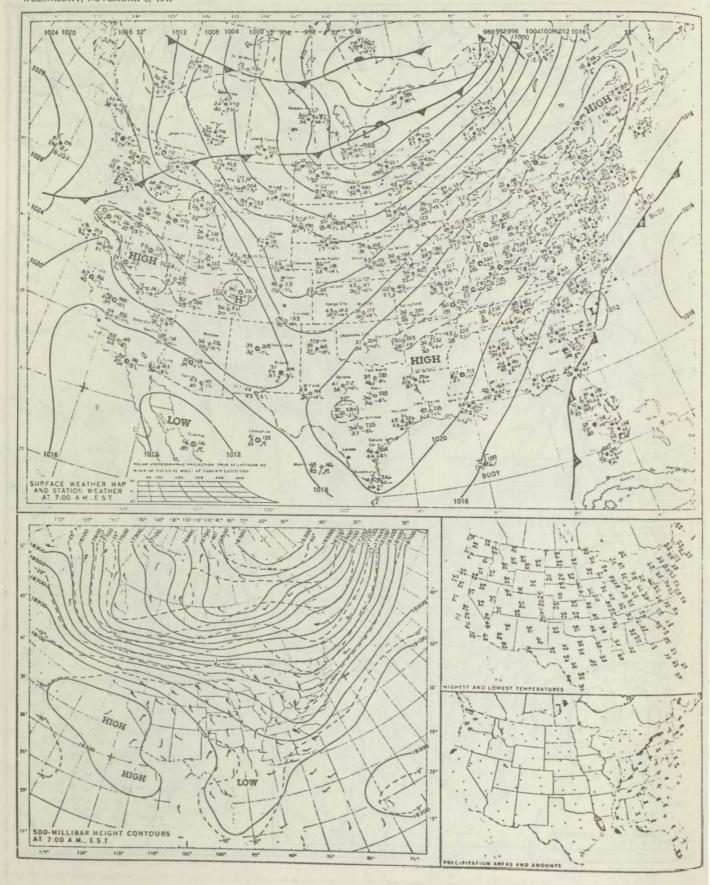
	OBSERVATIONS A	
HOURS WATER	TEMPERATURE SHIND STATE STATES	TEMPERATURE . MINO . FINAL STATE OF THE STAT
工 第7 中華 東京 田司	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OAT OI OAT OI	9A 54 62 67 14 2 9 28 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OAY 03 99 99 52 76 20 14 0 UNL 10 95 47 41 64 26 3 97 94 91 80 13 9 0 0 0 UNL 20 47 13 44 34 64 26 3 98 99 95 59 07 28 4 0 UNL 20 47 13 41 34 61 00 0 80 95 90 49 49 70 28 4 0 UNL 20 97 47 37 47 18 6 99 94 94 95 90 0 0 UNL 25 96 65 91 36 33 31 5 64 92 40 42 28 10 0 UNL 25 65 92 38 37 31 11 59 91 49 45 60 3 4 0 UNL 25 65 92 38 37 31 11 59 91 49 45 60 3 4 0 UNL 25 65 92 38 37 31 11 98 98 49 43 62 05 7 0 UNL 19 55 94 48 40 57 09 3
01 0 UML 15 04 0 UML 15 07 3 UML 25 10 0 UML 25 13 0 UML 25 16 0 UML 25 19 0 UML 19 22 0 UML 10	91 44 37 59 00 0 0 UNL 10 43 36 63 14 3 0 UNL 10 47 41 34 61 00 0 10 21 19 58 49 50 37 3 11 11 10 15 10 65 52 39 77 11 11 10 15 10 65 53 42 43 31 10 10 17 7 1 10 15 10 65 53 55 17 35 4 7 26 7 7 96 53 50 80 27 3 5 UNL 1	OAY 08 52 48 44 74 19 4 0 UNL 19 91 39 22 32 35 6 50 44 30 64 17 3 0 UNL 19 90 36 11 21 35 6 51 49 30 64 16 3 0 UNL 25 42 33 16 39 28 7 28 7 56 54 90 75 14 19 0 UNL 25 51 36 06 16 35 8 62 96 92 70 24 11 1 UNL 25 55 40 16 21 30 11 60 97 59 64 25 6 6 25 29 54 41 22 29 30 11 59 56 54 64 27 9 3 UNL 12 5 UNL 10 47 40 30 52 08 8
01 0 UML 15 0AY 07 07 07 07 07 07 07 07 07 07 07 07 07	087 08	ONV 09 43 33 12 28 12 5 0 UML 12 43 34 19 26 02 5 37 30 18 40 00 0 0 UML 19 41 33 18 40 00 0 2 38 29 17 46 31 5 5 UML 29 38 22 20 48 39 4 47 34 05 18 07 3 3 UML 29 48 35 0 2 0 18 35 4 53 40 19 26 27 7 1 UML 25 5 32 41 24 22 00 18 55 40 17 22 32 7 4 UML 25 58 40 37 46 31 13 50 35 0 45 0 4 15 38 6 3 UML 15 48 48 43 35 50 00 0
01 0 UML 12 04 0 UML 12 10 0 UML 12 10 0 UML 25 11 0 UML 25 16 1 UML 10 19 0 UML 15 19 0 UML 15	0AY 11 49 40 33 63 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S3 45 35 51 33 4 0 UM 15 15 47 42 71 34 5 51 42 51 46 00 0 7 UM 15 50 43 35 57 00 0 52 43 32 47 33 5 5 UM 20 46 43 56 53 00 0 67 53 36 21 3 10 20 20 5 5 5 0 5 67 53 36 21 3 10 10 20 5 5 5 74 53 32 22 31 7 10 UM 15 6 62 50 50 6 12 4 75 53 32 22 31 7 10 UM 15 6 62 50 50 6 12 4 76 58 52 72 15 6 8 UM 15 5 5 5 5 5 7 8 77 78 78 78 78 78
01 4 UML 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0AY 14 40 44 30 86 34 5 2 Unit 19 40 44 35 63 27 3 5 Unit 29 68 91 34 31 30 3 10 Unit 19 72 91 26 10 33 10 10 250 19 70 93 35 28 28 6 7 Unit 25 50 3 91 40 43 17 4 9 Unit 10 95 46 35 47 00 0 10 Unit 10	52 44 35 53 01 4 2 UML 10 52 44 35 53 00 0 0 0 0 0 0 0 0
01 10 UML 6 4 4 10 UML 6 10 10 UML 6 14 10 UML 6 14 10 UML 6 14 10 UML 6 14 10 10 10 10 10 10 10 10 10 10 10 10 10	52 47 42 69 35 4 10 19 4 46 45 41 77 70 0 10 9 4 46 45 41 77 70 0 10 9 4 46 45 41 77 70 0 10 9 4 46 45 45 45 45 45 45	087 18 54
01 8 250 10 0AY 19 0AY 19 0 10 17 10 10 10 10 10 10 10 10 10 10 10 10 10	0AY 20 0 46 75 24 7 0 UML 19 9 9 10 4 9 20 20 12 0 UML 19 9 11 4 9 47 86 22 5 0 UML 25 9 10 4 9 10 10 10 10 10 10 10 10 10 10 10 10 10	47 43 39 74 08 4 0 UNL 19 44 38 29 88 00 0 43 4 13 4 85 00 0 0 43 4 13 4 85 00 0 0 0 43 4 13 4 13 8 8 10 0 1 4 0 UNL 19 44 38 29 88 00 0 0 0 0 0 0 0 UNL 19 44 38 29 88 00 0 0 0 0 0 0 0 0 0 0 0 0 UNL 19 44 38 29 88 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
01 3 UM. 10 UM 29 01 10 UM 39 01 10 UM 10 10	46 42 38 74 35 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	46 46 47 93 00 0 0 10 10 15 H 53 52 91 93 05 4 46 44 42 89 27 3 10 31 1 H 52 31 51 86 03 4 46 42 23 36 01 1 4 0 UML 19
TI 10 0 0 0 7 0 0 7 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1	91 91 91 100 00 0 2 UML 2 0 F 49 49 49 48 40 101 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
01 10 25 6 M 04 10 29 6 M 07 10 40 B 10 10 W B 13 6 260 / 16 10 30 10 19 10 30 f	97 93 40 75 13 4 10 120 7 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	57 54 91 80 06 4 8 UML 7 54 92 50 86 54 3 55 55 53 50 60 09 3 6 UML 7 52 50 48 60 02 3 57 57 53 49 75 36 3 1 UML 8 48 47 48 69 02 3 50 65 54 49 70 64 0 UML 7 98 54 49 70 16 3 50 50 54 49 70 16 3 50 50 54 49 70 16 3 50 50 54 49 70 16 3 50 50 54 49 70 16 3 50 50 54 49 70 16 3 50 50 54 49 70 16 3 50 50 54 49 70 16 3 50 50 54 50 50 54 50 50
01 1 UPL 3 FM 71 10 0 0 0 7 11 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0	91 50 49 83 35 3 90 49 49 93 24 3 47 46 40 83 24 3 57 92 47 88 24 8 63 54 47 56 23 8 62 90 91 97 30 8 97 94 91 80 09 5 98 92 90 83 08 8	

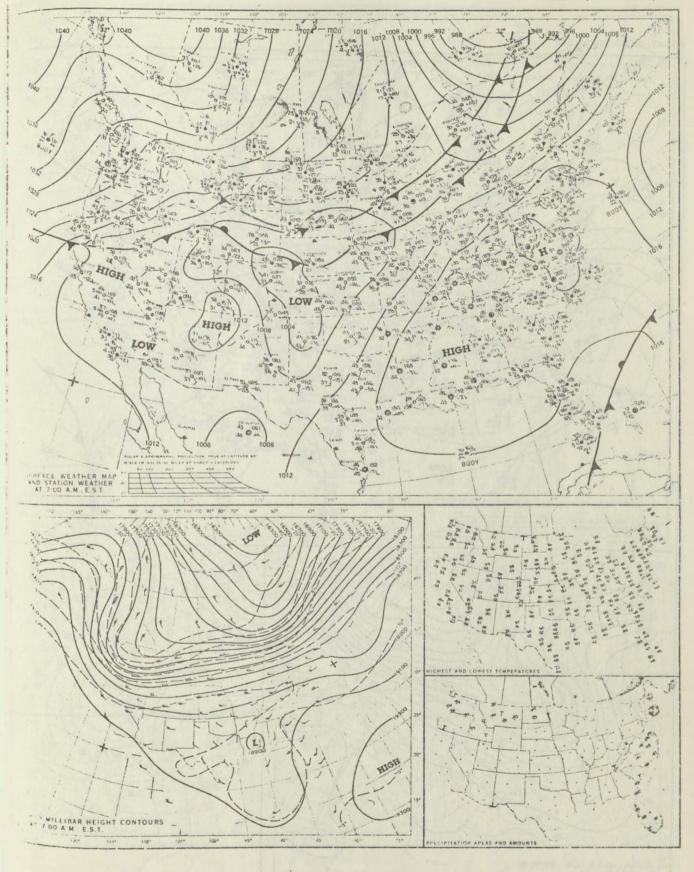
NOTES CEILING

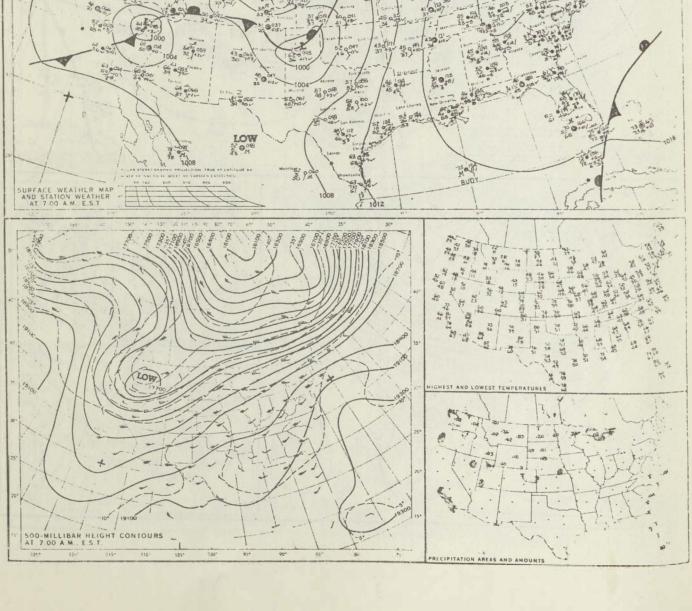
WEATHER

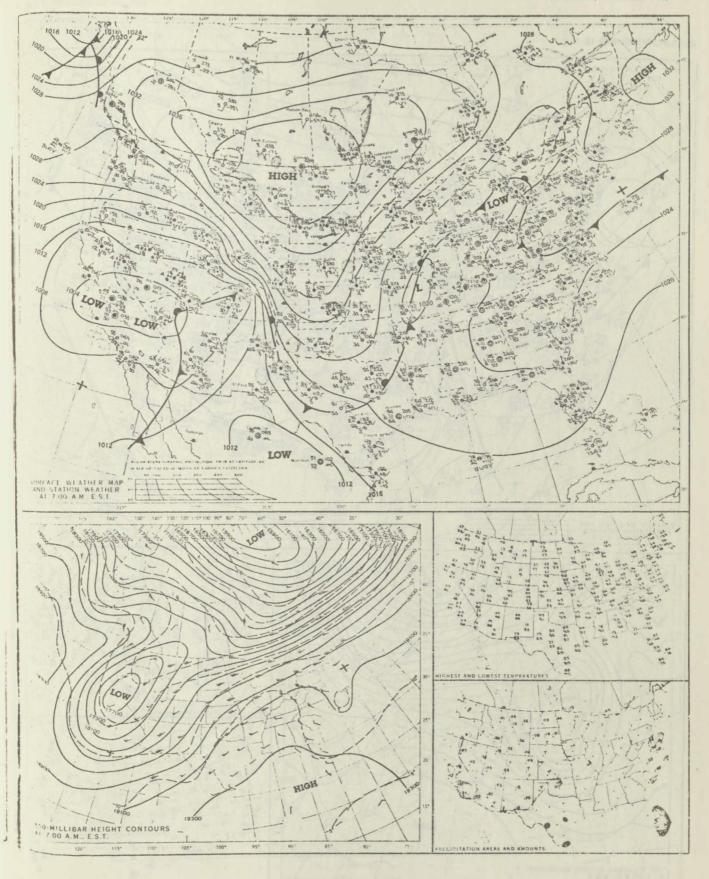

MIND

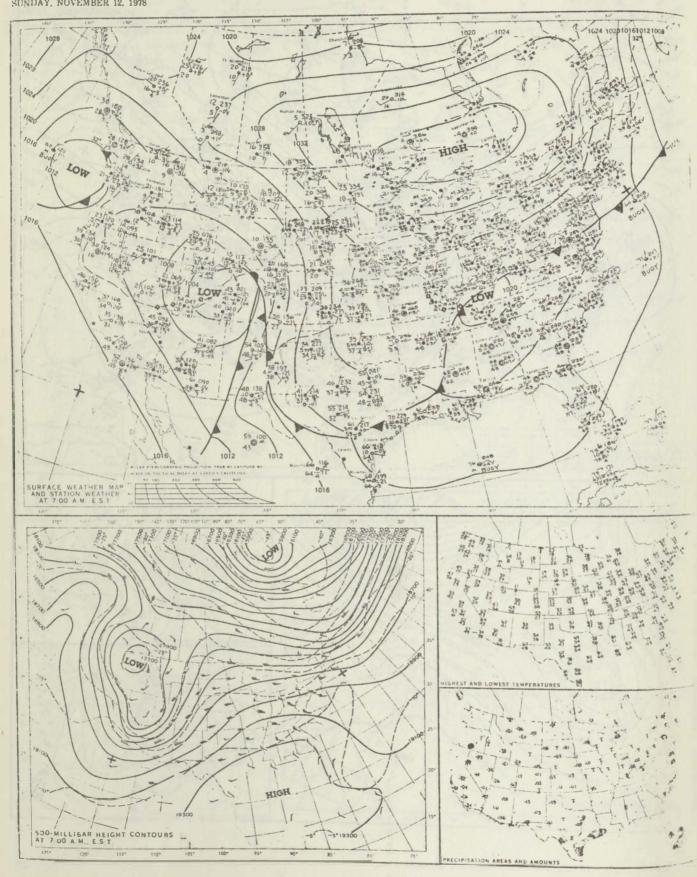

DIRECTIONS ARE TWOSE FROM MICH THE MIND BLOWS. INDI-CATED IN TEMS OF DECREES FROM TRUE MORTHS I.E. OS FOR EAST. 18 FOR SOUTH. 27 FOR MEST. ENTRY OF OD IN THE CIRECTION COLUMN (MOI-CRIES CALM.

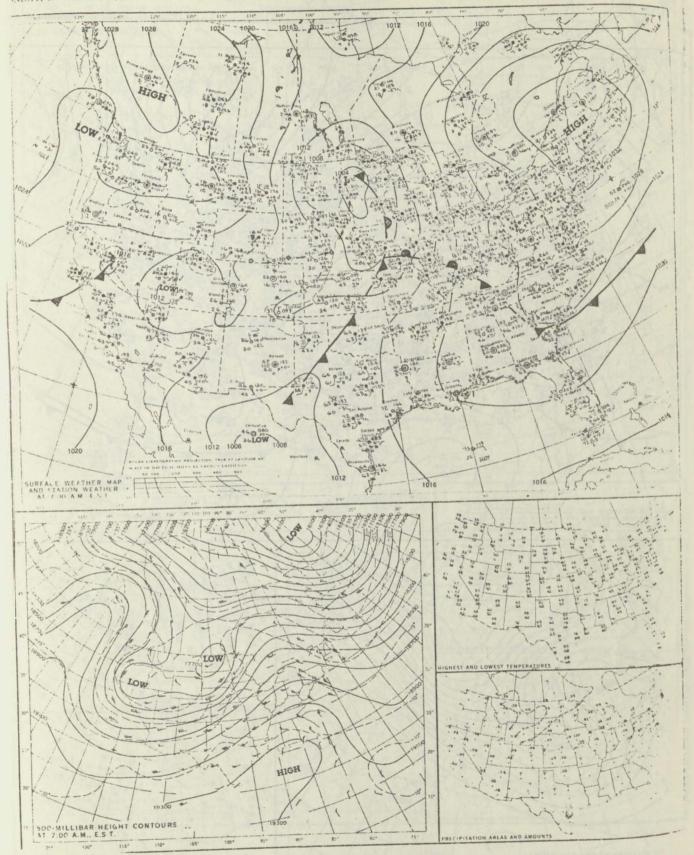

SPEED IS EXPRESSED IN ANDIS MULTIPLY BY 1.15 TO CONVERT TO MILES PER HOUR.

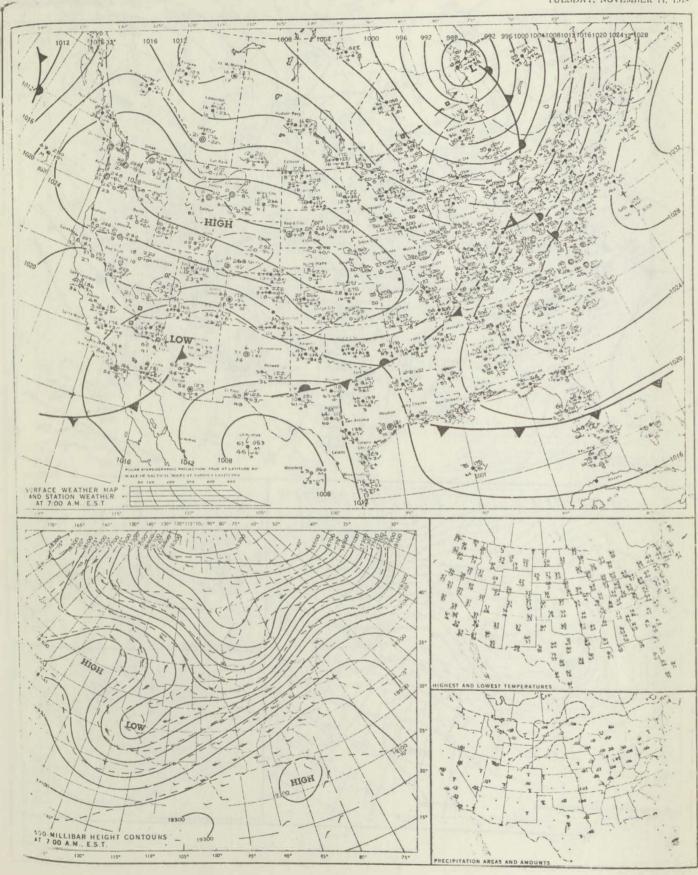

Daily weather maps which include a Surface Weather Map, 500-Millibar Height Contours Chart, Highest and Lowest Temperatures Chart, and the Precipitation Areas and Amounts Chart for November 6-24 and December 6 are provided.

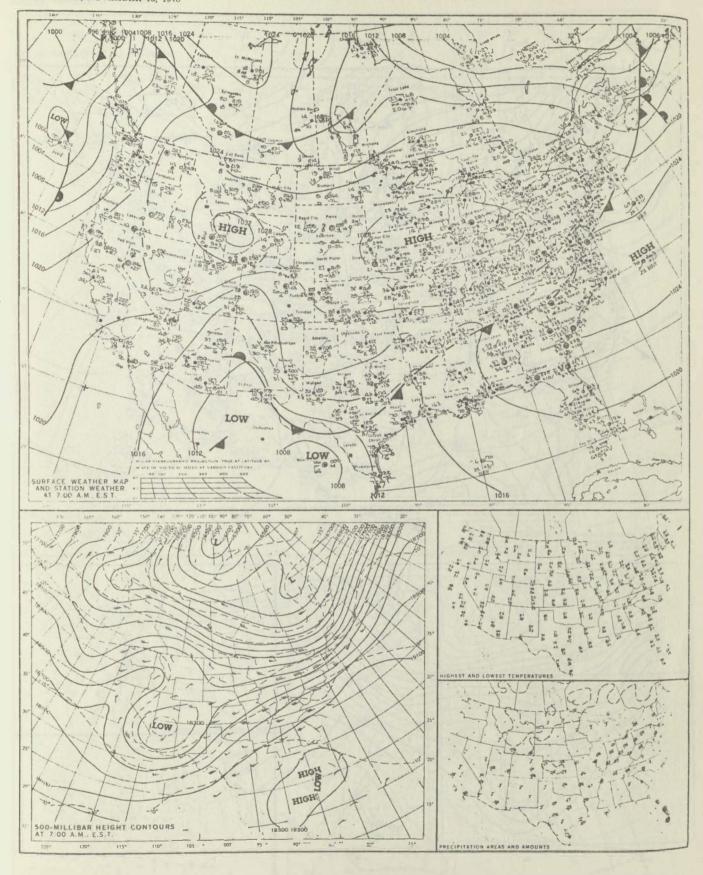

These maps are prepared by the National Meteorological Center, National Weather Service.

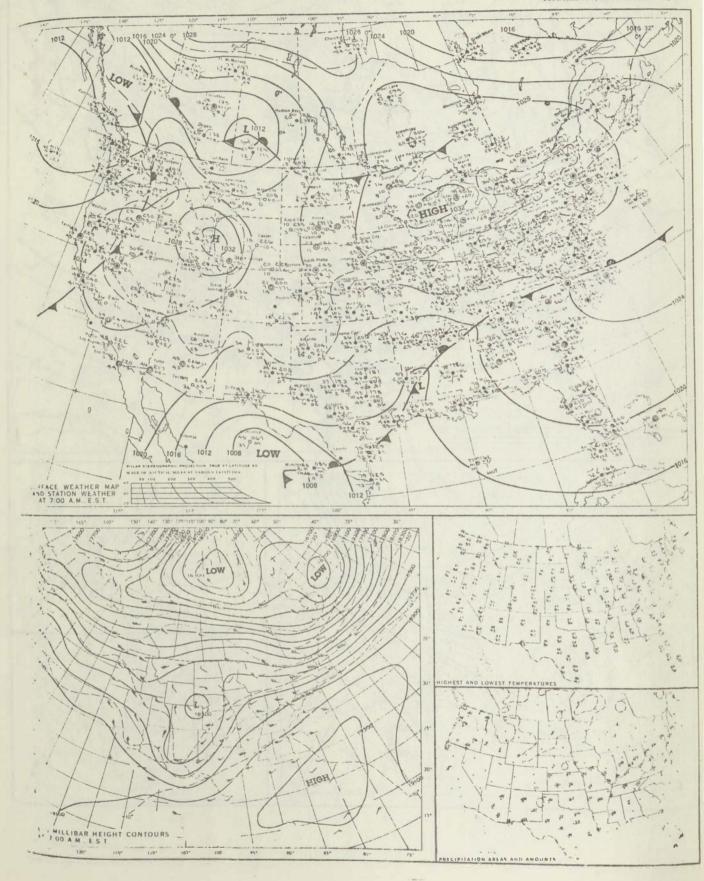


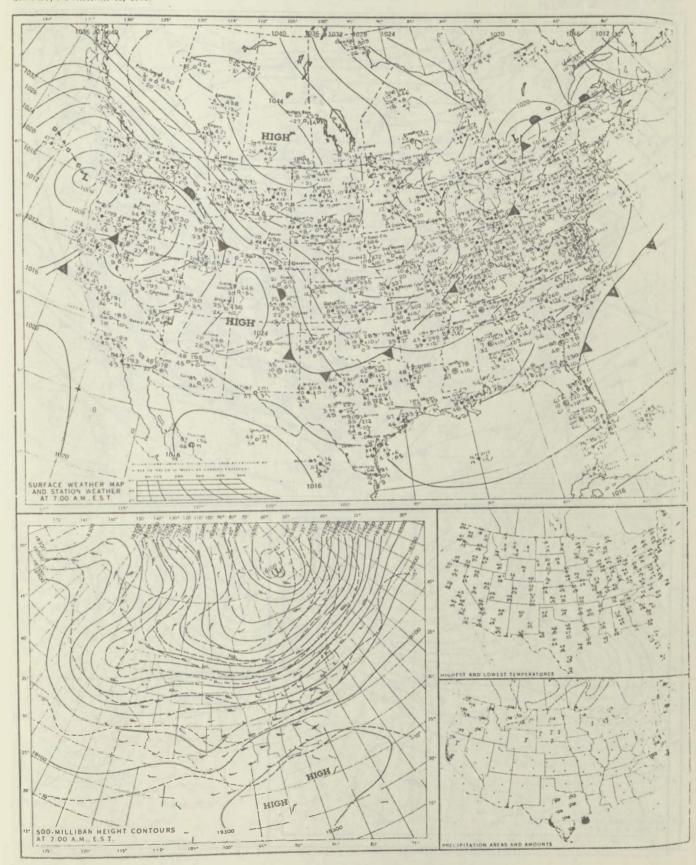


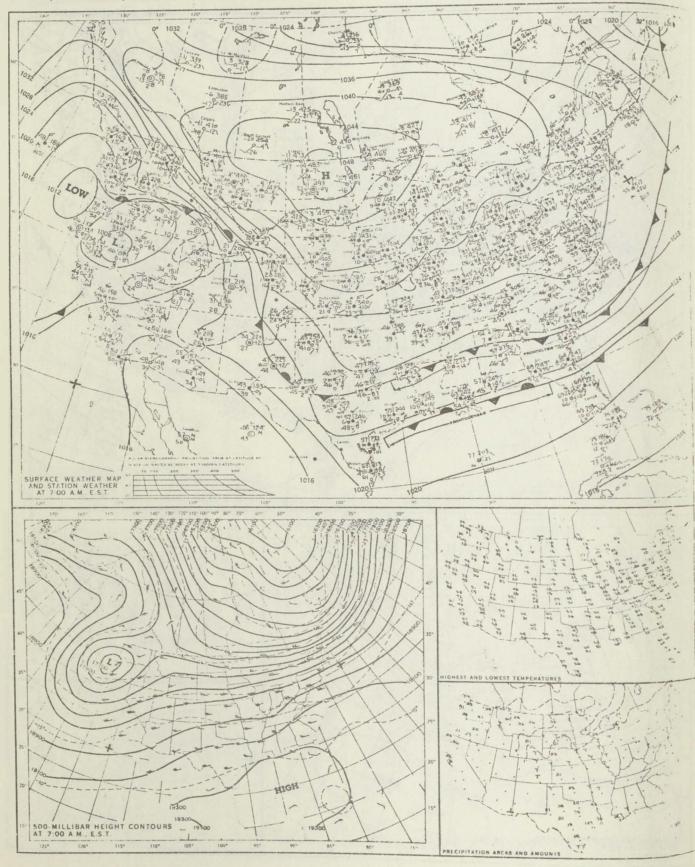


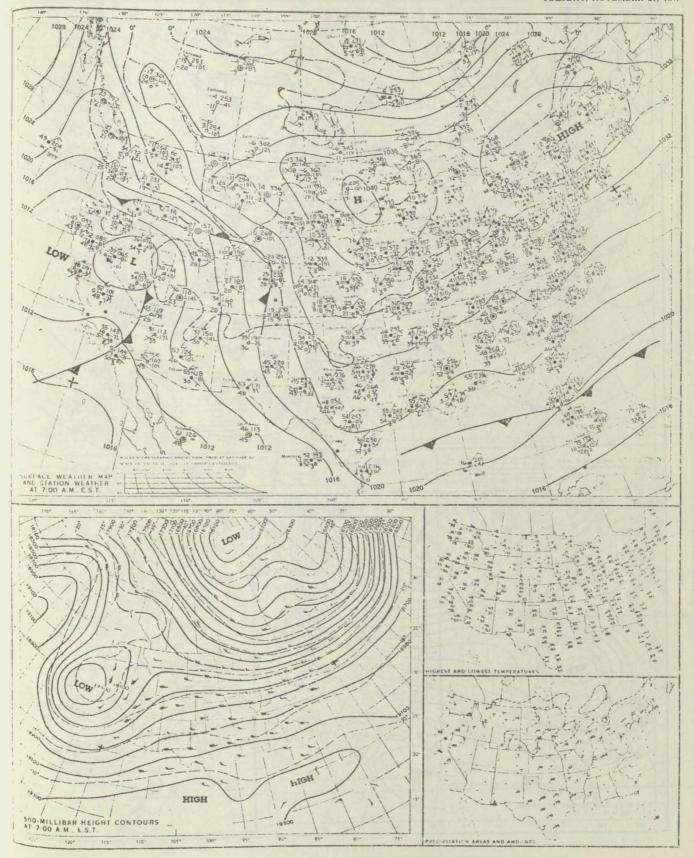


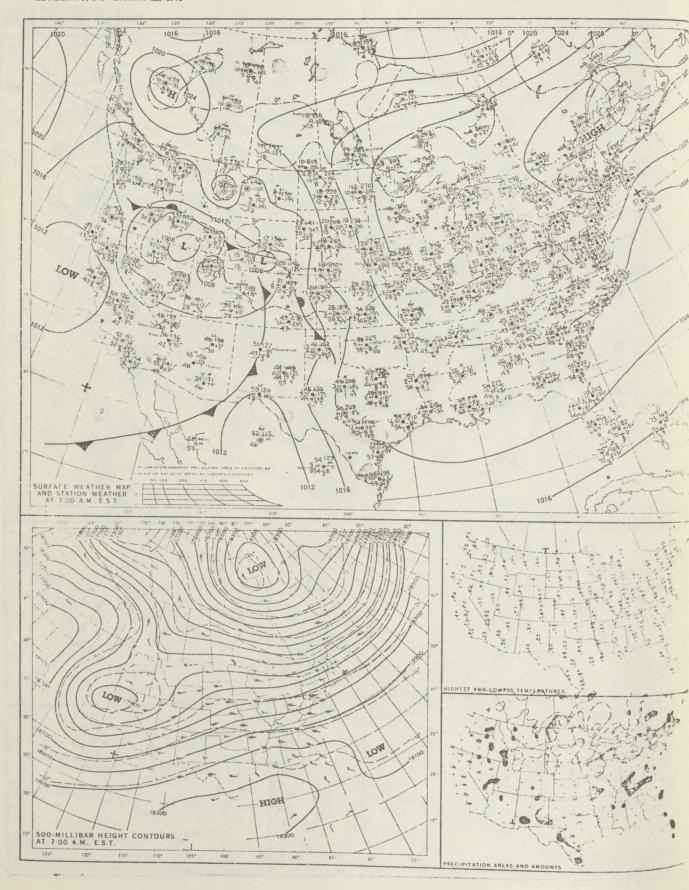


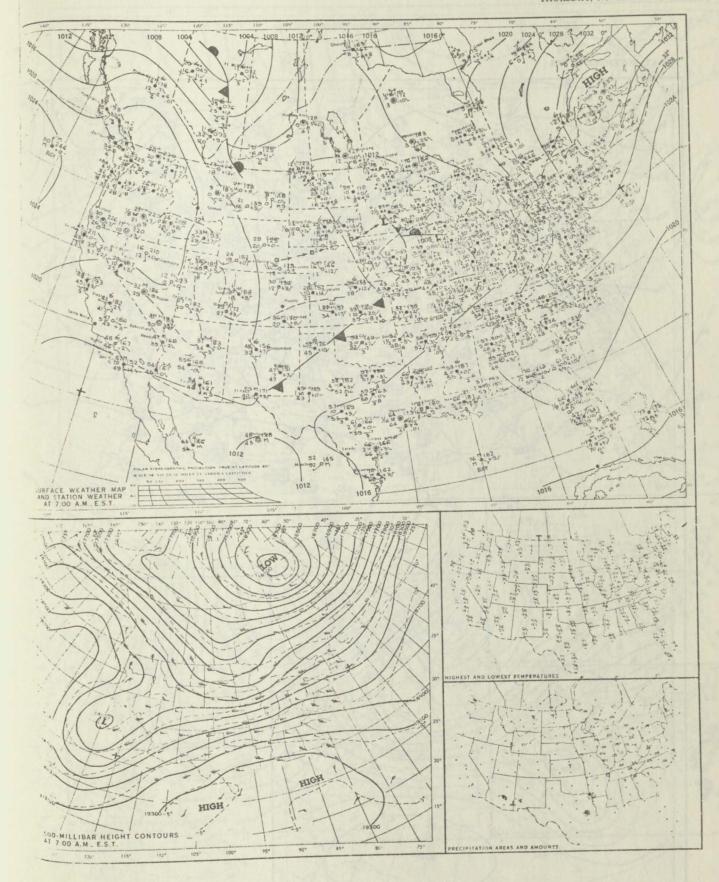


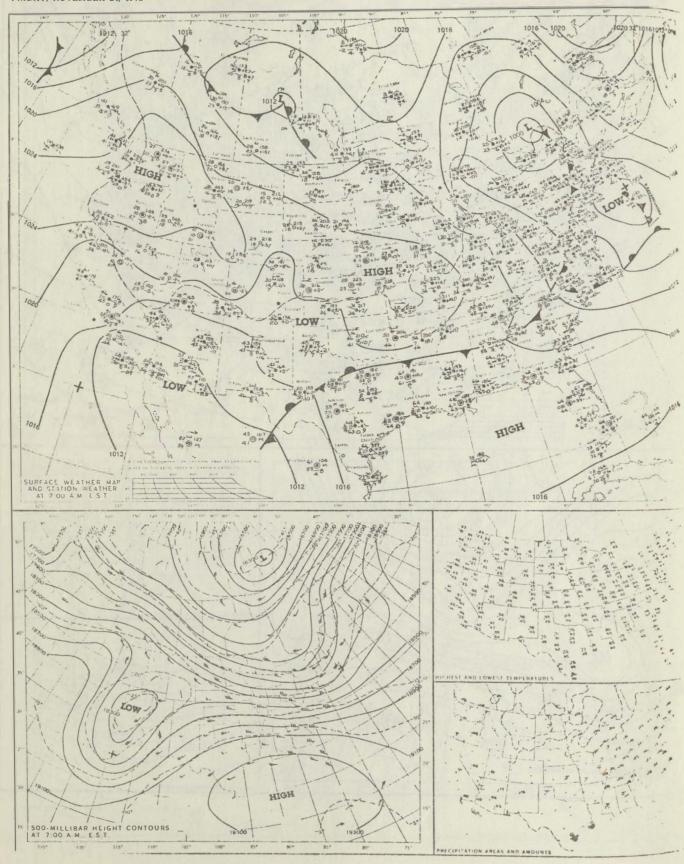


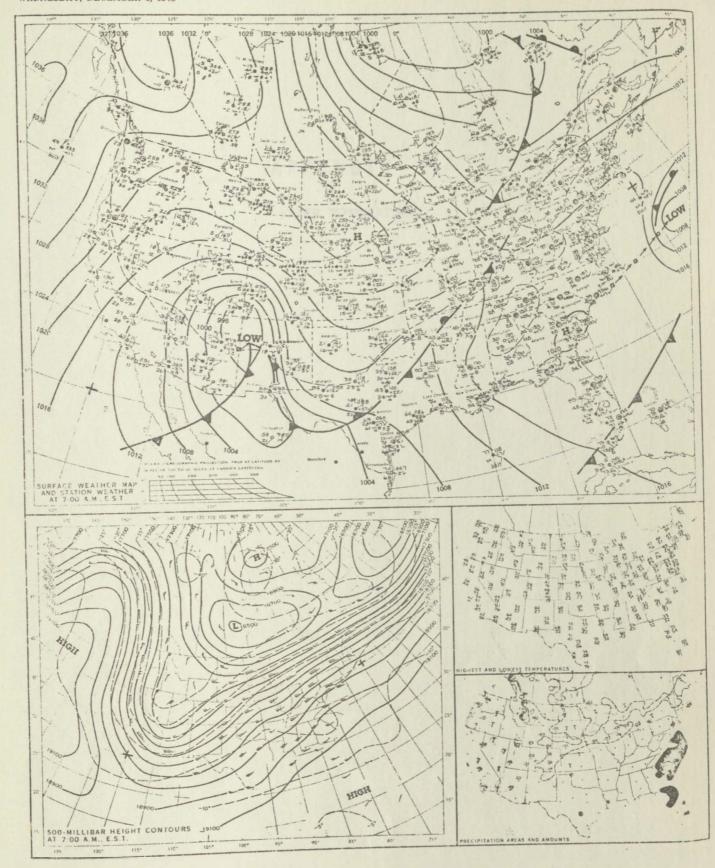




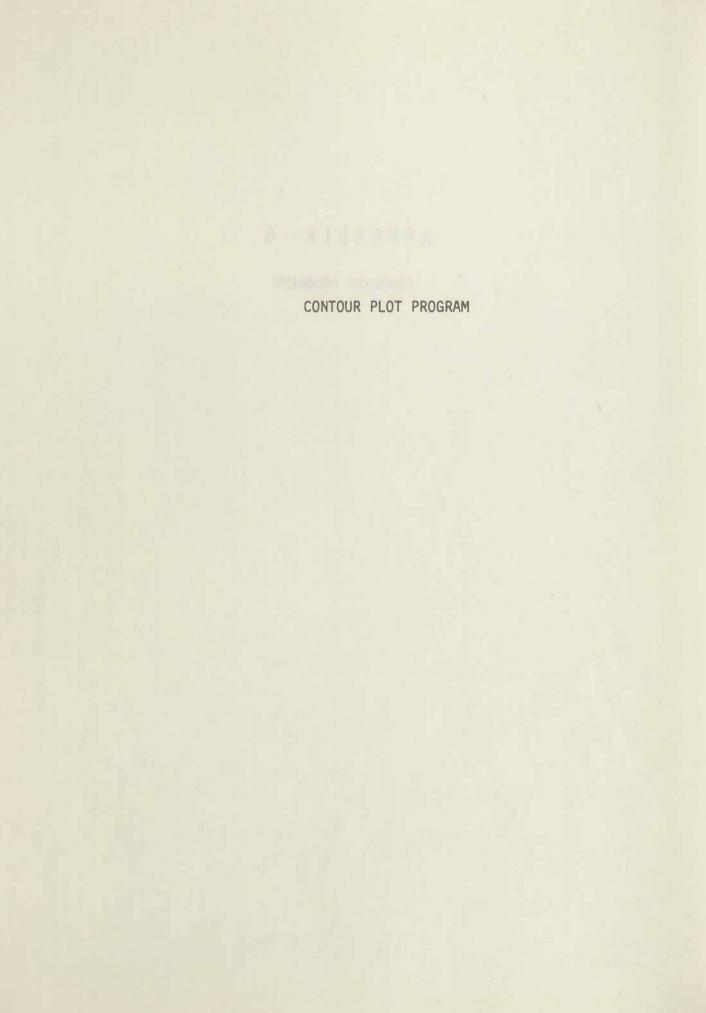








APPENDIX F

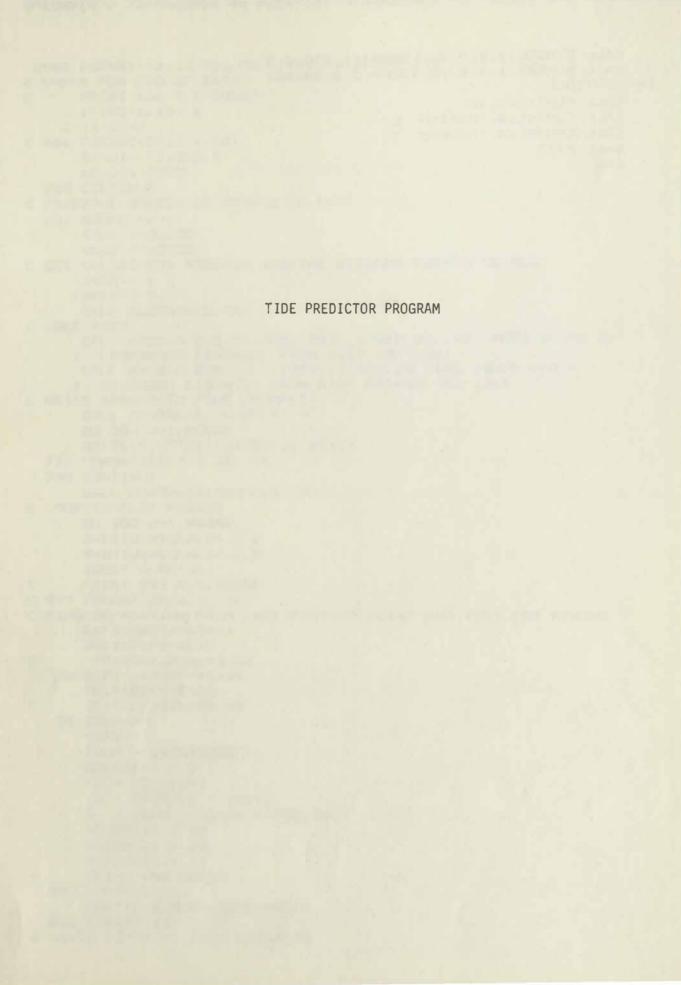

WATER TEMPERATURES

	S	CRIPPS PI	IER	SURFACE TEMPERATURE						YEAR 1978					
DAYS	Jan	FE3	MAR	APR	MAY	JUN	JUL.	AUG	SEP	OCT	NOV	DEC	ANNUAL MEAN	ANNUAL	ANNUAL
1	16.3	15.5	15.1	17.0	15.8	18.2	16.5	20.0	22.0	21.5	18.2	15.3			
2	16.3	15.5	15.2	16.4	15.1	17.7	17.6	19.3	21.6	21.9	18.4	15.0			
3	15.8	15.5	15,11	10.9	15.5	18,1	17.4	21.0	21.2	21.6	17.9	15.0			77
4	15.8	15.5	15.7	17.4	14.7	19.0	17.2	21.2 22.0	21.5	21.1	18.2	15.2			
6	16.2	15.51	15.4	17.3	16.1	18.9	19.0	20.0	20.0	19.5	18.1	13.9		-	
7	16.2	15.5	15.9	16.4	16.4	19.2	19.3	24.8	20.0	19.6	17,9	13.51			
8	16.3	15.5	15.8	16.1	17.7	18.7	19.5	21.7	19.4	20.0	17.5	12.2			
9 -	16.0	15.7	15.81	15.9	17.6	18.0	19.4	21.0	20.0	18.9	18.0	12.8			
11	15.6	15.3	15.2	16.9	17.2	18.7	19.4	22.5	20.5	19.0	17.2	13.6			
12	15.8		15.2	17.2	17.4	19.6	19.71	21.7	20.1	18.8	17.2	13.4			
13	15.8	15.4	15.7	17.0	17.5	20.1	20.0	20.6	20.0	18.5	16.5	18.4			
14 15	16.0	15.2	16.1	16.9	19·1 19·2	19.1	19.6	21.0	20.3	20.6	17.0	13.3			
16	15.7	15.3	16.6	16.2	19.4	19.8	19.4	18.8	20.3	16.7	16.8	12.8			
17	16,1	15.3	16.6	16.5	16.1	19.7	17.4	18.0	20.3	17.2	16.6	14.6			
18	16.1	14.7	16.17	17.2	18.2	19.0	18.7	18.6	19.7	17.9	16.7	13.5			
19	16,2	14.9	16.61	16.9	17.8	19,31	19.9	19.5	19,7	16.8	16.6	13,4			
20	16.2 15.8	15.2	16.9 16.8	15.91 15.61	19.2	20.51	19.1 18.0	20.8	20.0	18.0	16.4	13.2			
22	16.0	15.51	16.8	15.01	19.1	19.01	18.1	21.2	19.2	17.8	15.7	13.0		-	
23	15.4	15.51	16.61	16.4	16.8	17.51	19,181	21.3	19.4	_17.1	16.3	12.8			
24	15.4	15.71	16.31	16.4	16.1	16.11	21.01	19.2	21.6	17.1	15.0	14.5			
25 26	15.5 15.5	15.4	16.41	17.0	17.0	12.71	19.01	20.8 19.8	19,01	18.5	15.7	14,2			
27	15,7	15.5	16.9	16.4	18.3	17.21	18.0	21.0	21.01	18.0	15.8	14,3			
28	15.5	15.3	17.61	15.6	19.5	17.51	17.5	20.5	21.01	18.5	15.5	14.2			
29	15,7		17,41	16,3	13.8	16,71	19101	20.8	21,81	17.2	15.6	14.4			
30 31	15.7 15,5		17.3	15.6	18.C 17.21	15.8	17.7	21.2	22.1	18.5	15.5	13.5			
- Andrews															
1-10 MEANS	16.11	15.54	15.52	16.65		18.46		20.91	20.63		18.041				
SAMPLE SIZE	10	10	10	10	10	10	10	10	10	13	10	10			
11-20 MEANS	15.96	15.17	16.26	16.76	16.31	19.56	19.42	20.09	20.10	18.05	16.80	13.46			
SAMPLE SIZE	1.0	9	10	10	101	10	10	10_	10	1)	10	10			
04 74 454.6	45 64	45.40	0.0		. 7. 004	. 6 27	.0.04	20.7/	00 44	47 04	45.30	47 76			
SAMPLE SIZE	15.61_ 11	15.49	16 89 11	16.04	<u>17.921</u>	10	<u> 18.84</u> 11	<u>20.76</u> 11	20.41	17.81	15.79 10	<u>13.76</u> 10			
J 52 J.Z2				101	1.4	10			10	**	10				
MONTHLY MEANS		15.40	16.25	16.48	17.56	18.26	18.86	20.59	20.38	18.71	16.88	13.78	17.42		
SAMPLE_SIZE	31	27_	31	30	31	30	31	31	30_	31_	30_	30			
WAXIMUM VALUE	16.3	13.2	17.6	17.4	19.5	20.5	21-0	22.5	22.1	21.9	18.4	15.3		12.5	
MINIMUM VALUE	15,4	14.71	15,1	15.01	14.7	12.7	16.5	18.0	18,9	16.7	15.0	12,21			12.2
RANGE	. 91	1.01	2.2	2.41	4.8	/.8	9.2	4.21	3.2	2.2	3.4	3,1			7
STANDARD DEV.	,291	.23	.74	,58	1,401	1.66	1,15	1.09	.91	1.54	1.00	.80			

	SC	RIPPS PIE	R		BOTTOM TEMPERATURE (\$\approx 5 METE					TERS YEAR 1978					
								(A B 2 3 4 4 2 2
DAYS	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	UCT	NOV	DEC	MEAN	MAX	MIN
1	16.3		15.1	17.1	15.8	18.5	16.1	19.0	21.6	22.1	18.5	15.3			
2	16.3		15.3	17.4	15.2	18.4	17.3	14.0.	21.6	21.7	18.4	15.1			
3	15.9		15.1	17.7	15.5	17.6	18.4	19.2	20.6	21.5	18.3	14.3			
4	15.9		15.5	17.4	14.7	19.0	17.4	20.3	21.5	20.9	16.7	15.1			
5 .	16.0		15.8	17.1	15.7	16.4	17.6	20 .0	21.5	16.3	17.7	14.9			
7	16.2		15.8	17.2	16.4	18.8	18.7	16.0	20.0	15.6	17.9	13.3			
8	16.3		15.7	16.1	16.5	19.1	17.6	21.0	19.8	18.1	17.9	13.3			
9	16.0		15.7	16.4	18.7	18.6	19.4	21.0	19.5	18.2	18.1	12.8			
10	15.9		15.8	17.7	17.9	18.3	19.2	20.8	19.4	19.1	18.0	13.4			 •
11	16.1		15.7	17.0	16.7	18.7	19.8	22.0	20.4	18.9	17.5	13.3			
12	16.0		15.2	17.2	16.7	19.8	22.0	22.0	20.1	18.8	17.7	13.5			
13	16.0	15.4	15.7	17.0	17.9	15.4	20.0	21.7	20.3	17.8	17.5	13.4 .			
14	16.1	15.4	16.1	17.2	19.5	18.3	17.4	21.0	20.3	17.2	17.2	13.3			
15	16.0	15.2	16.5	17.1	19,4	20.0	20.3	18.2	20,5	15.0	17.2	13.9			
16	15.4	15.4	16.3	16.9	19.9	20.1	18.8	17.8	20.4	15.6	16.5	13.9			
17	16.2	15.4	16.2	17.1	18.1	19.4	17.5	13.7	20.4	17.2	17,2	14.6			
19	16.0	15.2	16.5	17.7	16.6.	19.0	18.6	18.8	20.0	17.2	16.9	13.4			P
20.	16.2	15.4	16.8	16.8	17.5.	20.2	19.0	20.5	19.5	16.9	16.9	12.9			
21	16.2	15.4	16.3	16.0	13.4	17.2	12.8	20.5	18.8	16.6	16.7	15,1			
22	16.1	15.5	16.7	14.1	12.7	16.5	13.0	20.8	17.9	17.2	16.4	13.0			
23	15.6	15.5	16.5	13.3	17.0	16.0	16.8	20.5	18,8	16.9	16.3	12.4			•
24	15.2	15.9	16.4	15.0	16.3	15.2	18.0	16.8	16.7	17.2	15.5	14.1			
25	15,4	15.5	16.3	15,4	17.4	12,4	15.0	18.5	16,7	18,9	16.1	14,1			
26 27	15.4	15.4	16.8	16.2	18.0	15.0	14.7	21.4	18.4	18.5	16.1	13.8			
28	15.6	15.4	17.7	15.3	19.1	17.3	17.5	20.5	20.1	17.9	15.6	14.3			
29	15.7	13.4	17.6	16.9	18.8	16.6	18.2	21.2	20.1	18.4	15.6	14.2	2		
30	15.7.		16.9	15.6.	17.6	16.0.	17.2	21.4	22.1.	17.8	15.5	13.4			
31	15.5		17.2		17.2		17.8	21.4		18.5					
1-10_MEANS.	16-09	15-50	15.52.	17.12.	16.39	18.34.	18-11	18.83	20-49		17.94	14-03			
SAMPLE SIZE.	10.	10.	10.	10.	10.	10.	10.	10	10.	10	10.	10.			
11-20 MEANS	16.01	15.36	16.16	16.98	18.12	19.00	19.30	19.53	20.06	16.91	17.16	13.56			
SAMPLE SIZE	10	9	10	10	10	10	10	10	10	10	10	10			
21-31 45449	45 47	45 54	46.00	15 12	16.93.	45.04	45.04	20.70	18.97	17.83.	15.98.	17 44			
SAMPLE SIZE.	15.63 11.			10.	11.	10.		20.30	10.	11	10.	10.			
							1.5								
MONTHLY MEANS	15.90	15.30	16.23	16.51	17.14	17.73	17.71	19.55	19.84	17.94	17.03	13.75	17.07		
MAXIAUM VALUE	14.3	15.2	17.7	17.7	19.0	20.2	_22.0	22.0	22.1	22.1	18-5	15.3		22.1	- A
MINIMUM VALUE	15.2	15.2		13.3	12.7	12.4	12.8	13.7	16.7	14.5	15.5	12.4			12.4
RANGE.	1.1	. 7	2.6	4.4	7.2	7.8	9.2	8,3	5.4	7.6	3,0	2,9			
		4 - 212									- 11				
STANDARD DEV.	.31	.18	.69	1.06	1.72	1.83	2,10	2.20	1.30	1.62	.92	<u>,</u> 75			

APPENDIX G

COMPUTER PROGRAMS


```
C PROFIL - PLOTS COMBINED WADING AND FATHOMETER
C SURVEYS
     DIMENSION DX(100), DH(100), BX(100), BH(100)
     DIMENSION TITLE (60)
     XSCALE = 0.01
     YSCALE =0. 0025
     CALL CONTRL (1, 'DEPTHP', 8)
     READ(8, 99)
     READ(8, 99)
     READ(8, 99)
     READ(8, 99)
  99 FORMAT (40A2)
     WRITE(1, 1000)
 1000 FORMAT ('RANGE NUMBER, 12'/)
     READ(1, *) NRANGE
     IF (NRANGE) 5, 701, 5
   5 WRITE(1, 1001)
 1001 FORMAT('NO. OF FIRST POINT IN RANGE '/)
     READ (1, *)LLOW
     WRITE(1, 1002)
 1002 FORMAT('NO. OF LAST POINT IN RANGE'/)
     READ(1, *)LHIGH
     WRITE(1, 1003)
 1003 FORMAT('PLOT TITLE'/)
     READ(1, 1004) TITLE
 1004 FORMAT (15A4)
     WRITE(1, 1005)
 1005 FORMAT ('NUMBER OF CHARACTERS'/)
     READ(1, #) NUMC
     1 - 1, 1 - 1
     DU 100 J=1, LHIGH
     READ(8, 2000) NO, NDAY, NHR, MIN, NSEC, X, Y, IDEEP
 2000 FORMAT(T2, I3, T8, I2, 1X, I2, 1X, I2, 1X, I2, T26,
    1F6. 1, T41, F6. 1, T56, I4)
     IF (NO-LLOW) 100, 40, 40
  40 DX(JJ)=X
     DH(JJ)=-FLOAT(IDEEP)
     JJ=JJ+1
  100 CONTINUE
     CALL CONTRL (4, 'DEPTHP', 8)
     CALL CONTRL(1, 'DAYPRO', 7)
     NSTOP = JJ-1
     NFLAG = 0
     JJ=1
     DO 200 J=1, 4000, 5
     READ(7,3000, END = 201)I1,I2,I3,I4,I5
 3000 FORMAT(5(16,1X))
     IF(12-40)200,54,54
   54 IF(I1)55, 201, 55
  55 IF (I5-NRANGE) 56, 60, 56
   56 IF(NFLAG)201,200,201
   60 \text{ BX}(JJ) = I2
     BH(JJ)=I4
     JJ=JJ+1
     NFLAG =1
  200 CONTINUE
  201 CONTINUE
     YOFF = 7.0
```

```
XOFF = 1.0
   NDO =JJ-1
   JJ=1
   CALL PLOTS(0, 0, 99)
    X=BX(1)*XSCALE+XOFF
    Y=BH(1)*YSCALE+ YOFF
   CALL PLOT(X, Y, 3)
    DO 300 J=2, NDO
    X=BX(J)*XSCALE+XOFF
    Y=BH(J)*YSCALE+ YOFF
300 CALL PLOT(X, Y, 2)
    CALL PLOT(X, Y, 3)
    X=DX(1)*XSCALE+XOFF
    Y=DH(1)*YSCALE*10.0 + YOFF
    CALL PLOT(X, Y, 3)
    DO 400 J=2, NSTOP
    X=DX(J)*XSCALE+XOFF
    Y=DH(J)*YSCALE*10. O+ YOFF
400 CALL PLOT(X, Y, 2)
    CALL PLOT(X, Y, 3)
    CALL CONTRL(4, 'DAYPRO', 7)
    CALL AXIS(11.0,3.0,24H ELEVATION ABOVE MSL (M),-24,5.0,
   190. 0, -16. 0, 4. 0, 0)
    CALL AXIS(1.0,3.0,22H OFFSHORE DISTANCE (M),-22,10.0,
   10. 0, 0. 0, 100. 0, 0)
    CALL SYMBOL (4. 0, 8. 0, 0. 2, 27HTORREY PINES PROFILE SURVEY,
   10.0,27)
    CALL SYMBOL (4, 0, 7, 5, 0, 2, TITLE (1), 0, 0, NUMC)
    CALL PLOT (0, 0, 40)
700 CONTINUE
701 CONTINUE
   CALL EXIT
   END
```

```
C CONPLT A PROGRAM TO PLOT DEPTH READINGS TO FACILITATE CONTOURING
     DIMENSION BX(1000), BY(1000), NE(1000), NDEEP(4), LDEEP(2), NRANGE(10
     DATA NRANGE/24, 25, 26, 27, 28, 04, 34, 35, 32, 33/
C SET PLOTTING SCALES
     XSCALE = 0.015
     YSCALE = 0.015
C ENTER NUMBER OF FATHOMETER POINTS TO PLOT, NDO.
     PRINT 555
  555 FORMAT ('ENTER NO. OF FATHOMETER POINTS TO PLOT'/)
     READ(1, *)NDO
C OPEN FILES FOR READING
     CALL CONTRL (1, 'DEPTHP', 8)
     JJ=1
     NSTART = 0
     DO 150 K=1, 10
     IFLAG =0
     CALL CONTRL(1, 'DAYPRO', 7)
C READ BEACH PROFILE DATA
     DO 100 J=1,500
   2 READ(7, 1000, END = 147)NPT, NDIST, NY, NELEV, IRANGE
 1000 FORMAT(5(16,1X))
C CHECK TO SEE THAT THIS IS RIGHT RANGE
     IF (IRANGE-NRANGE(K))98,3,98
   3 \text{ IFLAG} = 1
     GO TO 5
 CHECK TO SEE IF RANGE IS ALREADY COMPLETE
  98 IF(IFLAG-1)100, 149, 100
C ELIMINATE VALUES FROM UPPER BEACH
   5 IF(NDIST -45) 2,7,7
 SET OFFSHORE COORDINATE
   7 BX(JJ)=NDIST
 SET LONGSHORE COORDINATE
     BY(JJ) = -FLOAT(NY - 320)
 SET ELEVATION ABOVE M. S. L. IN DECIMETERS
     NE(JJ)=IFIX(FLOAT(NELEV)/10. + 0.5)
     NSTART = NSTART +1
     JJ=JJ+1
  100 CONTINUE
     GO TO 149
  147 PRINT 444 NRANGE(K)
  444 FORMAT ('END OF FILE. NO DATA FOR RANGE', I3)
  149 CALL CONTRL (4, 'DAYPRO', 7)
     PRINT 333 NRANGE(K), NSTART
  333 FORMAT ('RANGE ', 12, 3X, 'NSTART
                                     ', I4)
  150 CONTINUE
     CALL CONTRL (4, 'DAYPRO', 7)
 DETERMINE NUMBER OF BEACH PROFILE DATA POINTS
  101 NSTART = NSTART + 1
 DO DUMMY READ OF HEADER ON FATHOMETER SURVEY DATA
     READ(8, 99)
     READ(8, 99)
     READ(8, 99)
     READ(8, 99)
   99 FORMAT (40A2)
     NUM = NDO + NSTART - 1
C READ FATHOMETER SURVEY DATA
     DO 200 JENSTART, NUM
     READ(8, 2000, END = 201)ND, X, Y, IDEEP
```

```
2000 FORMAT (T2, I3, T26, F6, 1, T41, F6, 1, T56, I4)
C CHECK FOR END OF DATA
      PRINT 666 X, Y, IDEEP
      IF(ND)6,201,6
    6 BX(J)=X
C 666 FORMAT (2F12, 1, I8)
      BY(J) = -(Y - 320.)
      NE(J) = -IDEEP
  200 CONTINUE
C PRESERVE NUMBER OF POINTS TO PLOT
  201 NDONE =J-1
      XSAV = 100000.
      YSAV =100000.
C SET VALUES FOR MINIMUM SPACING BETWEEN POINTS TO PLOT
      XMIN = 0.1
      YMIN = 0.1
      CALL PLOTS(0, 0, 99)
C MAKE AXES
      CALL AXES (0, 2, 8, 6, -200, , 360, , 0, 015, 20, , 40, , 4HF5, 0, -90, 0,
       'LONGSHORE DISTANCE FROM SIO4 (M)', 32)
      CALL AXES(0, 2, 0, 2, 0, 1000, 0, 015, 25, 100, 4HF5, 0, 0, 0,
     1 'OFFSHORE DISTANCE FROM SIO4 ORIGIN (M)', 38)
C WRITE ARRAYS TO FILE 'NUMPLT'
      CALL CONTRL(2, 'NUMPLT', 9)
      DO 350 J=1, NDONE
      WRITE(9,777)BX(J), BY(J), NE(J)
  777 FORMAT(2(F7. 1, 3X), I4)
  350 CONTINUE
      CALL CONTRL (4, 'NUMPLT', 9)
C LOOP TO PLOT POINTS
      DO 300 J=1, NDONE
      X=BX(J)*XSCALE+ 0.2
      Y=BY(J)*YSCALE+ 0.8
      IDEEP = NE(J)
      PRINT 999 X, Y, IDEEP
C
C 999 FORMAT (2F12. 1, I8)
C FIND SEPARATION FROM LAST PLOTTED POINT AND TEST FOR MINIMA
      DIFX=ABS(X-XSAV)
      DELX=DIFX-XMIN
C
       IF(DELX)300,53,53
   53 DIFY =ABS(Y-YSAV)
      DELY=DIFY-YMIN
      IF (DELY) 300, 54, 54
C
   54 XSAV=X
      YSAV=Y
      IDUM = IABS(IDEEP)
      NDEEP(4) = 0
       I3 = IDUM/100
       I2 = IDUM/10 - I3*10
       I1 = IDUM - I2*10 - I3*100
       NDEEP(1) = I3
       NDEEP(2) = I2
      NDEEP(3) = I1
      PRINT 999 NDEEP
  999 FORMAT (311)
       ENCODE (4,888, LDEEP) NDEEP
  888 FORMAT(4I1)
C WRITE DEPTH AT EACH LOCATION
```

CALL SYMBOL(X,Y,O. 06,LDEEP(1),270.0,3)
CALL NUMBER(X,Y,O. 08, IDEEP,O. 0,3H2A2)
300 CONTINUE
CALL PLOT(0,0,40)
CALL CONTRL(4,'DEPTHP',8)
CALL CONTRL(4,'DAYPRO',7)
CALL EXIT
END


```
C
```

C THE TIDE PREDICTOR COVERS THE PERIOD FROM JANUARY 1975 TO DECEMBER 1985. IT CALCULATES AN EIGHT COMPONENT TIDE AT S. I. O. PIER.

C THIS PROGRAM GENERATES THE NECESSARY COEFFICIENTS UPDATED TO THE C DESIRED MONTH AND YEAR.

C ENTER WITH THE YEAR (NYEAR) USING ONLY THE LAST TWO DIGITS AND ALSO C THE NUMBER OF THE MONTH (MONTH).

C C

C THE NECESSARY DUTPUT DATA ARE CONTAINED IN THE FOUR ARRAYS, H, V, A AND G. C EACH IS DIMENSIONED (8) AND ARE STORED SEQUENTIALLY IN FILE 'TIDEC'.

C IN THE MAINLINE CALL SUBROUTINE TIDEP TO RETURN THE TIDAL C ELEVATION IN CENTIMETERS RELATIVE TO MEAN SEA LEVEL FOR EACH TIME.

C THE EIGHT COMPONENTS EMPLOYED ARE K1, O1, P1, Q1, M2, S2, N2, AND K2

C VALUES FOR THE CORRESPONDING COEFFICIENTS ARE STORED IN ARRAYS IN C THAT ORDER.

C

C THE PREDICTOR FOLLOWS THE METHOD OF THE COAST AND GEODETIC SURVEY C SPECIAL PUBLICATION NO. 98, 'MANUAL OF HARMONIC ANALYSIS AND PREDICTION OF TIDES'. (1958 ED.)

C TIDES ARE CALCULATED ON THE BASIS OF PACIFIC STANDARD TIME.

C TO CORRECT TO HEIGHT ABOVE MLLW, ADD 82 CM.

1 274. 77, 208. 39, 167. 37/

1 , 90. 92, 60. 36, 30. 79/

V1(11), V2(11), V3(11), V4(11), V5(11), V7(11), HCM(8), DIMENSION 1V8(11), U1(12), U2(12), U3(12), U4(12), U5(12), F(8), U7(12), U8(12), 2F1(11),F2(11),F4(11),F5(11),F7(11),F8(11),G(8),A(8),H(8),V(8) DATA HCM/32. 92, 21. 03, 10. 67, 3. 66, 48. 77, 19. 81, 11. 89, 5. 49/ DATA G/207. 0, 192. 0, 204. 0, 184. 0, 142. 0, 137. 0, 121. 0, 133. 0/ DATA A/15, 041, 13, 943, 14, 959, 13, 399, 28, 984, 30, 0, 28, 440, 30, 082/ DATA V1/18. 2, 16. 2, 14. 1, 10. 5, 6. 8, 3. 7, 2. 5, 1. 5, 1. 5, 2, 4, 4. 9/ DATA V2/263. 5, 6. 5, 85. 7, 191. 3, 296. 9, 41. 6, 119. 4, 221. 1, 321. 4, 60. 8, 1 134.2/ DATA V3/350. 0, 350. 2, 349. 5, 349. 7, 349. 9, 350. 2, 349. 4, 349. 7, 349. 9, 1 350. 2, 349. 4/ DATA V4/271. 5, 285. 8, 263. 2, 280. 1, 297. 0, 312. 9, 289. 0, 301. 9, 313. 5, 1 324. 2, 295. 8/ DATA V5/285. 8, 26. 0, 101. 8, 201. 8, 301. 9, 42. 0, 117. 9, 218. 4, 319. 1, 60. 0, 1 136.8/ DATA V7/293. 8, 305. 3, 279. 3, 290. 6, 301. 9, 313. 3, 287. 4, 299. 2, 311. 2, 1 323. 4, 298. 4/ DATA V8/215. 8, 211. 5, 207. 6, 200. 9, 194. 2, 188. 2, 185. 6, 183. 1, 182. 6, 1 184. 2, 189. 3/ DATA U1/0. 0, 30. 56, 58. 15, 88. 71, 118. 28, 148. 83, 178. 4, 208. 96, 239. 51, 1 269. 08, 299. 64, 329. 21/ DATA U2/0. 0, 293. 62, 303. 34, 236. 96, 195. 94, 129. 56, 88. 55, 22. 16, 315. 78,

DATA U3/0. 0, 329. 44, 301. 85, 271. 29, 241. 72, 211. 17, 181. 6, 151. 04, 120 49

```
DATA U4/0. 0, 248. 6, 252. 5, 141. 11, 68. 14, 316. 75, 243. 78, 132. 39, 20. 99,
     1 308. 03, 196. 63, 123. 67/
      DATA U5/0. 0, 324. 17, 1. 49, 325. 66, 314. 22, 278. 39, 266. 95, 231. 12, 195 3,
     1 183. 85, 148. 02, 136. 58/
      DATA U7/0. 0, 279. 16, 310. 66, 229. 82, 186. 42, 105. 58, 62. 18, 341. 34,
     1 260. 5, 217. 11, 136. 27, 92. 87/
      DATA UB/0. 0, 61. 11, 116. 31, 177. 42, 236. 56, 297. 66, 356. 80, 57. 91,
     1 119. 02, 178. 16, 239. 27, 298. 41/
      DATA F1/0. 951, 0. 916, 0. 891, 0. 882, 0. 89, 0. 913, 0. 948, 0. 987, 1. 026, 1. 06,
     1 1.086/
      DATA F2/0. 92, . 863, . 822, . 806, . 819, . 858, . 915, . 979, 1. 041, 1. 096, 1. 14/
      DATA F4/0. 92, . 863, . 822, . 806, . 819, . 858, . 915, . 979, 1. 041, 1. 096, 1. 14/
      DATA F5/1, 02, 1, 029, 1, 035, 1, 038, 1, 036, 1, 03, 1, 021, 1, 009, 997, 984,
     1 0.974/
      DATA F7/1. 02, 1. 029, 1. 035, 1. 038, 1. 036, 1. 03, 1. 021, 1. 009, . 997, . 984,
     1 0.974/
      DATA F8/. 871, . 804, . 763, . 748, . 760, . 799, . 864, . 949, 1. 045, 1. 142, 1. 226/
C READ IN MONTH AND YEAR
      WRITE(1,888)
  888 FORMAT ('INPUT YEAR AND MONTH, 12/12')
      READ(1,999)NYEAR, MONTH
  999 FORMAT(I2, 1X, I2)
      NUMBY = NYEAR-74
C CALCULATE VALUES OF EQUILIBRIUM ARGUMENT FOR EACH COMPONENT AT
 THE BEGINNING OF THE MONTH.
      V(1) = V1(NUMBY) + U1(MONTH)
      V(2) = V2(NUMBY) + U2(MONTH)
      V(3) = V3(NUMBY) + U3(MONTH)
      V(4) = V4(NUMBY) + U4(MONTH)
      V(5) = V5(NUMBY) + U5(MONTH)
      V(6) = 0.0
      V(7) = V7(NUMBY) + U7(MONTH)
      V(8) = V8(NUMBY) + U8(MONTH)
C CALCULATE NODE FACTOR, F , FOR MONTH AND YEAR.
       IF(MONTH-6) 220, 230, 280
  220 IF (NUMBY-1)240, 230, 240
  230 NYR = NUMBY
      GD TD 400
  240 \text{ NYR} = \text{NUMBY}-1
       GO TO 400
  280 IF(NUMBY-11) 300,230,300
  300 \text{ NYR} = \text{NUMBY+1}
  400 CONTINUE
       DIFF = ABS(MONTH-6)
      FACTR = DIFF/12.0
     F(1) = F1(NUMBY)*(1.0-FACTR) + F1(NYR)*FACTR
       F(2) = F2(NUMBY)*(1.0-FACTR) + F2(NYR)*FACTR
      F(3) = 1.0
      F(4) = F4(NUMBY)*(1.0-FACTR) + F4(NYR)*FACTR
      F(5) = F5(NUMBY)*(1.0-FACTR) + F5(NYR)*FACTR
       F(6) = 1.0
      F(7) = F7(NUMBY)*(1.0-FACTR) + F7(NYR)*FACTR
       F(8) = F8(NUMBY)*(1.0-FACTR) + F8(NYR)*FACTR
C CORRECT AMPLITUDE COEFFICIENTS
       DO 100 J=1,8
  100 H(J) = HCM(J)*F(J)
       CALL CONTRL(2, 'TIDEC', 7)
```

WRITE(7) H

WRITE(7)V
WRITE(7)A
WRITE(7)G
CALL CONTRL(4, 'TIDEC', 7)
WRITE(1,666) (V(L), L=1,8)
666 FORMAT(8(F8.1,1X))
CALL EXIT
END

SUBROUTINE TIDEP(NDAY, NTIME, G, A, H, V, TIDE)
DIMENSION G(1), A(1), H(1), V(1)

C ENTER DAY OF MONTH (NDAY) AND TIME (NTIME) USING PACIFIC STANDARD

C TIME AND THE 24 HOUR CONVENTION WITH TWO DIGIT HOUR FOLLOWED BY TWO

C DIGITS FOR THE MINUTES.

C CALCULATE GREENWICH TIME IN HOURS

NHR = NTIME/100

NMIN = NTIME-NHR*100

GTIME = 7.0 + FLOAT(NHR) + FLOAT(NMIN)/60.0 + FLOAT((NDAY-1)*24)

C SUM EIGHT COMPONENTS OF THE TIDE

TIDE = 0.0 DO 100 J=1,8

C CALCULATE ANGULAR ARGUMENT

ARG = A(J)*GTIME+V(J)-G(J)

ARG = ARG*0.01745329

TIDE = TIDE + H(J)*COS(ARG)

100 CONTINUE

RETURN

END