

1 Can U.S. import regulations reduce IUU 2 fishing and improve production practices in 3 aquaculture?

Yingkai Fang*

Department of Aquaculture and Fisheries, University of Arkansas
at Pine Bluff, Email: fangy@uapb.edu

Frank Asche

Food Systems Institute and School of Forest, Fisheries and

Geomatics Sciences, University of Florida, U.S.

Department of Industrial Economics, University of Stavanger,
Stavanger, Norway

Abstract

Illegal, Unreported, and Unregulated (IUU) fishing is a significant challenge to sustainable seafood production which is difficult to address in traditional governance systems. Recently, the U.S. has implemented a Seafood Import Monitoring Program (SIMP) to combat IUU fishing and seafood fraud by requiring chain-of-custody documentation of 13 species when imported to the U.S. This will exclude IUU seafood from the U.S. market. If the U.S. has market power due to large imports, it will also give exporters incentives to improve management to comply with the SIMP. However, if the U.S. has no market power, the effect of the SIMP will be a change in trade patterns and the costs associated with the SIMP will be carried by U.S. consumers in the form of higher prices and lower seafood consumption. In this paper, a residual supply approach is used to investigate whether the U.S. has buyer power for three species included in the SIMP: shrimp, crab, and tuna. The standard residual supply framework is augmented to account for exchange rates. The results indicate that the U.S. has buyer power for most products. Hence, the SIMP will give incentives to improve the management practices in the investigated supply chains.

37 **Key words:** SIMP; residual supply; IUU fishing; international trade

38

39 * Corresponding author

41 Can U.S. import regulations reduce IUU fishing and
42 improve production practices in aquaculture?

43

44

Abstract

45 Illegal, Unreported, and Unregulated (IUU) fishing is a significant
46 challenge to sustainable seafood production which is difficult to
47 address in traditional governance systems. Recently, the U.S. has
48 implemented a Seafood Import Monitoring Program (SIMP) to
49 combat IUU fishing and seafood fraud by requiring chain-of-
50 custody documentation of 13 species when imported to the U.S.

51 This will exclude IUU seafood from the U.S. market. If the U.S.
52 has market power due to large imports, it will also give exporters
53 incentives to improve management to comply with the SIMP.

54 However, if the U.S. has no market power, the effect of the SIMP
55 will be a change in trade patterns and the costs associated with the
56 SIMP will be carried by U.S. consumers in the form of higher
57 prices and lower seafood consumption. In this paper, a residual
58 supply approach is used to investigate whether the U.S. has buyer
59 power for three species included in the SIMP: shrimp, crab, and
60 tuna. The standard residual supply framework is augmented to
61 account for exchange rates. The results indicate that the U.S. has
62 buyer power for most products. Hence, the SIMP will give
63 incentives to improve the management practices in the investigated
64 supply chains.

65 **Keywords:** SIMP; residual supply; IUU fishing; international trade

66

67 **1. Introduction**

68 The United States (U.S.) is the world's largest seafood importer by
69 value and recognized as a global leader in promoting sustainable
70 seafood production (FAO, 2020; NOAA, 2020). Moreover, despite
71 significant domestic production, seafood imports to the U.S. have
72 grown over 50% since 1980 (NOAA, 2020).¹ A challenge with
73 these imports is that a significant share may come from fisheries
74 and aquaculture producers with problematic environmental
75 production practices, such as Illegal, Unregulated, and Unreported
76 (IUU) fishing, seafood fraud (also related to aquaculture), and
77 excessive use of antibiotics in aquaculture (Roheim and Sutinen,
78 2006; Cabello et al., 2013; Lampert, 2017; Willette and Cheng,
79 2018; NOAA, 2018a). IUU fishing is an environmental challenge
80 as it leads to depleted fish stocks and unsustainable fisheries
81 (Roheim and Sutinen, 2006). Seafood fraud can facilitate
82 overfishing as fish from unsustainable fisheries are marketed as
83 sustainable (Kroetz et al., 2020) and can also be a food safety risk.
84 Excessive antibiotics use, if traces remain in the seafood a food
85 safety risk, may cause environmental externalities at the source.
86 Seafood is over-represented as a carrier of the food-born disease
87 (Uchida et al., 2017; Love et al., 2021).

¹ NOAA (2020) estimates that over 80% of the seafood consumed in the U.S. is imported. Gephart et al. (2019) estimate that this figure is lower, but still, that over 60% of the seafood consumed is imported.

88 In an attempt to combat IUU fishing and seafood fraud, a
89 Seafood Import Monitoring Program (SIMP) has been instigated.
90 A pilot for the program took effect on January 1, 2018, initially for
91 eleven species and was extended with two more from April 1,
92 2019, and will be extended to all the other seafood imports if the
93 program is successful (NOAA, 2018c).² The thirteen high-risk
94 species in relation to IUU fishing that made up over 40% of U.S.
95 imports by value in 2016 (NOAA, 2018b; USITC, 2018).³ The
96 SIMP requires that a complete production record of the seafood
97 imported to the U.S. is traced and provided, demonstrating that the
98 fish is legally caught or produced and that it is from sustainably
99 managed fisheries or aquaculture (NOAA, 2018a). Seafood
100 imports without the required files will not be released by the
101 Customs and Border Protection (CBP) (Havice, 2017), constituting
102 an import ban in practice. However, it is also worthwhile to note
103 that while the pilot program has been instigated, there are so far
104 very limited enforcement and guidelines with respect to the

² According to the World Trade Organization, the U.S. cannot restrict the import of products due to concerns with the production process if the domestic producers are not held to the same requirement. The pilot species were therefore reduced to 11 and did not include abalone and shrimp. From December 31, 2018, the pilot extended to these two species, and restrictions on the aquaculture management of abalone and shrimp have been released by NOAA in 2019 (NOAA, 2018c; NOAA, 2019a).

³ Priority species in the SIMP are: Abalone, Atlantic Cod, Blue Crab (Atlantic), Dolphinfish (Mahi Mahi), Grouper, King Crab (red), Pacific Cod, Red Snapper, Sea Cucumber, Sharks, Shrimp, Swordfish and Tunas (Albacore, Bigeye, Skipjack, Yellowfin, and Bluefin).

105 required documentation, so beyond paperwork, it has had a very
106 limited impact so far (Connelly, 2019).

107 This study focuses on the potential for the SIMP to achieve
108 its objectives for the three most important species by import value
109 in the SIMP: shrimp, crab, and tuna. Shrimp is the most consumed
110 seafood species in the U.S., making up to 27.5% of American
111 seafood consumption in 2017 (Shamshak et al., 2019; Love et al.,
112 2020), and shrimp farming is one of the fastest-growing industry in
113 aquaculture (Kobayashi et al., 2015; Garlock et al., 2020). While
114 there are significant landings of domestic shrimp in the U.S., the
115 market is dominated by imported shrimp, primarily from
116 aquaculture in developing countries (Asche et al., 2012; Smith et
117 al., 2017). However, the shrimp aquaculture industry often
118 operates in countries with poor governance systems, with
119 significant negative impacts on the environment as well as food
120 safety concerns such as excessive use of antibiotics (Broughton
121 and Walker, 2010; Cabello et al., 2013; Kroetz et al., 2020). Tuna
122 and crab are primarily sourced from fisheries and imported from
123 regions with weak fishery management systems (NOAA, 2020).
124 For instance, king crab is one of the most important crab species in
125 the SIMP by the import value, and nearly 90% of the king crab
126 imported to the U.S. are from Russia (USITC, 2019), where IUU
127 fishing is a real concern as the actual crab export levels are

128 reported to be two to four times higher than the official harvest
129 levels (WWF, 2014).⁴ Global tuna fisheries also face significant
130 challenges due to the high levels of IUU fishing (WWF, 2007). As
131 much as 70% of the tuna products have been reported to be from
132 IUU fishing in Pacific tuna fisheries (Souter et al., 2016).⁵

133 Whether the SIMP will provide incentives to reduce IUU
134 fishing and improve the production practices in aquaculture
135 depends on the extent to which the U.S. as an importer has
136 oligopsony power relative to the exporting countries. If the U.S.
137 has no buyer power, seafood from IUU fisheries will just be
138 exported to the other countries, and producers will have no
139 incentives to incur costs to comply with the SIMP. For products
140 that fulfill the U.S. requirements and are imported to the U.S., the
141 cost associated with SIMP will be fully borne by the U.S.
142 importers and ultimately the U.S. consumers. As a result, the
143 increasing price of these products in the U.S. will reduce seafood
144 imports and domestic consumption. On the other hand, if the U.S.
145 has buyer power, the implementation of SIMP will give countries
146 whose management systems do not conform to the sustainable

⁴ Blue crab is also a target species in the SIMP. Here, the buyer power of the U.S. in the blue crab market will not be tested since the majority of blue crab products are fresh and domestically produced. Only few products of blue crab crabmeat are imported (USITC, 2018).

⁵ It is worthwhile to note that it is not necessarily the illegal part of IUU that is the challenge here. McCluney et al. (2019) provide a good discussion of tuna management in the Pacific.

147 requirements incentives to improve their management systems. If
148 this is the case, the SIMP has the potential to reduce IUU fishing or
149 improve the aquaculture production practices, and the costs in
150 compliance with the SIMP will be shared between exporters and
151 U.S. consumers as determined by the relevant supply and demand
152 elasticities. Hence, it is of interest to investigate whether the U.S.
153 has buyer power for the species included in the SIMP pilot as this
154 is a necessary although not sufficient condition for the SIMP
155 initiative to actually reduce IUU fishing and improve aquaculture
156 production practice.⁶ The U.S. is a particularly important importing
157 country for many of the seafood species included in the SIMP,
158 making it more likely that the U.S. has the market power for these
159 species.

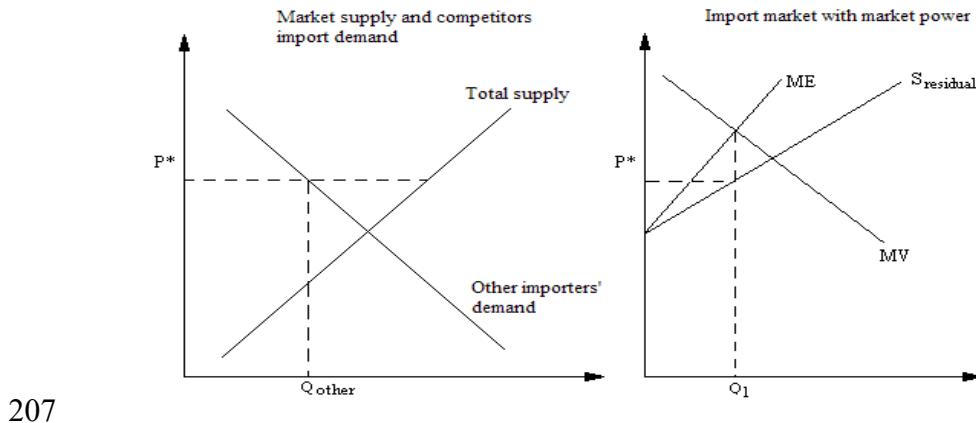
160 To estimate the potential buyer power of the U.S., residual
161 supply equations are estimated for the main exporters of the three
162 seafood species. The origin of this model is the residual demand
163 model of Baker and Bresnahan (1988). Durham and Sexton (1992)
164 adopted this model to a buying power setting by specifying a
165 residual supply curve. In an international trade setting, somewhat
166 different factors influence the degree of competition. Goldberg and
167 Knetter (1999) derive a residual demand model for import demand

⁶ To be sufficient, the benefits of exporting to the U.S. must outweigh the cost of the introducing the SIMP.

168 and note that exchange rate variation is particularly useful for
169 model identification. This paper adopts the residual supply model
170 of Durham and Sexton (1992) in an international trade setting
171 similarly as Goldberg and Knetter (1999) adopted the Baker and
172 Bresnahan (1988) residual demand model to this setting.

173 The following of this paper is structured as: In the
174 following section, the residual supply method will be introduced
175 by a start from a graph description. Then data analysis to estimate
176 the buyer power of the U.S. on different seafood species by
177 countries is given. Next, the results of the estimation on the U.S.
178 buyer power of the interested species using the residual supply
179 model is described. Finally, concluding remarks are offered.

180


181 **2. Method**

182 A graphical representation of a residual supply equation is a useful
183 starting point for the analysis. The residual supply curve that faces
184 an importing country depicts how a country influences the input
185 price through the quantity it purchases. To derive the residual
186 supply, one has to take into account the total supply from the
187 relevant source and the derived demand of all the other importers
188 of the product. This is illustrated in Figure 1. The left panel shows
189 the total market supply, S , and the derived demand from all the
190 other countries importing the product in question, D_{other} . The

191 residual supply S_{residual} curve shown in the right panel is then given
192 by the difference between the market supply and the other
193 countries' derived demand, which will determine the elasticity of
194 the residual supply curve. In a competitive market, the price is
195 completely determined by the other countries' derived demand,
196 and the residual supply curve will be flat and there is no scope to
197 exploit oligopsony power. In this case, an import restriction will
198 not have any effect on the price of the exporter. If the supply curve
199 is an upward-sloping one, it implies that the country of interest has
200 some oligopsony power.⁷ Given at the price P^* , for instance, if the
201 country will maximize its profits or to obtain a maximum rent
202 transfer, the country can act as a monopsonist on the marginal
203 expenditure (ME) curve. When the residual supply curve and the
204 market supply curve coincide, i.e., have the same slope, the
205 country will be a monopsonist as there will be no other countries
206 importing the product.

⁷ Note that this does not necessarily imply that individual importers in the importing country have oligopsony power. It is changes in aggregate imports that influence the exporter's price. As a result, this can be exploited by introducing trade measures that serve to 'coordinate' the importers in reducing the quantity imported. Trade measures as a coordination mechanism was discussed by Steen and Salvanes (1999).

207

208 **Figure 1. Market supply and residual supply of intermediate**
 209 **good M**

210

211 To test for the oligopsony power, a residual supply
 212 schedule provides a single equation that can be easily estimated
 213 when given a functional form. This provides a different approach
 214 to test for oligopsony power than the specifications of Schroeter
 215 (1988) and Morrison Paul (2001), who specified the markup
 216 equation together with a full cost function specification similar to
 217 the approach of Appelbaum (1982). Schroeter et al. (2000) used
 218 the model of Bresnahan (1982) and Lau (1982). The fact that a
 219 residual supply schedule can be estimated as a single linear
 220 equation in its parameters in many cases will make it an easier
 221 specification to use in the empirical work. The specification is
 222 independent of the assumptions about market structures in other
 223 markets, and any behavior on the buyer side from a competitive
 224 situation to a monopsony can be identified. Moreover, the inputs
 225 can be differentiated, which is an important feature in international

226 trade as many products are differentiated by origin. Finally,
 227 estimating the residual supply curve does not require the conduct
 228 parameters to be estimated, and one accordingly avoids the issues
 229 addressed by Corts (1999).

230 The inverse supply function for an exporter (or
 231 intermediate good M) facing the importing country of interest, im ,
 232 the country of interest, is

$$w^{im} = W^{im}(Q^{im}, w^2, \dots, w^n, V^s) \quad (1)$$

233 where w^{im} and Q^{im} are the interested importing country's import
 234 price in the exporter's currency and quantity, w^2, \dots, w^n is a vector of
 235 import prices to other countries of the good in the exporters'
 236 currencies, and V^s is a vector of exogenous variables entering the
 237 supply equation, typically the supplier's input prices in the
 238 exporter's currency. Correspondingly, we can formulate the
 239 inverse supply facing each of the other importers of good M , $i =$
 240 $2, \dots, N$, as

$$w^i = W^i(Q^i, w^j, w^{im}, V^s) \quad (2)$$

242 Goldberg and Knetter (1999) provide a discussion on how
 243 the export industry's first order conditions can be derived for a
 244 specific firm. A similar procedure is used here. As the object of
 245 interest is the import demand of a country, one can, by assuming
 246 the appropriate aggregation conditions are fulfilled, just pose the

247 importer's problem. For every exporter, import demand for the
 248 good can be found by solving the profit-maximizing problem:

$$249 \quad \max_{Q_i^{im}} \pi_i^{im} = epf(Q^{im}, z) - w^{im}Q^{im} - erz \quad (3)$$

250 where e is the exchange rate, p is the importer's sales price of the
 251 good in domestic currency, $f(\cdot)$ is the production function, which is
 252 related to the import quantity (Q^{im}) and the quantities of other
 253 input factors (e.g. marketing costs) (denoted as z vector) over the
 254 time period we investigated.⁸ Here, r is the prices of inputs in the
 255 domestic currency. The first-order conditions imply that the
 256 marginal revenue product (MRP) is set equal to the perceived
 257 marginal expenditure (ME). The MRP shows the additional value
 258 that the importing country attaches to a marginal increase in import
 259 of the product, and it is found by taking the derivative of the first
 260 term on the right-hand side of equation (3) with respect to the
 261 imported quantity, Q^{im} . Likewise, the ME shows the additional
 262 outlay following a marginal increase in imports, and it is found by
 263 taking the derivative of the second term on the right-hand side.
 264 Since ME depends on the importing country's conjectures
 265 concerning the response from other importers, it is perceived,
 266 rather than actual, as the marginal expenditure. By solving the
 267 equation (3), the first-order condition can be written as:

⁸ We assume that the state of technology is fixed in this continuous production function in our analysis.

$$w^{im} = eMRP^{im} - Q^{im} \sum_j \left(\frac{\partial W^{im}}{\partial w^j} \right) \left(\frac{\partial w^j}{\partial Q^{im}} \right) \quad (4)$$

268 The degree of market power is determined by the last
 269 parenthesis $\frac{\partial w^j}{\partial Q^{im}}$, which is often denoted by a conduct parameter
 270 λ^{im} . The conduct parameter λ^{im} shows the conjectures about the
 271 impacts on the other countries' import prices of increased demand
 272 from the country of interest. A similar expression can be found for
 273 all the other countries that import the good:

$$w^i = e^i MRP^i(p^i, r^i) - Q^i \sum_j \left(\frac{\partial w^i}{\partial w^j} \right) \left(\frac{\partial w^j}{\partial Q^i} \right) \quad (5)$$

274 for $i = 1, \dots, N$. Solving the equations defined by (2) and (4), one
 275 obtains the import prices in the competing importing countries as
 276 functions of the supply and demand shifters, and the imported
 277 quantity. Using the vectors notation, this is given as:

$$w^i = E^i(Q^{im}, V^s, eR, eP, \lambda^i) \quad (6)$$

278 where E^i is the equilibrium quantity for all markets except for the
 279 market of interest, P is the importer's sales price of the good in
 280 domestic currency in equilibrium, and R is the price of inputs in
 281 the domestic currency in equilibrium. All right-hand side variables
 282 but Q^{im} are exogenous. Equation (3-6) can, therefore, be denoted as
 283 a partially reduced form.

284 By substituting equation (6) into (1), one obtains the
 285 residual supply relationship facing the country of interest as
 286 follows:

$$w^{im} = W^{im}(Q^{im}, E^I(Q^{im}, V^s, eR, eP, \lambda^I), V^s) \quad (7)$$

287 Substituting out the redundancies, this gives the residual supply
 288 curve facing the country of interest as the formula below:

$$w^{im} = S^{res,im}(Q^{im}, V^s, eR, eP, \lambda^I) \quad (8)$$

289 Here, the residual supply curve is a function of the demanded
 290 quantity of the import goods, the supply shifters V^s , and the
 291 demand shifters for the other countries buying the goods, which
 292 are divided into their sales price eP and the price for their input
 293 factors eR . The output price, other input factor prices, and the
 294 exchange rate for the importing country are not included in this
 295 equation and will serve as the instruments for the endogenous
 296 quantity Q^{im} .

297 The key parameter of interest is the inverse residual supply
 298 elasticity, or the residual supply flexibility, which is expressed as:

$$\kappa = \frac{\partial \ln S}{\partial \ln Q^{im}} \quad (9)$$

299 This elasticity κ will be zero if the demanded quantity of the
 300 importing country does not influence the import price and the
 301 importing country does not have any market power. The
 302 significance level of this elasticity indicates if the importing

303 country has buyer power or not. The elasticity increases in
304 magnitude as the market power of the importing country increases.

305 As the model is formulated at the country level one can, of
306 course, provide criteria that give consistent aggregation as in
307 Appelbaum (1982), or one can interpret the estimated parameters
308 as an average indicator of the industry as in Goldberg and Knetter
309 (1999). Goldberg and Knetter (1999) are typical representatives of
310 the Pricing-To-Market literature, where exporting and importing
311 countries are the unit of analysis. In general, when using the
312 aggregated data, little focus is given to whether the aggregation
313 criterion is met. What matters in relation to the trade policy is that
314 trade measures can be interpreted as coordinated actions by the
315 importing firms in a country. This also applies in the case of the
316 trade regulations on the import, as these are typically levied on all
317 exporters from a given country. We will not elaborate further on
318 this issue here, but only note that the models can be used on
319 aggregated data to test whether groups of firms have market power
320 if one is willing to assume that an aggregation criterion holds or to
321 make interpretations based on the aggregated data directly.

322 As noted by Goldberg and Knetter (1999), in general, there
323 are substantially greater variations on the exchange rates than in
324 factor prices and other cost variables, which is also true for the
325 variables influencing revenue. With functional forms like a double

326 log, where it is reasonable to separate the exchange rates from the
 327 prices, the exchange rates may provide a very good indicator for
 328 changes in the marginal costs or the import demand even if the
 329 data of input price is not available. It is also reasonable to treat the
 330 exporter as a revenue maximizer, basically by modeling the supply
 331 as a trade allocation.⁹ If so, all the supply variables can be obtained
 332 from the exporting country's trade statistics.

333

334 **3. Model specification and data**

335 The residual supply equation to be estimated is given as:

$$\ln P_t = \beta_0 + \beta_1 \ln Q_t + \beta_2 \ln S_t + \beta_3 \ln D_t + \varepsilon_t \quad (10)$$

336 where P_t is the import price to the U.S. in the exporting country's
 337 currency, and Q_t is the quantity of goods imported. S_t is a vector
 338 of exogenous supply shifters in the exporting country, including
 339 the wage rate, the fuel price, and the total production of this
 340 species in the exporting country, with the prices in the local
 341 currency. The vector D_t contains exogenous demand shifters for
 342 alternative countries/markets to the U.S. The demand shifters are
 343 represented by the wage rates in the alternative countries and the
 344 exchange rates between the exporting country and the alternative

⁹ See e.g. Dixit and Norman (1980) for a discussion of the use of revenue functions to model trade allocation.

345 markets.¹⁰ The import quantity is endogenous if the residual supply
 346 schedule is not horizontal. The U.S. import demand equation
 347 provides the instruments. These are the U.S. retail price, U.S.
 348 production, exchange rates between the U.S. and the exporting
 349 country, the wage rate of the U.S. in addition to the lagged
 350 dependent variables.

351 The data covers the period from 2006 to 2016 and is
 352 limited by the availability of the U.S. retail scanner data to obtain
 353 the U.S. retail price. Quarterly import quantity and value for the
 354 seafood products are obtained from the U.S. International Trade
 355 Commission (USITC), where the data is organized by product
 356 form using the Harmonized Tariff Schedule (HTS) 10-digit codes
 357 (USITC, 2018). The retail price of each seafood species is obtained
 358 from the Nielsen scanner data panel (Nielsen, 2018).¹¹ The diesel
 359 price is collected from the U.S. Energy Information Administration
 360 (EIA) (EIA, 2018). FAO FishStatJ (Fisheries and aquaculture
 361 software, 2016) provides the production statistics in the exporting
 362 countries. The wage rates of all the countries are downloaded from
 363 the World Bank (World Bank, 2018), and the exchange rates are

¹⁰ We have also estimated the equations with interest rates as a measure of user cost of capital. These results are not reported as in all cases these parameters were statistically insignificant, and dropping the variable did not influence the interpretation of the results.

¹¹ We took the weighted average price for each seafood by quarters based on a monthly data available from Nielsen scanner panel dataset.

364 obtained from the Federal Reserve Bank of St. Louis (FRED,
365 2018). Finally, the alternative markets are found based on the
366 import shares from the United Nations Comtrade Database (UN
367 Comtrade, 2018).

368 For each of the species to be investigated, we chose the
369 product forms and export countries that make up the main share of
370 the imports as this is the source where the U.S. is most likely to be
371 able to exercise buyer power. A summary of the data used in
372 relation to total imports is provided in the appendix. Frozen shrimp
373 is the largest imported shrimp category both in value and quantity
374 to the U.S., making up more than 70% of the total shrimp imports.
375 The main categories of the frozen shrimp are peeled shrimp and
376 shell-on shrimps in different weights, which almost take equal
377 import shares. Asche et al. (2012) found that the U.S. shrimp
378 market is highly integrated, and the relative prices are constant.
379 Hence, the frozen shell-on shrimp and the frozen peeled shrimp are
380 aggregated into one category. Thailand, Ecuador, Indonesia, and
381 India are the largest shrimp suppliers to the U.S., and these
382 countries together supply almost two-thirds of the frozen shrimp
383 imported. The alternative markets of these four main exporting
384 countries vary by country. For Thai shrimp, Japan, Canada, United
385 Kingdom, South Korea are considered alternative markets. For
386 Ecuadorian shrimp, the largest alternative markets are Vietnam,

387 EU, China, and South Korea. For Indonesian shrimp, alternative
388 markets are Japan, EU, Vietnam, and China, and for Indian shrimp,
389 alternative markets are Japan, Vietnam, and the EU.

390 Frozen crab is clearly the most important by an import
391 share of more than 90% (USITC, 2018). Russia is the only
392 exporting country of interest in this study as almost 90% of the
393 king crabs imported to the U.S. are from Russia. South Korea is
394 the largest alternative market of the U.S. for the king crab from
395 Russia, with the Netherlands, Japan, and Norway as other
396 important alternative markets.

397 More than 90% of the tuna imported to the U.S. are
398 prepared. Four prepared tuna products are aggregated into our tuna
399 import variable.¹² The exporting countries are Thailand, Ecuador,
400 and Vietnam. For Thai tuna, alternative markets are Australia,
401 Japan, Egypt, and Canada. For Ecuadorian tuna, it is Spain,
402 Venezuela, the Netherlands, and Columbia, and for Vietnamese
403 tuna, it is Germany, Thailand, and Japan. Since Ecuador uses U.S.
404 dollars as the currency, only the wage rates of the alternative
405 countries are used as the demand shifters.

406

407 **4. Empirical results**

¹² The majority of tuna products include those with HTS code 1604143091, 1604143099, 1604144000 and 1604143059.

408 Table 1 and Table 2 show respectively the results for the U.S.
409 imports for shrimp, king crab, and tuna. All equations are reported
410 with robust standard errors. The estimated equations perform well
411 econometrically. Except for tuna from Ecuador where the R^2 is
412 only 0.474, all equations have good explanatory power. Moreover,
413 in all equations, Hansen's J-test cannot be rejected for any of the
414 equations, indicating that the instruments are valid. In all the
415 equations, at least one of the supply shifters and one of the demand
416 shifters are statistically significant. Initially, all models were
417 estimated with a set of seasonal dummies. These were dropped if
418 an F-test indicated that they were statistically significant. In Tables
419 1 and 2, it is indicated if seasonal dummies are present or not, but
420 for brevity, the individual parameter estimates are not reported.

421 As can be seen in the first row (import quantity) of Table 1
422 and Table 2, the residual supply elasticities indicate that there is a
423 statistically significant elasticity for most of the countries,
424 indicating that the U.S. has buyer power for these products. The
425 results reported in Table 1 show that the U.S. has a high degree of
426 buyer power for shrimp imports from Thailand, Indonesia, and
427 India. However, the elasticity is not statistically significant for
428 Ecuador. For the three countries where the elasticity is statistically
429 significant, the magnitude is also relatively large. This implies that
430 the SIMP is likely to provide significant incentives to improve

431 production practices in those countries. At first glance, it may seem
432 somewhat surprising that the only country where the U.S. does not
433 have market power is the closest country geographically and
434 located in the Americas. However, most of Ecuador's exports go to
435 China, and in most years the EU also takes more Ecuadorian
436 shrimp than the U.S. as the country export primarily head-on
437 shrimp, a quality that most Asian producers cannot supply. Hence,
438 Ecuador has good alternative markets to the U.S. market.

439 Table 2 reports the estimated equations for king crab and
440 tuna. The residual supply elasticity of Russian king crab is
441 statistically significant with a relatively high magnitude (0.944),
442 indicating that the U.S. has a substantial buyer power on the king
443 crab imported from Russia. This indicates that SIMP can provide a
444 strong incentive for Russian king crabbers to improve management
445 practices to get compliance with the SIMP. For tuna, the U.S. is
446 found to have significant buyer power for Thailand and Vietnam.
447 However, the estimates of tuna imported from Ecuador are not
448 significant, indicating that the U.S. does not have buying power for
449 tuna from Ecuador. This is largely for similar reasons as for
450 shrimp, as Ecuador serves other markets partly due to the
451 controversies and requirements surrounding dolphin-safe tuna
452 (Roheim and Sutinen, 2006)

453

454 **Table 1. Residual supply model estimates for frozen shrimp**
 455 **imported to the U.S.**

Variables	Frozen shrimp			
	Thailand	Ecuador	Indonesia	India
Import quantities	0.636*** (0.0952)	0.0522 (0.0448)	0.736*** (0.254)	0.679*** (0.166)
Fuel price	0.197*** (0.0571)	0.250 (0.152)	0.423** (0.211)	0.608** (0.251)
Fish catch	0.108 (0.143)	1.207*** (0.255)		0.0228* (0.0134)
Wage	0.00938 (0.0543)		4.097*** (0.816)	1.723** (0.837)
Exchange rate_1	0.756 (0.667)		0.373 (0.739)	4.903*** (1.398)
Exchange rate_2	1.010 (1.646)		- 0.0131*** (0.00493)	- 16.04*** (5.752)
Exchange rate_3	2.988** (1.498)		0.546 (6.431)	0.00545 (0.00465)
Exchange rate_4	0.148 (0.501)		-0.817 (0.701)	
Wage_MktA1	-0.486 (1.077)	- 1.231*** (0.176)	-7.244*** (2.221)	- 2.406*** (0.719)
Wage_MktA2	0.870 (1.188)	-2.718 (2.657)	-2.338 (3.607)	-0.364 (0.348)
Wage_MktA3	0.867 (1.242)	0.548 (0.335)	0.696 (0.631)	-2.209 (1.565)
Wage_MktA4	2.638*** (1.017)	0.0108 (0.187)	-2.896 (2.299)	
Constant	-28.10 (20.62)	30.25 (24.10)	57.95 (49.62)	29.47 (18.47)
Seasonality	YES	YES	NO	YES
Hansen J (p-value)	0.546	0.177	0.430	0.076
R ²	0.968	0.946	0.803	0.970
Observations	42	42	42	42

456 * , ** , *** indicates that the corresponding coefficients are
457 significant at the level of 10%, 5%, and 1%.

458 **Table 2. Residual supply model estimates for king crab and**
 459 **prepared tuna imported to the U.S.**

Variables	King crab		Tuna	
	Russia	Thailand	Ecuador	Vietnam
Import quantities	0.944*** (0.0925)	0.912*** (0.100)	-0.379 (0.547)	0.847*** (0.228)
Fuel price	0.779*** (0.230)	0.352*** (0.0694)	0.344** (0.166)	0.393*** (0.100)
Fish catch	0.188 (0.133)	-0.0658 (0.0615)	0.535* (0.292)	0.420 (0.274)
Wage	-0.151 (0.550)	0.0642* (0.0356)	-0.371 (0.307)	1.051** (0.471)
Exchange rate_1	-7.402*** (2.264)	8.06e-05 (0.000120)		-0.000784 (0.00153)
Exchange rate_2	0.00427** (0.00213)	-0.553 (0.789)		-0.0580 (0.479)
Exchange rate_3	4.318*** (1.092)	-0.0261 (0.124)		-1.576** (0.644)
Exchange rate_4	0.729 (0.465)	-1.31e-05 (9.38e-06)		
Wage_MktA1	5.977*** (0.633)	-3.886*** (1.172)	-3.435 (2.426)	-5.866 (4.204)
Wage_MktA2	-3.449** (1.653)	-1.093*** (0.419)	-0.0726 (0.310)	0.0795 (0.0581)
Wage_MktA3	-7.822*** (1.402)	0.758*** (0.274)	-1.611 (2.335)	2.492** (1.027)
Wage_MktA4	2.380*** (0.718)	-3.164*** (0.405)	-0.878* (0.459)	
Constant	22.66 (17.00)	60.83*** (7.969)	68.84 (51.41)	10.57 (28.81)
Seasonality	NO	NO	YES	NO
Hansen J (p-value)	0.076	0.102	0.565	0.067
R ²	0.940	0.968	0.474	0.924
Observations	43	42	42	42

460 *, **, *** indicates that the corresponding coefficients are
461 significant at the level of 10%, 5%, and 1%.

462 **5. Discussion and conclusions**

463 Measures influencing the market access are increasingly used to
464 influence seafood production due to sustainability concerns
465 (Brécard et al., 2009; Ankemah-Yeboah et al., 2016: 2020;
466 Brønnmann and Asche, 2017; Roheim et al., 2018; Sogn-Grundvåg
467 et al., 2019). While the most common tools are associated with
468 private measures such as ecolabels, there is an increasing interest
469 in using trade measures against exporting countries with
470 unacceptable production practices. As the largest seafood
471 importing country, the U.S. plays an important role in the global
472 seafood market. The U.S. already has import measures in place for
473 two seafood species, dolphin-safe tuna and excluding turtle
474 bycatch shrimp (Asche et al. 2016; NOAA, 2018d). To address the
475 increasing concerns over the fishery practices related to IUU
476 fishing, seafood fraud, and poor production practices in
477 aquaculture, a pilot for a more comprehensive program was
478 implemented in 2018, requiring some seafood species to provide
479 tracing information as well as documentation of the production
480 process when they enter the U.S. market (NOAA, 2018e).

481 Whether the imposed trade measures will actually influence
482 exporters' production behavior depends on the extent of the U.S.
483 market power relative to various exporters. If the buyer country
484 (the U.S. in our case) has a high degree of market power, the

485 exporters will have limited access to alternative markets and the
486 trade measures will provide strong incentives for exporters to
487 improve fishery management to comply with the SIMP. The
488 incidence will lead to a sharing of the management costs between
489 producers and U.S. consumers. On the other hand, if the U.S. does
490 not have buyer power, non-compliant producers will just redirect
491 their exports elsewhere and U.S. consumers will have to cover all
492 SIMP costs for compliant producers. In this paper, a residual
493 supply model is developed for an international trade setting to
494 investigate the degree of oligopsony power of the U.S. as an
495 importing market for shrimp, tuna, and king crab for the largest
496 exporting countries to the U.S.

497 The empirical results indicate a high degree of buyer power
498 of the U.S. for shrimp from Thailand, Indonesia, and India, for
499 king crab from Russia, and for tuna from Thailand and Vietnam.
500 Hence, the SIMP will give strong incentives to reduce IUU fishing
501 in these countries. Somewhat surprisingly, the degree of buyer
502 power of the U.S. for Ecuador is not significant, highlighting that
503 product form/quality may be more important than distance and
504 trade costs for the disaggregated product (Baldwin and Harrigan,
505 2011; Tveterås, 2015; Straume et al., 2020ab). As a consequence,
506 the SIMP is not likely to provide any incentives for producers in
507 Ecuador to change their practices. In sum, these results are

508 promising for the potential efficiency of the SIMP to lead to
509 positive changes on the water, even though its impact varies with
510 species and countries. However, it is still worthwhile to note that
511 the U.S. having market power is only a necessary condition.
512 Whether the incentives of compliance are strong enough to cover
513 the corresponding costs is an open question.

514 SIMP measures are a significant change in trade practice as
515 they prescribe general conditions for many seafood species to be
516 imported to the U.S. market, and leave no room for trade itself to
517 help improving production practices.¹³ This may pose a challenge
518 particularly to developing countries with limited capacity to
519 manage their seafood production in a way required by SIMP, and
520 these will then also be excluded from the U.S. market. Hence, it is
521 likely that there is an implicit north-south bias in the
522 implementation of SIMP.¹⁴ The measures may also lead to a
523 reallocation of trade patterns if there are countries that currently do
524 not export significant quantities of seafood to the U.S. which can
525 comply with the SIMP at a lower or no cost.¹⁵

¹³ SIMP requires a consistent filing system for all priority species import to include the header records, permit number, product data, and vessel specific catch information (NOAA, 2019). However, the production practices vary by seafood species.

¹⁴ NOAA modified the rules to implement SIMP for aggregated harvests from small vessels and small-scale aquaculture to help reduce the compliance costs (NOAA, 2019). However, this is likely to miss data and lead to a lack of efficiency for the SIMP implementation in developing countries.

¹⁵ The literature on anti-dumping measures in the seafood market indicates that this may be a real challenge, as is shown for salmon and shrimp (Asche et al.,

526 In a global market, the number of alternative markets will
527 have impacts on the effectiveness of any trade measure.¹⁶ This will
528 limit the effect of any unilateral action by any country, and this
529 will also be the case for the U.S. SIMP. However, the seafood
530 market is not only global, but developed countries are taking a very
531 high share (>70%) of the imports (Asche et al., 2015; Anderson et
532 al., 2018). These countries are largely the ones that share the U.S.
533 concerns over IUU fishing. Hence, coordinating the U.S. efforts
534 with the EU, in particular, would increase the efficiency of trade
535 measures to combat IUU fishing. The EU has used trade policy to
536 combat IUU fishing for about a decade using a traffic-light based
537 card system (Leroy et al., 2016). However, this is less
538 discriminating than the U.S. system in that it is targeting national
539 management and not specific species.

540

2016). However, there are also important differences in that the anti-dumping cases targeted at a limited number of named countries, while the SIMP is comprehensive.

¹⁶ Import data of the U.S. and EU show inconsistent restrictions on the import seafood species. Exporting seafood to the EU may not be included in the SIMP, and vice versa (NOAA, 2019). It is thus not surprising to notice that EU has detected many unsustainable fisheries management system since it went into effect, while there are no IUU vessels reported since the SIMP implementation.

541 **Acknowledgments**

542 Asche acknowledges support from Florida Sea Grant and Hatch
543 project #1015617. Researcher(s) own analyses is derived based in
544 part on data from The Nielsen Company (US), LLC and marketing
545 databases provided through the Nielsen Datasets at the Kilts Center
546 for Marketing Data Center at The University of Chicago Booth
547 School of Business. The conclusions drawn from the Nielsen data
548 are those of the researcher(s) and do not reflect the views of
549 Nielsen or Florida Sea Grant. Nielsen or Florida Sea Grant is not
550 responsible for, had no role in, and was not involved in analyzing
551 and preparing the results reported herein.

552

553 **References:**

554 Anderson, J.L., Asche, F., Garlock, T., 2018. Globalization and
 555 Commoditization: The Transformation of the Seafood
 556 Market. *Journal of Commodity Markets*. 12, 2-8.

557 Ankamah-Yeboah, I., Asche F., Bronnmann, J., Nielsen, M., 2020.
 558 Consumer preference heterogeneity and preference
 559 segmentation: The case of ecolabeled salmon in Danish
 560 retail sales. *Marine Resource Economics*, 35(2), 159-176.

561 Ankamah-Yeboah, I., Nielsen, M., Nielsen, R., 2016. Price
 562 premium of organic salmon in Danish retail sale.
 563 *Ecological Economics*, 122, 54-60.

564 Appelbaum, E., 1982. The Estimation of the Degree of Oligopoly
 565 Power. *Journal of Econometrics*, 19(2–3): 287–99.

566 Asche, F., Bellemare, M., Roheim, C. A., Smith, M. D., Tveteras,
 567 S., 2015. Fair Enough? Food Security and the International
 568 Trade of Seafood. *World Development*, 67, 151-160.

569 Asche, F., Bennear, L. S., Oglend, A., Smith, M. D., 2012. U.S.
 570 Shrimp Market Integration. *Marine Resource Economics*,
 571 27(2), 181–192.

572 Asche, F., Roheim C. A., Smith M. D., 2016. Trade Intervention:
 573 Not a Silver Bullet to Address Environmental Externalities
 574 in Global Aquaculture. *Marine Policy*. 69, 194-201.

575 Baker, J. B., Bresnahan, T. F., 1988. Estimating the residual
 576 demand curve facing a single firm. *International Journal of
 577 Industrial Organization*, 6 (3), 283-300.

578 Baldwin, R., Harrigan, J., 2011. Zeros, Quality, and Space: Trade
 579 Theory and Trade Evidence. *American Economic Journal:
 580 Microeconomics*, 3, 60–88.

581 Brécard, D., Hlaimi, B., Lucas, S., Perraudeau, Y., Salladarré, F.,
 582 2009. Determinants of demand for green products: An
 583 application to eco-label demand for fish in Europe.
 584 *Ecological Economics*, 69(1), 115–125.

585 Bresnahan, T. F., 1982. The Oligopoly Solution Concept is
 586 Identified. *Economics Letters*, 10(1–2): 87–92.

587 Bronnmann, J., Asche, F., 2017. Sustainable Seafood from
 588 Aquaculture and Wild Fisheries: Insights from a Discrete

626 A Global Blue Revolution: Aquaculture Growth across
627 Regions, Species, and Countries. *Reviews in Fisheries*
628 *Science and Aquaculture*. 28(1), 107-116.

629 Gephart, J. A., Froehlich, H. E., Branch, T. A., 2019. To create
630 sustainable seafood industries, the United States needs a
631 better accounting of imports and exports. *Proceedings of*
632 *the National Academy of Sciences of the United States of*
633 *America*, 116(19), 9142–9146.

634 Goldberg, P. K., Knetter, M. M., 1999. Measuring the intensity of
635 competition in export markets. *Journal of International*
636 *Economics*, 47(1), 27–60.

637 Havice, E., 2017. US Seafood Import Monitoring Program:
638 Briefing and Analysis for the Pacific Islands Forum
639 Fisheries Agency. Retrieved from
640 <https://www.ffa.int/system/files/Havice%202017%20-Brief%20on%20US%20Seafood%20Import%20Monitoring%20Program-FINAL.pdf>

641

642 Kobayashi, M., Msangi, S., Batka, M., Vannuccini, S., Dey, M.M.,
643 Anderson, J.L., 2015. Fish to 2030: The Role and
644 Opportunity for Aquaculture, *Aquaculture Economics and*
645 *Management*, 19:3, 282-300.

646 Kroetz, K., Luque, G.M., Gephart, J.A., Jardine, S.L., Lee, P.,
647 Moore, K.C., Cole, C., Steinkruger, A., Donlan, C.J., 2020.
648 Consequences of seafood mislabeling for marine
649 populations and fisheries management. *Proceedings of the*
650 *National Academy of Science*. 117 (48) 30318-30323.

651 Lampert, T., 2017. Stopping Illegal Fishing and Seafood
652 Fraudsters: The Presidential Task Force. *Bost. Coll. Law*
653 *Rev.*, vol. 58, no. 5, pp. 1629–1658, 2017.

654 Lau, L. J., 1982. On Identifying the Degree of Competitiveness
655 from Industry Price and Output Data, *Economics Letters*,
656 10(1–2): 93–99.

657 Leroy, A., Galletti, F., Chaboud, C., 2016. The EU restrictive trade
658 measures against IUU fishing. *Marine Policy*, 64, 82–90.

659 Love, D. C., Nussbaumer, E., Harding, J., Gephart, J.A., Anderson,
660 J.L., Stroll, J.S., Thorne-Lyman, A.L., Bloem, M., 2021.
661 Risks Shift Along Seafood Supply Chains. *Global Food*
662 *Security*, 28(March), 100476.

663 Love, D.C., Asche, F., Conrad, Z., Young, R., Harding, J., Neff,
664 R., 2020. Food Sources and Expenditures for Seafood in
665 the United States. *Nutrients*, 12(6), 1810.

666 McCluney, J. K., Anderson, C. M., Anderson, J. L., 2019. The
667 fishery performance indicators for global tuna fisheries.
668 *Nature Communications*, 10(1), 1641.

669 Morrison Paul, C. J., 2001. Cost Economies and Market Power:
670 The Case of the U.S. Meat Packing Industry. *Review of
671 Economics and Statistics*, 83(3): 531–40.

672 Nielsen, 2018. Retrieved from
673 <https://www.chicagobooth.edu/research/kilts/datasets/nieles>
674 n.

675 NOAA, 2018a. U.S. Seafood Import Monitoring Program to
676 Include Shrimp and Abalone by December 31. NOAA
677 Fisheries. Retrieved November 27, 2018, from
678 <https://www.fisheries.noaa.gov/feature-story/us-seafood-import-monitoring-program-include-shrimp-and-abalone-december-31>.

681 NOAA, 2018b. Final Rule Traceability. Retrieved January 13,
682 2018, from
683 <http://www.iuufishing.noaa.gov/RecommendationsandActions/RECOMMENDATION1415/FinalRuleTraceability.aspx>.

686 NOAA, 2018c. Shrimp and Abalone Compliance Provisions for
687 the Seafood Import Monitoring Program December 31
688 through March 1, 2019. NOAA Fisheries. Retrieved
689 February 17, 2019, from
690 <https://www.iuufishing.noaa.gov/RecommendationsandActions/RECOMMENDATION1415/Implementation.aspx>.

692 NOAA, 2018d. Shrimp Import Legislation for Sea Turtle
693 Conservation. Retrieved July 31, 2019, from
694 <https://www.fisheries.noaa.gov/national/endangered-species-conservation/shrimp-import-legislation-sea-turtle-conservation>.

697 NOAA, 2018e. Compliance Guide: U.S. Seafood Import
698 Monitoring Program. Retrieved July 1, 2019, from
699 <https://www.iuufishing.noaa.gov/Portals/33/SIMPComplianceGuide2018rev.pdf?ver=2018-12-11-172442-553>.

701 NOAA, 2019. Regulating Aquaculture. Retrieved July 1, 2019,
 702 from NOAA (20197). Final Ruel to Implement U.S.
 703 Seafood Import Monitoring Program RIN 0648-BF09:
 704 Final Regulatory Impact Review and Final Regulatory
 705 Flexibility Analysis. Retrieved June 1, 2019, from
 706 <https://www.regulations.gov/document?D=NOAA-NMFS-2015-0122-0112>.
 707

708 NOAA, 2020. Fisheries of the United States, 2018 Report.
 709 Retrieved from
 710 <https://www.fisheries.noaa.gov/resource/document/fisheries-united-states-2018-report>.
 711

712 Roheim, C. A., Bush, S. R., Asche, F., Sanchirico, J. N., Uchida,
 713 H., 2018. Evolution and future of the sustainable seafood
 714 market. *Nature Sustainability*, 1(8), 392–398.

715 Roheim, C., Sutinen, J., 2006. Trade and Marketplace Measures to
 716 Promote Sustainable Fishing Practices. International Centre
 717 for Trade and Sustainable Development, Paris, France.

718 Schroeter, J. R., 1988. Estimating the Degree of Market Power in
 719 the Beef Packing Industry. *Review of Economics and
 720 Statistics*, 70(1), 158–62.

721 Schroeter, J. R., Azzam, A. M., Zhang, M., 2000. Measuring
 722 Market Power in Bilateral Oligopoly: The Wholesale
 723 Market for Beef. *Southern Economic Journal*, 66(3), 526–
 724 47.

725 Shamshak G. L., Anderson J. L., Asche F., Garlock T., Love D. C.,
 726 2019. U.S. seafood consumption, *Journal of the World
 727 Aquaculture Society*, 50, 715-727.

728 Smith, M.D., Oglend, A., Kirkpatrick, J., Asche, F., Bennear, L.S.,
 729 Craig, J.K., Nance, J. M., 2017. Seafood Prices Reveal
 730 Impacts of a Major Ecological Disturbance. *Proceedings of
 731 the National Academy of Sciences*. 114(7), 1512-1517.

732 Sogn-Grundvåg, G., Asche, F., Zhang, D., Young, J. A., 2019.
 733 Eco-Labels and Product Longevity: The Case of Whitefish
 734 in UK Grocery Retailing. *Food Policy*. 88, 101750.

735 Souter, D., Harris, C., Banks, R., Pearce, J., Davies, T., 2016.
 736 Towards the Quantification of Illegal, Unreported, and
 737 Unregulated (IUU) Fishing in the Pacific Islands Region.
 738 Retrieved from <https://www.ffa.int/system/files/FFA>
 739 Quantifying IUU Report - Final.pdf

740 Steen, F., Salvanes, K. G., 1999. Testing for Market Power Using a
 741 Dynamic Oligopoly Model. *International Journal of*
 742 *Industrial Organization*, 17(2), 147–77.

743 Straume, H. M., Anderson J. L., Asche, F., Gaasland, I., 2020b.
 744 Delivering the goods: The determinants of Norwegian
 745 seafood exports. *Marine Resource Economics*, 35(1), 83-
 746 96.

747 Straume, H. M., Landazuri-Tveteraas, U., Oglend, A., 2020a.
 748 Insights from transaction data: Norwegian aquaculture
 749 exports. *Aquaculture Economics and Management*, 24(3)
 750 255-272.

751 Tveterås, S. L., 2015. Price Analysis of Export Behavior of
 752 Aquaculture Producers in Honduras and Peru. *Aquaculture*
 753 *Economics and Management*, 19(1), 125–147.

754 Uchida, H., C.A. Roheim and R. Johnston. 2017. Balancing the
 755 health risks and benefits of seafood: How does available
 756 guidance affect consumer choices? *American Journal of*
 757 *Agricultural Economics*, 99(4):1056–1077.

758 UN Comtrade, 2018. Retrieved from <https://comtrade.un.org>

759 USITC, 2018. Retrieved from <https://dataweb.usitc.gov/>

760 Willette, D. A., Cheng, S. H., 2018. Delivering on seafood
 761 traceability under the new U.S. import monitoring program.
 762 *Ambio*, 47(1), 25–30.

763 World Bank, 2018. Retrieved from
 764 <https://data.worldbank.org/indicator/SL.EMP.MPYR.ZS>

765 WWF, 2007. Tuna in Trouble: Major Problems for the World's
 766 Tuna Fisheries. Retrieved March 20, 2019, from
 767 <http://wwf.panda.org/?92540/Tuna-in-Trouble-Major-Problems-for-the-Worlds-Tuna-Fisheries>.

769 WWF, 2014. Illegal Russian Crab: An investigation of trade flow.
 770 Retrieved November 27, 2018, from
 771 <http://wwf.panda.org/?231010/Illegal-Russian-crab-entering-US-market> <https://dataweb.usitc.gov/>

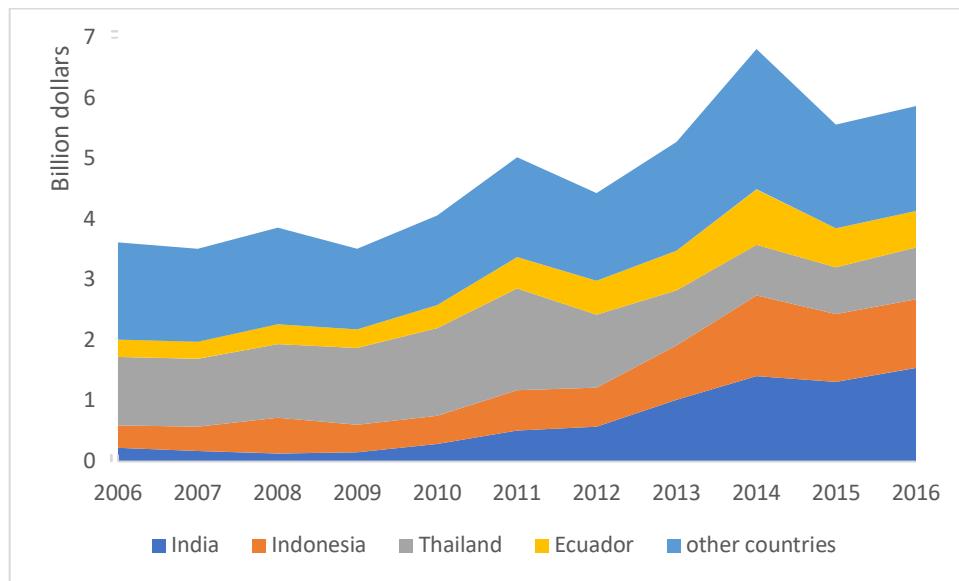
773

774

775 **Appendix**

776 The total 2016 U.S. imports of the HTS product codes used in this
 777 paper are reported in Table A1 together with the imports from the
 778 countries used in the analysis and their share of imports. The
 779 development over time is shown in Fig. A.1-A.3.

780

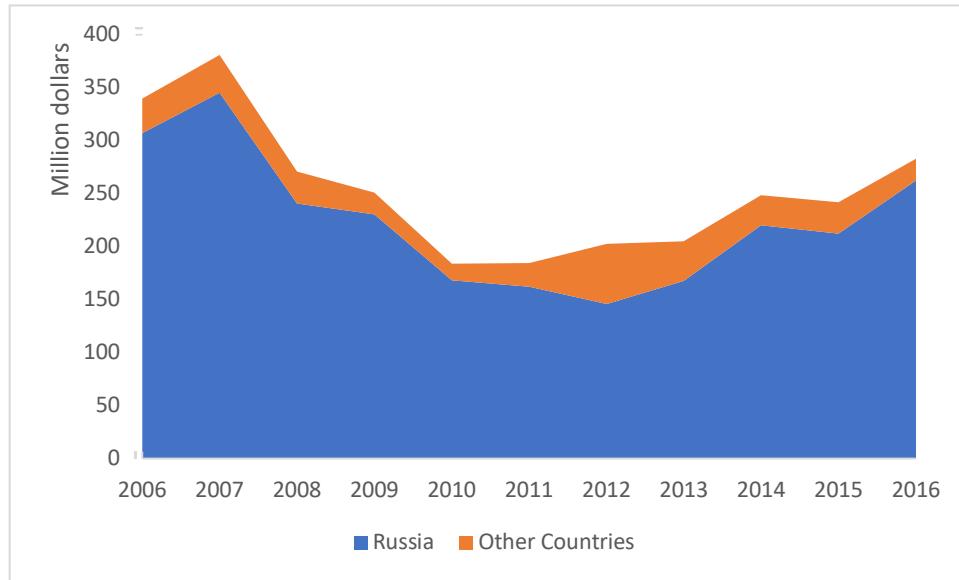

781 Table A1. Import value (in million dollars) of investigated seafood
 782 products in 2016

	Russia	\$263 M
King crab	% share in total imports	92.88%
Total king crab imports		\$283 M
	India	\$1546 M
	% share in total imports	26.34%
	Indonesia	\$1135 M
Frozen shrimp	% share in total imports	19.33%
	Thailand	\$852 M
	% share in total imports	14.52%
	Ecuador	\$600 M
	% share in total imports	10.21%
Total shrimp imports		\$5872 M
	Thailand	\$1076 M
	% share in total imports	42.84%
Prepared tuna	Ecuador	\$259 M
	% share in total imports	10.32%
	Vietnam	\$243 M
	% share in total imports	9.69%
Total tuna imports		\$2511 M

783

784

785


786

787

Fig. A.1. Import values of frozen shrimp from different

788

countries (2016=1)

789

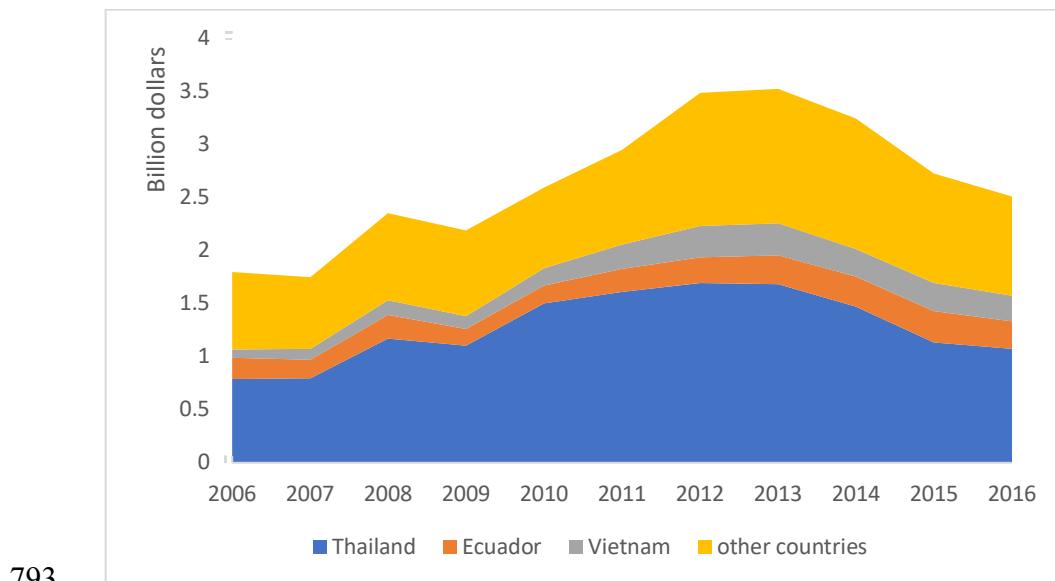

790

Fig. A.2. Import value of king crab and crabmeat from

791

different countries (2016=1)

792

793

Fig. A.3. Import value of the prepared tuna (HTS code

794 1604143059, 1604143091, 1604143099, and 1604144000) from

795 different countries (2016=1)

796

797