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Abstract

Over the last decade, spatial capture-recapture (SCR) models have become
widespread for estimating demographic parameters in ecological studies. How-
ever, the underlying assumptions about animal movement and space use are
often not realistic. This is a missed opportunity because interesting ecological
questions related to animal space use, habitat selection, and behavior cannot
be addressed with most SCR models, despite the fact that the data collected in
SCR studies — individual animals observed at specific locations and times —
can provide a rich source of information about these processes and how they
relate to demographic rates. We developed SCR models that integrated more
complex movement processes that are typically inferred from telemetry data,
including a simple random walk, correlated random walk (i.e., short-term
directional persistence), and habitat-driven Langevin diffusion. We demon-
strated how to formulate, simulate from, and fit these models with standard
SCR data using data-augmented Bayesian analysis methods. We evaluated
their performance through a simulation study, in which we varied the detec-
tion, movement, and resource selection parameters. We also examined differ-
ent numbers of sampling occasions and assessed performance gains when
including auxiliary location data collected from telemetered individuals.
Across all scenarios, the integrated SCR movement models performed well in
terms of abundance, detection, and movement parameter estimation. We
found little difference in bias for the simple random walk model when reduc-
ing the number of sampling occasions from T = 25 to T = 15. We found some
bias in movement parameter estimates under several of the correlated random
walk scenarios, but incorporating auxiliary location data improved parameter
estimates and significantly improved mixing during model fitting. The
Langevin movement model was able to recover resource selection parameters
from standard SCR data, which is particularly appealing because it explicitly
links the individual-level movement process with habitat selection and popula-
tion density. We focused on closed population models, but the movement
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INTRODUCTION

Understanding the ecological processes that drive popula-
tion dynamics requires knowledge not only of demo-
graphic processes (e.g., abundance, survival, reproduction)
but also animal movement and space use. Animal move-
ment patterns reflect habitat selection, landscape connec-
tivity, and behavior, all of which influence the distribution
of individuals in space. In addition to their spatial distribu-
tions, how animals move in response to habitat and
resources affects their individual fitness, which ultimately
influences population dynamics (Gaillard et al., 2010).
Conversely, the distribution of animals in space can also
be regulated by population-level processes; e.g., the spatial
patterns of animal locations may reveal how survival
and reproductive rates are influenced by habitat quality
and individual movements (Boyce & McDonald, 1999).
Therefore, integrating movement ecology and population
ecology into a comprehensive analytical framework will
provide ecologists with the opportunity to better under-
stand the interplay of movement, landscape ecology, and
population dynamics (McClintock et al., 2021; Morales
et al., 2010).

However, it is often difficult to integrate population
abundance, demographic rates (e.g., survival, move-
ment), and space use because studies of these phenomena
have tended to be conducted through different lenses with
an eye toward a particular type of data or model. For
example, in studies of abundance or related demographic
rates, population-level inferences have traditionally
been drawn using models for count or capture-recapture
data (e.g., Buckland et al., 2001; Schaub & Abadi, 2011;
Williams et al., 2002). Conversely, in studies of movement,
resource selection, or space use, individual-level inferences
are typically drawn using models for location data col-
lected from animal-borne telemetry devices (e.g., Hooten
et al., 2017; Thurfjell et al., 2014). Integrating these two
perspectives requires a flexible and adaptable framework
that can link individual processes, such as movement and

models developed here can be extended to open SCR models. The movement
process models could also be easily extended to accommodate additional
“building blocks” of random walks, such as central tendency (e.g., territoriality) or
multiple movement behavior states, thereby providing a flexible and coherent
framework for linking animal movement behavior to population dynamics,
density, and distribution.

abundance, capture-recapture, Langevin diffusion, movement ecology, NIMBLE, population

habitat selection, to population-level processes. One way
to do this is to incorporate more realistic movement
models (e.g., Hooten et al., 2017) into spatial capture-
recapture models (SCR; e.g., Royle, Chandler, Sollmann, &
Gardner, 2013). In the introductory article to this Special
Feature, McClintock et al. (2021) identified many of the
potential advantages of integrating these approaches,
including novel and improved inferences at the interface
of population, movement, and landscape ecology.

Spatial capture-recapture models provide a flexible
framework for estimating density and other demographic
rates, while accounting for individual detection heterogene-
ity attributable to the location of each animal’s “activity cen-
ter.” The spatial distribution of individual activity centers is
directly modeled using an underlying point process, there-
fore providing a mechanism to incorporate movement of
individuals into the estimation framework. For example, in
open population SCR models, which allow for survival and
recruitment processes, the location of activity centers can
change (e.g., individuals can disperse) between sampling
periods according to a movement model (Bischof et al.,
2020; Efford & Schofield, 2020; Ergon & Gardner, 2014;
Gardner et al., 2010, 2018; Glennie et al., 2019). These types
of movements operate at a different temporal scale
(e.g., months or years) compared with most traditional
movement models, with the focus on capturing changes in
the expected location of an individual between sampling
periods rather than the (instantaneous) location of individ-
uals at a particular point in time. However, the same struc-
ture can be used at a finer temporal scale, allowing these
expected locations to move within the (typically shorter)
sampling periods for closed population models (Royle
et al., 2016). Whereas this type of movement may cause vio-
lations of the assumptions of no immigration or emigration
in typical non-spatial closed capture-recapture models, in
SCR models, the detection process is a function of the
expected location and therefore animals that are within the
population can move into or out of the sampling area with-
out causing bias.
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Spatial capture-recapture models have also been
extended to incorporate resource selection functions
(RSFs) and landscape connectivity (Linden et al., 2018;
Royle et al., 2018; Royle, Chandler, Sun, & Fuller, 2013;
Sutherland et al., 2015), in which the focus is on incorpo-
rating habitat covariates into the detection function or
the underlying point process. However, despite the
potential advantages, models that integrate both move-
ment and resource selection have not been well devel-
oped in the SCR literature (but please refer to Bischof
et al., 2020 for an open population example). McClintock
et al. (2021) highlighted many of the challenges and
uncertainties that remain in the development and imple-
mentation of integrated SCR movement models, includ-
ing determination of an appropriate spatio-temporal
formulation, additional data requirements, and computa-
tional hurdles associated with model fitting. Given these
challenges, it is likely to be no coincidence that the few
integrated SCR movement models that have been suc-
cessfully implemented are almost entirely limited to sim-
ple (Gaussian) random walk movement processes in
open population SCR models.

As a first step in tackling these challenges, we extend
integrated SCR movement models for closed populations
to accommodate movement processes more typically
associated with animals responding to their internal and
external environments, including the correlated random
walk and habitat-driven Langevin diffusion. We demon-
strate how these models can be formulated, simulated
from, and fitted to conventional SCR data in a Bayesian
framework. SCR data alone may be inadequate to esti-
mate the parameters of more complex movement models,
and we therefore evaluate performance gains when auxil-
iary location data are available for inclusion in our inte-
grated models. While we focus on closed population
models, our methods can be easily extended to open pop-
ulation models. The movement process models could also
be extended to accommodate additional “building
blocks” of random walks, such as central tendency
(e.g., territoriality) or multiple movement behavior states,
thereby providing a flexible and coherent framework for
linking animal movement behavior (e.g., dispersal,
migration, habitat selection) to population dynamics,
density, and distribution (sensu McClintock et al., 2021).

METHODS

Standard closed population SCR models assume that the
i =1, .., N individuals in the population have “activity
centers,” s; = (Sy,i,Sy, ), that are uniformly distributed over
a region M (i.e., the “state space”), where s, ; and s, ; are
the easting and northing coordinates, respectively. These

activity centers correspond to the expected location of
each individual over the course of the sampling period
and are the basis for modeling individual variation in
detection probability that is attributable to space use.
Standard SCR models are commonly formulated in dis-
crete time, in which the detection process pertains to
intervals of time (e.g., daily or weekly sampling) and indi-
viduals can move and/or be detected at any time within
these intervals. To incorporate an explicit movement pro-
cess, our discrete-time formulation therefore models the
movement of the expected location for each individual
during the sampling interval between times t — 1 and
t(sip t €12, 3, ..., T}), given an initial expected location
s;1, instead of the movement of the instantaneous loca-
tions at time ¢ (denoted as p;, in McClintock et al., 2021).
This is consistent with other discrete-time formulations
for open SCR models (Efford & Schofield, 2020; Gardner
et al., 2010, 2018; Glennie et al., 2019), but here we focus
on more complex movement processes and shorter time
periods than is typical in open SCR models. The goal is to
differentiate between the underlying movement process
model and the detection process model (which is condi-
tionally dependent on the movement process), using
standard SCR data (and auxiliary location data, if avail-
able). After describing the detection and movement pro-
cesses in more detail, we will use Bayesian parameter-
expanded data augmentation and Markov chain Monte
Carlo (MCMC) to estimate N while integrating over the
latent s;,. We define N=Y"" 7z where z; ~ Bernoulli(y)
such that y is the probability that any given individual in
the “superpopulation” of M individuals is a member of
the N individuals in the population, and M > N
(e.g., Royle et al., 2007; Royle & Dorazio, 2012).

SCR detection process model

For demonstrative purposes, we will use a Poisson obser-
vation model commonly applied to camera trapping data,
Yy ~ Poisson(};;), where y;;, is the number of captures
for individual i at trap j during sampling occasion ¢t. The
encounter rate under this model is:

2
xm:xoexp<——”"f‘s”” ) (1)

2
2Gdet

where ||x;—s;;|| is the Euclidean distance between the
location of trap j (x;) and s;;, A, is the baseline encounter
rate at distance zero, and o7, is the scale parameter that
can be related to the use of space around s;, As the
time interval of the sampling occasions becomes smaller
(At — 0), o3, will become smaller as animals have less
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time to move about s;;, which results in reducing the
likelihood of being detected farther from s;,. Also, as At
— 0, we expect that A, will become smaller as animals
will have less time to be detected.

Movement process models
Simple and correlated random walks

Many movement models are based on the random walk,
and complex movements can be modeled using a combi-
nation of random walks (Hooten et al., 2017; McClintock
et al., 2021; Morales et al., 2004). We start by allowing
individuals to move between occasions according to a
simple (Gaussian) random walk (Royle et al., 2016):

sic ~ Normal(s;;_1,6°T), (2)

where o7 is the variance of the random walk and directly
related to the movement of the individual between sam-
pling occasions. This is different from o3, in Equation (1),
which is the scale parameter of the detection function in
standard SCR models and only implicitly related to move-
ment around s;, within sampling occasion t. Another com-
mon animal movement model is the correlated random
walk with short-term directional persistence:

si,c ~ Normal (s;;—1 +y(Si—1 —Sir—2),06°1), (3)

where y controls the degree of correlation in the move-
ment path and is bounded between 0 and 1 (Hooten
et al., 2017) When y approaches 0, this model reduces to
a simple random walk. Neither the simple nor correlated
random walk has a limiting distribution describing the
long-term (Eulerian) spatial distribution of the popula-
tion, in which case s;; ~ Uniform(M) can simply be used
as the point process model for the initial expected loca-
tion (e.g., McClintock et al., 2021; Royle et al., 2016). In
section “Simulation design and implementation,” we dem-
onstrate how to integrate these basic movement processes
into SCR models, which are the building blocks for more
complex variants as described in McClintock et al. (2021).

dcx(six)

Langevin movement model

We have so far only described movement models that
assume individuals are moving in a homogeneous envi-
ronment without regard to any underlying conditions.
However, habitat and resources can drive animal move-
ment and space use within a study area. Habitat data are
often collected in discrete space (e.g., remotely sensed
elevation models), which is likely to be part of the reason
most SCR-RSF models have been formulated in discrete
space (Linden et al.,, 2018; Royle, Chandler, Sun, &
Fuller, 2013). The formulation we describe below (and
implement in section “Simulation design and implemen-
tation”) relies on a continuous-space, discrete-time
movement process in which both movement and the spa-
tial distribution of individuals are driven by habitat
covariates in a coherent framework.

The habitat-driven Langevin diffusion of Michelot
et al. (2019) provides a mathematical framework to
model animal movement as a function of habitat (please
refer to Figure 2). It has some very useful properties
because the limiting distribution of the movement model
is the standard form of a RSF (e.g., Manly et al., 2007).
For regular sampling intervals with reasonably small
A=A, Vte(2,3, .., T}, adiscrete-time approximation
of this continuous-time model is:

&
si; ~Normal | s;;; +—ZSchk(si,t,1),621 . (4)
2=

where 8 is the selection coefficient for habitat covariate
¢ and Vg (si—1) is the gradient of the kth covariate eval-
uated at s;, ;. The gradient is the partial derivative of the

dek(

covariate in both the easting (Ts[‘)) and northing

(%) directions. As such, it is a vector field where
y.l.f

the sign (positive or negative) points in the direction
of the greatest rate of increase and the magnitude
corresponds to the rate of increase in that direction
(e.g., Dawber, 1987, Chapter 4).

Bilinear interpolation (please refer to Kirkland, 2010,
pp. 261-263) is one way of approximating gradients along
a discretized grid of covariates:

(yz - Sy,i,t) (ck(x2,01) = ck(x1,31)) + (Sy,i,z _Y1) (ck(x2,Y2) — ek (x1,¥5))

I8y,
VCk(si,t) = 8ck Ec;,tt) =
1,

(%2 = i) (Ck (X1,92) = e (1,91)) + (Swie =%1) (Ck (X2,92) — €k (%2,31))

(yzfyl)(xZ*xl) (5)

>

ISyie

(Y2 =y1) (2 —x1)
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where the (x, y) are the centroids of the four neigh-
boring cells of s;, (please refer to Figure 1). The cells con-
taining these centroids form a two-by-two square. The
value (x;, y;) is the centroid of the bottom-left cell, (x;, y,)
the upper-left cell, (x,, y;) the lower-right cell, and (x,, ¥,)
the top right cell (please refer to Figure 1), and c(x,y) is
the value of the kth covariate at (x, y).

The resulting limiting distribution of the approximate
Langevin diffusion model is:

exp (f: Skck(s)>

JMexp (I:él Skck(z)) dz,

which we use as the point process model for the initial
expected locations (s; ;). Therefore the Langevin diffusion
can be used to coherently link the individual-level
movement process to the population-level utilization
distribution, and the population density surface will be dis-
tributed accordingly. In practice, n(s) must also be approx-
imated when covariates lie on a discretized grid. We
accomplish this by first assuming that each s;; resides in a
grid cell (g;) following a categorical distribution:

n(s) =

g; ~ Categorical (), (7)
where = (7,7,,....,%g), G is the number of grid cells
in M,

exp (Z Srck xg,yg))
Tg=5 K ’ (8)

Z (Z Bkck (xgayg)>

C(leym)

() ©) M
(X1,y2) (X2,¥2) 15
~ 1.0
— 0.5
— 0.0
sl t — —05
©) o L— -1.0

(x1,y1) (x2,y1)
FIGURE 1 Ingredients for approximating the gradient of a

covariate along a discretized grid using bilinear interpolation, where
Sit = (S, Sy,i¢) is the expected location of individual i between
times t — 1 and ¢, (x;,x,,) are the neighboring grid cell coordinates
surrounding s; ;, and ¢(x;,y,,) is the value of the covariate at (x;,x,,).

and ci(x,, o) is the value of the kth covariate at the coor-
dinates (xg, yg) of grid cell g. It is common for each s;; to
be assigned the centroid of cell g; (Royle, Chandler,
Sun, & Fuller, 2013); however, we used a more realistic
assumption where each s;; is uniformly distributed
within cell g, that is, s;; ~Uniform(M,), where
Mg, € M is the area of the state space occupied by cell g;.

Auxiliary animal location data

Standard SCR data can be used to estimate the parameters
of the SCR movement models above. However, SCR data
alone may not be sufficient, and this will probably depend
on the study design, detection process, and movement pro-
cess (Hostetter et al., 2022; McClintock et al., 2021). One
way to improve the parameter estimates of SCR models is
to use data from animal-borne devices, for example radio-
telemetry or GPS collars (Linden et al., 2018; Sollmann
et al.,, 2013). There are several things to consider when
working with auxiliary location data in the context of SCR
models, including whether the locations arise from indi-
viduals in the target population, the temporal scale of the
data, and the accuracy of the locations (e.g., McClintock
et al., 2021). We describe here the methods we used to
incorporate auxiliary location data (please refer to the
“Discussion” section for further considerations).

In developing SCR models that integrate auxiliary loca-
tion data from individuals fitted with animal-borne devices
(from this point forward “telemetered individuals™) there are
important considerations in regard to spatially and tempo-
rally aligning the telemetry data with SCR data. We assumed
that telemetered individuals were within the state space, and
location data were collected simultaneously with the SCR
sampling. We also assumed that all telemetry devices were
deployed prior to the start of the SCR sampling, but
telemetered individuals were not necessarily captured as part
of the SCR sampling. The temporal scale of location informa-
tion can vary from coarse-scale to fine-scale resolution
(e.g., one study may observe radiotelemetry locations once a
week, whereas another study has GPS collars set to record
locations every 5 min). One way to accommodate these con-
ditions is by assuming p; . ~ Normal (s;;,c3,,), where p; is
an observed location (without measurement error) for
individual i at time T € (t — 1, £].

As noted above, we use parameter-expanded data
augmentation to estimate N and integrate over the latent
s;; in “Simulation design and implementation” section.
To separate telemetered individuals such that they do not
directly influence the estimation of the data augmenta-
tion parameter (y), we used a binary covariate (q = 0 if
an animal is not telemetered, ¢ = 1 if an animal is
telemetered):
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zi ~Bernoulli(y(1—q;) +¢;), 9)
where "M 7z, =N.

This approach is akin to spatial mark-resight models
(e.g., Sollmann et al., 2013), in which we are using data
augmentation to estimate the number of untelemetered
individuals, N — n4 € {0, 1, ..., M — n,}, but still allowing
the ny =YV ,q; telemetered individuals to inform the
movement and detection processes. Therefore, the
interpretation of y is different than in our other formu-
lations as it now pertains only to untelemetered indi-
viduals in the population. We note that Equation (9)
allows the inclusion of telemetered individuals that
were marked prior to the SCR sampling. In cases in
which animals are first captured in the SCR sampling
and then telemetered (e.g., search-encounter, live
trapping), standard data augmentation can be used to
estimate N € {0, 1, ..., M}.

Simulation design and implementation

For each of the three movement models, we simulated
data to explore the effects of different study designs,

TABLE 1 Parameter settings for each of the simulation scenarios.

Scenario Model type c

1 Simple random walk 0.1
2 Simple random walk 0.1
3 Simple random walk 0.1
4 Simple random walk 0.2
5 Simple random walk 0.2
6 Simple random walk 0.2
7 Correlated random walk 0.1
8 Correlated random walk 0.1
9 Correlated random walk 0.1
10 Correlated random walk 0.2
11 Correlated random walk 0.2
12 Correlated random walk 0.2
13 Langevin 0.1
14 Langevin 0.1
15 Langevin 0.2
16 Langevin 0.2
17 Langevin 0.2
18 Langevin 0.2

detection parameters, and movement parameters (please
refer to Table 1 for a description of the parameter values
used in each scenario). In all scenarios, we set N = 100,
M = 250, T = 25, and assumed 100 traps placed in a
square grid (please refer to Figure 2). We considered six
scenarios for both the simple random walk (Scenarios 1-
6) and the correlated random walk (Scenarios 7-12) with
different parameter values for ¢ (0.1 and 0.2) and 64
(0.05, 0.1, and 0.15). We note that when o is large relative
to o4e¢, this leads to individuals being able to move their
expected locations farther than they move about the
expected locations within a time step/occasion. Although
this may not be feasible biologically, it could arise under
certain conditions in which sampling occurs only over a
portion of the time step (e.g., in a mist-netting study, nets
may be open for only a few hours whereas the time step
for the model is 1 day). We included a range of values of
O4ct relative to o to assess the model performance under a
suite of movement conditions. We varied the value of 2,
in the six scenarios to maintain a similar number of cap-
tured individuals. In addition, for the random walk sce-
narios, we also considered T = 15 to evaluate the effect of
the number of capture occasions on parameter estimates.
All scenarios of the correlated random walk model were
evaluated with SCR data only and then again with the

addition of 10 telemetered individuals with two
Gdet Ao Y o T
0.05 3 15,25
0.10 2 15,25
0.15 0.5 15,25
0.05 3 15,25
2 15,25
0.5 15,25
0.05 5 0.5 25
0.10 3 0.5 25
0.15 1 0.5 25
0.05 5 0.5 25
0.10 3 0.5 25
0.15 0.5 0.5 25
0.1 2 0.7 25
0.1 2 0.3 25
0.1 1 0.7 25
0.1 1 0.3 25
0.05 3 0.7 25
0.05 3 0.3 25

Note: For the correlated random walk model (Scenarios 7-12), we also ran a separate set of simulations with 10 telemetered individuals in which auxiliary
location data are included (labeled as Scenarios 7A-12A in the text). In all scenarios, the population size was set as N = 100.
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FIGURE 2 Examples of two different underlying movement processes with the same number of individuals (N = 100), in which yellow

indicates tracks of individuals detected in the trap array, purple indicates tracks of individuals not detected in the trap array, and “+”
indicates the locations of 100 traps. The top left panel shows a simple random walk trajectory with ¢ = 0.1 and 64 = 0.15 (Scenario 3). The

top right panel shows a realization of a correlated random walk (i.e., short-term directional persistence) movement model with ¢ = 0.2,
64et = 0.05, and y = 0.5 (Scenario 10). The bottom panel shows a realization under the Langevin model with ¢ = 0.2, 64¢; = 0.05, and § = 0.7
(Scenario 17), along the underlying habitat covariate used in the simulations.

observed locations per sample occasion, in which we
assumed that location data were obtained without
measurement error. Please refer to Figure 2 for an
example of how different parameter settings influence
the tracks and captures in the simple versus correlated
random walk models.

For the Langevin movement model, we simulated
data under six scenarios (Scenarios 13-18) using K = 1
simulated habitat covariate. We set N = 100, M = 250,
T = 25 and used the same trapping array as in the simple
and correlated random walk simulations. We generated a
single realization of a spatially correlated habitat

covariate that was standardized and used in all simula-
tions (Figure 2). We allowed resource selection to vary
between weak to strong selection (8 = 0.3 and 0.7). We
also varied o (0.1 and 0.2) and 64 (0.05 and 0.1). We
used bilinear interpolation (Equation 5) to approximate
the gradient of the simulated covariate. For the initial
expected locations, we used Equations 7 and 8 and
assumed s;; ~ Uniform(M,) as described in the
“Langevin movement model” section. To fit this model
using Bayesian MCMC, we wrote a custom sampler to
jointly update g; (the grid cell location) and s;, (please
refer to Appendix S2).
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For all scenarios, we assumed a 10 x 10 trapping
array with 0.444 spacing between traps. We buffered the
trap array by 3 units on all sides to create the state space
for analysis (please refer to Figure 2). The buffer size is
large relative to the values of ¢ and 64, compared with a
traditional SCR model, but this is due to the increased
movement of individuals about the state space. We note
that this buffer should be considered in relation to both
the timing of the study (number and length of time
steps), the type of movement model, and the associated
parameters such as 6, o4e;, Or y. It is important when
deciding on a state space for each analysis to consider the
potential effects on the estimated parameters, in which
case a simulation may be useful (Gardner et al., 2018). In
addition, as the state space increases, so will the compu-
tational requirements and the time needed to run the
models.

We fitted all models using the R package NIMBLE
(de Valpine et al., 2017, 2020) in R 3.6.3 (R Core
Team, 2020) using a set of custom samplers to increase
the speed of the computations. We used the relatively
vague priors o© ~ Uniform(0,5), 64 ~ Uniform(0,5),
Ao ~ Uniform(0,10), and the approximate scale prior
y ~ Beta(le—6,1), as recommended by Link (2013). For
the correlated random walk model, we used y ~ Beta
(1,1). For the Langevin model, we used & ~ Normal
(0, 10). For the simple random walk model, we used a
burn-in of 10,000 and then ran an additional 40,000 itera-
tions for three chains and did not thin. For the correlated
random walk with telemetry and Langevin models,
unless otherwise noted, we used a burn-in of 15,000 and
then ran an additional 55,000 iterations for three chains
and thinned by two. With 40,000-55,000 iterations,
the simple random walk and Langevin scenarios required
2-3 h to fit the model to one data set with one chain on a
standard desktop computer using a single core. For the
correlated random walk models with no telemetered indi-
viduals, some parameters took longer to converge and
effective sample sizes were smaller; therefore, we used a
burn-in of 20,000 and then ran an additional 100,000 iter-
ations for three chains and thinned by two (note that
with these settings, it took 6-8 h per chain to fit the
model to one data set). To improve mixing of o, we
updated it six times per MCMC iteration within NIMBLE
for Scenarios 1-12. Under the Langevin scenarios,
o mixed reasonably well without the extra updating. In
all scenarios, individuals were prevented from leaving
the state space using a truncated Normal distribution;
therefore Equations (2)-(4) describing the movement
of the expected locations (s;,) were truncated at the bound-
ary of the state space (M). The R value was checked for
all parameters, where any simulation with an R of more
than 1.05 was removed and a new data set generated

until there were 100 simulations for each scenario with
Rs <1.05 (please refer to Appendix S1: Table S6 for more
details). We note that many of these simulations would
have converged if we had set the number of iterations
higher, but doing so would have made a relatively large
simulation study such as this much less feasible.

RESULTS

For all scenarios of the simple random walk movement
model with T = 25, we found that N was well estimated
with bias ranging from —1.4% to 2.2% and credible interval
coverage from 94% to 98% (please refer to Appendix S1:
Table S1). Results were similar for estimates of N in the
scenarios with T = 15, although the coverage was lower
(93% to 97%) and the bias slightly higher, particularly for
Scenario 1 (close to 5%, Appendix S1: Table S2). Parameter
estimates of o and o4¢; had minimal bias across all of the
random walk scenarios, with precision decreasing from
T =25to T = 15 (Figure 3).

The correlated random walk model, without telemetry
data, also resulted in estimates of abundance with mini-
mal bias of —1.16% to 1.56% and coverage ranging from
95% to 97% (Appendix S1: Table S3). The estimates of o
and o4 had minimal bias; however, estimates of y showed
negative bias in some scenarios, up to 18% in Scenario
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FIGURE 3
walk model. Scenarios 1-6, those labeled T15 had T = 15 sampling

Boxplots of parameter estimates under the random

occasions, all others had T = 25 sampling occasions. The top panel
shows ¢ and the bottom panel shows 64e. Scenario 1: ¢ = 0.1 and
64et = 0.05, Scenario 2: 6 = 0.1 and 64¢; = 0.1, Scenario 3: ¢ = 0.1
and o6g4e; = 0.15, Scenario 4: ¢ = 0.2 and o4e; = 0.05, Scenario 5:

o = 0.2 and 64¢; = 0.1, Scenario 6: ¢ = 0.2 and c4e; = 0.15. Red
lines indicate the true value for each scenario.
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FIGURE 4 Boxplots of parameter estimates under the
correlated random walk model without telemetry data (Scenarios
7-12) and with telemetry data (Scenarios 7A-12A). The top panel
shows o, the middle panel shows 64, and the bottom panel shows
y. Scenario 7: 6 = 0.1 and 64 = 0.05, Scenario 8: 6 = 0.1 and

64et = 0.1, Scenario 9: 6 = 0.1 and 64 = 0.15, Scenario 10: ¢ = 0.2
and 64, = 0.05, Scenario 11: 6 = 0.2 and 64¢; = 0.1, Scenario 12:

o = 0.2 and o4 = 0.15. For all scenarios, y = 0.5. Red lines
indicate the true value for each scenario.

7 (Figure 4). The average number of individuals captured
ranged across the six scenarios from 24.65 to 38.00, with
an average number of recaptures per individual ranging
from 5.03 to 16.42. Including the telemetry data markedly
improved the movement parameter estimates, specifically
Y, but also o and o4 (Figure 4). Estimates of N were
slightly improved when telemetered individuals were
included, with bias between —1.10% to 0.50% and similar
coverage of 95% to 98% (Appendix S1: Table S4).

The estimate of N under the Langevin movement
model had good coverage 94% to 97%, but showed a little
more consistent positive bias (0.6%-5.0%) compared with
the other two movement models (Appendix S1: Table S5).
The Langevin movement model returned unbiased results
for o, 64et, and & (Figure 5). In Scenarios 17 and 18, which
had 64, = 0.05 (the smallest detection values of the
Langevin scenarios), the estimates of ¢ were more impre-
cise than in the other Langevin scenarios; these two sce-
narios also had the lowest number of average recaptures.
The same was true for the strength of habitat selection (5),
in which the estimates were somewhat imprecise for both
the weak and strong selection values in the simulation
(and most imprecise in Scenarios 17 and 18).
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FIGURE 5 Boxplots of parameter estimates under the

integrated Langevin model (Scenarios 13-18). The top panel shows
o, the middle panel shows 64, and the bottom panel shows d.
Scenario 13: 6 = 0.1, 64¢; = 0.1, and & = 0.7, Scenario 14: ¢ = 0.1,
64et = 0.1, and 8 = 0.3, Scenario 15: 6 = 0.2, 64o; = 0.1, and 8 = 0.7,
Scenario 16: 6 = 0.2, 64 = 0.1, and & = 0.3, Scenario 17:

6 = 0.2,64¢; = 0.05, and & = 0.7, Scenario 18: 6 = 0.2, 64 = 0.05,
and 8 = 0.3. Red lines indicate the true value for each scenario.

DISCUSSION

Spatial capture-recapture models are now widely applied
in ecological studies and easily allow for incorporation of
individual heterogeneity due to differences in traits
(e.g., sex, age class, weight) which affect demography
(Plard et al., 2019). Despite this, SCR models have lagged
in incorporating other individual traits such as move-
ment. Movement reflects how individuals use resources,
avoid risks, and select habitats, which not only drive the
spatial distribution of populations, but also demographic
rates including survival, reproduction, and dispersal
(Boyce & McDonald, 1999). Here, we highlighted how to
incorporate more complex animal movement explicitly
into SCR models to address questions regarding animal
ecology and habitat selection. We also demonstrated that
more realistic movement models typically applied to
telemetry data can be informed by SCR data alone. In all
three models that we developed (simple random walk,
correlated random walk, and habitat-driven Langevin),
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new insights can be gained about how animals are mov-
ing and where they are using resources while simulta-
neously estimating density. Inferences about movement
parameters therefore apply to a well defined population
in both space and time. These movement processes can
be extended to include additional “building blocks” of
random walks (e.g., McClintock et al., 2021; Theng
et al., 2022) and can also be incorporated into open SCR
models to investigate relationships between movement
and demographic rates (e.g., survival, recruitment).

All of the models we examined performed well and
further demonstrated that SCR data alone can be sufficient
for distinguishing the detection process parameters
(e.g., Ao, Oger) from the movement process parameters
(e.g.,, o, v, 8) in integrated SCR movement models. How-
ever, we simulated fairly large data sets and note that
demands for capture and recapture data will increase as
movement models become more complex. In the simple
random walk, for Scenarios 5 and 6, we found the preci-
sion of ¢ and oy declined when going from T = 25 to
T = 15 sampling occasions. Based on this, we expect that
SCR data sets with fewer than 20 individuals recaptured
three or four times on average may not produce precise
estimates of the movement parameters. This was also clear
with the correlated random walk model where y was esti-
mated with bias. Scenarios 7 and 10, which had 64, = 0.05,
had the lowest number of recaptures of all the scenarios
(e.g., individuals were recaptured on average 6.47 times in
Scenario 10) and the most bias and imprecise estimates of
y. Despite R values that indicate convergence, the MCMC
chains for y in these cases often showed autocorrelation.
The small number of recaptures over T = 25 time steps
implies that there was little information on animal loca-
tions between any two or three time steps on average,
which likely contributed to the bias in estimates of y.

We found that incorporating auxiliary location data in
the correlated random walk models improved perfor-
mance (generally faster convergence with improved accu-
racy and precision for most parameters). This is consistent
with other work integrating telemetry data to inform cge
in standard SCR-type models (Linden et al, 2018;
Sollmann et al., 2012; Tenan et al., 2017). Fortunately, it is
becoming more common to collect auxiliary location data
on species of all sizes, in both terrestrial and aquatic envi-
ronments, and with higher resolution (Kays et al., 2015).
Indeed, some are calling this the “bio-logging decade”
(Lowerre-Barbieri et al., 2019). Taking advantage of
advancements in bio-logging data, we can fully capitalize
on integrated SCR movement models and provide a means
for a better understanding of the ecological processes driv-
ing movement and demography. However, this integration
presents some challenges, including spatial or temporal
mismatch between the SCR data and the location data
(Mitchell et al., 2021). In cases of spatial mismatch,

auxiliary location data could be used as the basis for an
informative prior on the movement model parameters
(e.g. 67, ) or included in the movement model likelihood,
but they should not be used to inform the detection
parameters (e.g., 65, Ao) Or population size (N). In this
bio-logging decade, the temporal resolution of animal-
borne telemetry location data is often occurring at rates
>1 location per SCR sampling occasion, whereas SCR
sampling commonly occurs at daily or weekly intervals
(e.g., data collected from hair snares). When the temporal
resolution of auxiliary locations is finer than the (dis-
crete-time) SCR sampling data, there are at least two
options: (1) model the auxiliary locations as a function of
s;; and og4er as done here; or (2) use a continuous-time
movement model that can be integrated over the time
scale of the SCR sampling occasions (McClintock
et al., 2021). The latter would also open the door to inte-
grating continuous-time movement models with
continuous-time SCR models (e.g., Borchers et al., 2014).
The Langevin movement model is a very useful tool
because it links animal movement as a function of habi-
tat directly to the spatial distribution of individuals on
the landscape. SCR explicitly models the spatial distribu-
tion of individuals, and therefore is fundamentally com-
patible with the concept underlying Langevin movement.
We found that standard SCR data alone can inform the
habitat selection parameter (5), as these data also inform
the underlying distribution of individuals. Although we
included only one habitat covariate and did not need aux-
iliary location data to estimate the parameters well, there
was some lack of precision in § estimates that was likely
to be due to relatively small sample sizes. In our simula-
tions, there were approximately n = 28 individuals cap-
tured on average 12 times (which is equivalent to having
12 relocations per individual) in the scenarios with
04t = 0.1 and approximately n = 25 individuals captured
on average five times when o4, = 0.05. Street et al.
(2021) showed that the required sample size in resource
selection analyses is dependent on the strength of the
selection and the landscape variation. Therefore, with
additional habitat covariates or more complex movement
models, auxiliary location data may become necessary to
tease out the habitat selection coefficients. Landscape
heterogeneity may play another important role in the
parameter estimates of N. Similar to SCR-RSF simula-
tions performed by Royle, Chandler, Sun, and Fuller
(2013), we found a slight positive bias in N of up to 5% in
some of our Langevin simulation scenarios. However, we
used the same underlying habitat layer in every scenario;
this could at least partially explain the consistent bias.
We also note that the median of the posterior distribution
was less biased (—0.41% to 3.67%) and was likely to be
attributable to the right skew in the posterior of N that is
common in Bayesian implementations of SCR models
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(Chandler et al., 2013). This is an area that requires fur-
ther study to understand the effects of spatial variation in
habitat covariates on parameter estimates.

The Langevin model holds particular promise as it
extends previous work integrating RSFs with SCR (Royle,
Chandler, Sun, & Fuller, 2013) into a new framework in
which habitat directly affects animal movement patterns,
not just the detection function. Additionally, the
Langevin—-SCR model offers a single-stage approach for
density surface modeling that explicitly links habitat-
driven movement and population abundance. This initial
simulation study shows that the integrated Langevin-
SCR model performs well under a specific set of condi-
tions. Moving forward, there are some other questions
that should be investigated such as the effect of landscape
variation on required sample sizes (Street et al., 2021)
and on the optimal grid layout (Dupont et al., 2020). It
would also be valuable to directly compare the Langevin—
SCR model to previous SCR-RSF models to evaluate
potential strengths and weaknesses.

Our study focuses on simulations and technical issues,
but our findings are widely applicable in directing ecologi-
cal studies. For example, 22 individual leopards were
photocaptured in a study of leopard density and space use
at a mean rate of 7.3 recaptures per individual (Balme
et al., 2019). These capture and recapture rates are very
similar to our simulations and, based on our findings, their
data would support the random walk model, but would
probably be insufficient to estimate parameters from the
correlated random walk without auxiliary data. More com-
mon in SCR studies is that the recapture rate is lower, for
example, Lopez-Bao et al. (2018) detected 65 individual
wolves from scat surveys, but the recapture rate was only
1.46. Similarly, Mitchell et al. (2021) found 143 individual
tortoises in their study but had very few recaptures. How-
ever, both studies collected concurrent telemetry data that
were used to improve the fit of standard SCR models and,
with the models presented here, these types of studies
could be expanded to examine resource use and the poten-
tial effects on the demographic rates. For practical pur-
poses, increasing the number of sampling occasions in
these studies may not be helpful as the capture rate was so
low and for the correlated random walk model we found
that having few to no recaptures between time steps led to
bias in estimates of y. Conversely, for studies with higher
recapture rates, we found in general that changing from
T = 25 to T = 15 occasions did not noticeably affect the
results for the random walk model. Therefore, practitioners
will need to balance the complexity of the movement
model with the probable recapture rate of their study spe-
cies and may need to include auxiliary data to achieve reli-
able results, especially for complex movement models.

Incorporating more explicit movement processes into
SCR models provides a means for asking more mechanistic

questions of how animals are using space, but movement
is also an individual trait that may impact the parameter
estimates in SCR. SCR models can be biased when impor-
tant individual traits, such as sex, are ignored (Tobler &
Powell, 2013). Therefore, although standard SCR models
generally perform well in simulations in terms of point
estimates of abundance (or density) despite violations of
the assumptions that activity centers are static and home
ranges are symmetric (Efford, 2019), it is important to rec-
ognize that oversimplifying movement processes can bias
SCR parameter estimates. For example, the estimate of 64¢;
in a standard SCR model would include both movement
associated with the detection process and extra variation
due to more realistic animal movement patterns (Royle
et al., 2016), and overestimating c4c; can lead to bias in
density (Sollmann et al., 2012). Movement processes such
as resource selection can induce individual heterogeneity
in detection, which can also lead to significant bias in stan-
dard SCR density estimators (Royle, Chandler, Sun, &
Fuller, 2013). For some species in which movement behav-
ior changes, say, seasonally, this could lead to extra varia-
tion in estimates of 4., and, therefore, variation in density
estimates that are in fact caused by changes in individual
behavioral (Harmsen et al., 2020) or habitat use. Being
able to separate out the movement process as we have
demonstrated here, and to be informed by habitat as in
the Langevin model, provides a mechanism to improve
estimates of c64et, A9, and density, as well as a clear link
between movement, detection, and demography, which
were previously conflated.

The simulation study here lays the groundwork for
integrating SCR and movement models as well as
assessing their performance. But this study also opens
the doors for future research that warrants investigation
such as trap placement relative to movement parameters
and in heterogeneous habitat, variation in the strength
of the directional persistence (y) or habitat selection ()
parameters, integration with continuous-time models,
maximum likelihood analysis using “semicomplete”
data likelihoods, and extensions to open population
models (e.g., McClintock et al., 2021). Understanding
the limitations of using SCR data alone to estimate more
complex movement model parameters will also be
important for designing future studies. The integration
of SCR with movement models holds much promise for
addressing questions at the intersection of population,
movement, and landscape ecology, but some technical
and data challenges remain to be explored.
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