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Abstract 

Assuming linear wave theory for waves riding on a weak current of 0(€) 

compared to the wave phase speed, an approximate dispersion relation is 

2developed to 0(€ ) for arbitrary current U(z) in water of finite depth. The

20(€ ) approximation is shown to be a significant improvement over the 0(€)

result, in comparison with numerical and analytic results. Various current 

profiles in the full range of water depths are considered. Comments on 

approximate action conservation and application to depth-averaged wave models 

are included • 
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1. Introduction

The problem of describing wave propagation through regions containing 

tidal, ocean or discharge currents is fundamental in describing the nearshore 

wave climate. Great strides have been made in extending wave propagation 

models to include the effect of irrotational, large currents (assumed to be 

uniform over water depth). However, currents typically do not possess so 

simple a form, but instead have variations over depth and associated 

vorticity, which renders the assumption of irrotationality invalid. The 

resulting problem for wave motion on arbitrarily varying currents remains 

unsolved, even in the linearized, uniform domain extreme. 

The purpose of this study is to describe a perturbation method for the 

special case of U(z)/c << 1, where c is the absolute phase speed, which allows 

for the solution of the linearized problem for arbitrarily varying current 

U(z). This case is restrictive in the general context of the study of wave­

current interaction, where U/c is taken to have no restriction on size. 

However, in the context of coastal wave propagation, where we typically 

consider waves propagating from a generation region into regions of varying 

current, current fields of practical interest typically satisfy the scaling 

restriction considered here except possibly in special situations such as 

strong flows in inlets. 

We proceed in section 2 by establishing the problem for a linear wave in 

a uniform domain with arbitrary U(z). We then outline a perturbation 

expansion based on small parameter € = O(U/c) << 1, following the method 

employed by Stewart and Joy (1974) for deep water. We then obtain solutions 

to the general problem to 0(€) (reproducing the result of Skop (1987)) and to 

20(€ ). In section 3, we apply the method to linear, cosine, and 1/7 power

4 



current variations� and compare results to analytically or numerically 

obtained exact solutions. 

The results of the analysis show that the solutions are valid in the 

regime (maxlu-ul/U) << 1, where U is the depth-averaged current, leading to 

the conjecture that the expansions are valid for arbitrarily large currents 

having weak vorticity. In section 4, we outline an expansion for weak 

vorticity and obtain the results for a linear shear current, proving 

equivalence of the expansions for this restricted case. 

In section 5, various results for the second-order approximation in the 

deep-water limit are described. 

In section 6, we end with some analysis of action flux formulations and 

some cautionary notes on the direct use of the O(E) depth-averaged velocity in 

wave propagation models. 
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2. Theory and Approximate Expressions for the Phase Speed

We consider here the inviscid motion of a linear wave propagating on a

stream of velocity U(z), where water depth and current speed are assumed to be 

uniform in the x-di rection (Figure 1). Associated with the wave-induced 

motion is a stream function$ of the form 

'''( t) = f(z)eik(x-ct)
� x,z, (2.1) 

After eliminating pressure from the Euler equations and linearized free­

surface boundary conditions, and using the continuity equation, the boundary 

value problem for f(z) is given by the Rayleigh or inviscid Orr-Sommerfeld 

equation 

2 
[c-U(z)] (f'' - k f) + U''(z) f = 0 -h, z, 0 (2.2) 

together with the boundary conditions 

z = 0 (2.3) 

and 

f = 0 z = -h (2.4) 

Here, primes denote di fferentiation with respect to z, g is the gravitational 

constant, h is the water depth in the absence of waves and k is the wavenumber 

given by 2�/A, where A is the physical wavelength. This model has been used 

in a number of studies of waves on arbitrary or particular current 

6 
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Figure 1. Definition sketch 

distributions; reference may be made to Peregrine (1976) or Peregrine and 

Jonsson (1983) for a review of existing results. The goal of the present 

analysis is to obtain approximate expressions for c in the dispersion relation 

w = kc (2.S) 

where w is the wave frequency with respect to a stationary observer. The 

approximations are based on the assumption of U(z) arbitrary but lu(z)l<<c; we 

will thus assume the current to be weak and then evaluate the extent of this 

restriction after obtaining the solutions. 

2 .1 Perturbation Method 

A perturbation expansion for weak currents {U/c < 0(1)} is employed, 

following the analysis by Stewart and Joy (1974) for deep water. We take 

U(z) ~ e:U(z) (2.6) 

7 
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where we introduce.e as an apparent ordering and retain dimensional variables. 

We then introduce the expansions 

CCI 

I
n 

C = e en
n=O 

(2. 7) 

CCI 

£ = I en£ 
n=O n (2.8) 

Equations (2.6-2.8) are substituted in (2.2-2.4) and the resulting expansions 

are ordered in powers of e, which gives 

fl I k2£ = F 
n n n -h <: z <: 0 (2.9) 

2£' - gf = s co n n n z = 0 (2.10) 

f = 0 z = -h 
n 

n=O,l, ••• 

(2.11) 

where the F
n 

and n 
n 

are inhomogeneous forcing terms involvi ng informatio atS

lower order than n. For n) 1, the homogeneous solution of (2.9-11) is the 

lowest order solution £ (z), as derived below, and it is 0 necessary to

construct a solvability condition according to the Fredholm alternative. 

Using Green's formula on the quantities £ a0 nd f
n 

leads to the condition 

n ;> 1 ( 2 .12) 

This relation is used below to solve for the phase speerl corrections c and c1 2

due to the presence of a weak, arbitrary current profile. 

• 
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2.2 Solutions to O(e 2) for Arbitrary U(z) 

The perturbation problems obtained above are now solved in sequence. 

0( 1): 

We have 

F
o 

= s
0 

= 0 (2.13) 

and the homogeneous solution (with amplitude arbitrarily taken as 1) is 

f0(z) = sinh k(h+z) (2.14) 

with 

C 
2 = � tanh kh0 k (2.15) 

This is the usual result for linear waves on a stationary domain. 

O(E): 

At this order we have 

9 

(2.16) 

(2.17) 

Substituting (2.16-17) in (2.1 2) gives 



2k 
J

O 
~

c1 = sinh Zkh -h
U(z) cash 2k(h+z)dz - U 

...., 

(2.18) 

This is the finite-depth extension of the result of Stewart and Joy (1974), 

who obtained the result 

0 

U = 2k J U(z)e Zkzdz
-CD 

(2.19) 

in the limit kh+m. The result (2.18) has also been obtained by Skop (1987). 

To 0(€), the dispersion relation is given by 

~ 

C = CQ + U (2.20) 

or, equivalently, 

~

111 = cr + kU (2.21) 

where III is the absolute frequency in stationary coordinates and cr is the 

frequency relative to a frame moving with velocity U, the weighted-mean 

current: 

~2 cr = gk tanh kh (2.22) 

The particular solution f (z) may be obtained by the method of variation of1p

parameters; the entire solution f (z) is then1

z 
1 

= {A
1 

-
Zkc f U''(�)sinh 2k(h+�)d�}sinh k(h+z)

0 -h 

z 
+ {B1 + -1- J U''(�)[cosh 2k(h+�) -l]d�} cash k(h+z)

2kc 0 -h 
(2.23) 



where B =0 in order to satisfy the bottom boundary condition and A may be set1 1 

to zero arbitrarily. Note that f (z) is identically zero for a flow with1

constant or zero vorticity (U' '=O). For flows for which U'' is known, f (z)1

may be evaluated directly from (2.23). For general U(z), repeated integration 

by parts is applied to (2.23) to obtain the expression 

(2.24) 

where 

z 

I l ( z) = I U(�)sinh 2k(h+�)d� 
-h

(2.25) 

z

I/z) = I U(�)cosh 2k(h+�)d�
-h

(2.26) 

We obtain 

U''(z)f1(z) U' '(z) (U-U)
F2

= + fo(z)co 2co 

(2.27) 

s2
= 2c0(U(O) - U)f' (0) - c0 

U I ( Q) fl ( Q)1 

(2.28) 

Substituting (2.27-2.28) in (2.12) gives an expression for c :2

11 



c2 {U' ( 0) [U( O) - uJ 
~ 2[U(O) -

2
u] }-= 

co 2g 2co

+ 
(U(O) - u) 

f i ( 0) U'(O) f /0)

co f0(o) 2co fb(O)

(2.29) 

where we have used the fact that f0(0)/f 2 

0(0) = c /g. As above, several0 

options are possible here. For flows with zero or constant vorticity, we have 

f (z) = U''(z) = 0, and we obtain directly 

U'(O)[U(O) - U]c 
0

C =
---------c.. 

2 2g 

1

(2.30) 

For flows where U'' is known, we may evaluate f1(z) from (2.23) and substitute 

for U''(z) in (2.29) and then solve for c2• For general U(z) (especially for 

tabulated U(z) where higher derivatives are not known), we use (2.24) in 

(2.29) and integrate by parts to obtain the expression 

c2 U 
- = - [4kI

1
(0) - (1 + 2cosh 2kh)U]c

o 2c�

(2.31) 

The remaining integrals are expressed completely in terms of U(z), and may not 

be tractable for a general U(z); numerical approximation will then be 

required. 
12 



3. Examples Using.Known Velocity Distributions

We now investigate the accuracy of the approximations derived above,

considering the results both to 0(E) and 0(€ 2). We consider three examples; 

1.) Linear Shear Current 

(3.1) 

where a is the normalized constant vorticity w given by0 

(3.2) 

2.) Cosine Profile 

(3.3) 

3.) Power-Law Profile 

U(z) = Us (1 + �) l /? (3.4) 

These examples represent a hierarchy in increasing difficulty. For the linear 

shear profile, analytic solutions may be obtained for both the full problem 

and the perturbation solutions. (In fact, the perturbation may be carried to 

any order with no difficulty, as will be seen below.) For the cosine profile, 

analytic results may be obtained in the case of c=0 (i.e., a stationary 

wave). For c*0, the problem must be solved numerically. In this case, 

however, the approximate results U and c
2 

are obtained explicitly. For the 

13 
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third case of a power-law profile, analytic results again have been obtained 

only for the case c=O (Lighthill, 1953). Fenton (1973) has provided a 

numerical scheme for cases with c*O using a shooting method; this scheme is 

utilized below . For the case of a power-law profile, evaluation of U and c2

also requires numerical approximation or approximation of the analytic result 

by means of truncated series expansions. 

3.1 Linear Shear Current 

For the case of a current with uniform vorticity, the stability problem 

posed in (2.2) - (2.4) reduces to 

-h .; z.; 0 o .5)

z = 0 (3 .6) 

f = 0 z = -h (3. 7) 

'The solution to (3. 5) and (3.7) is simply 

f(z) = sinh k(h+z) (3 .8) 

Substituting (3.8) in (3.6) then gives directly 

2 ½ w0 tanh kh

4gk } (3. 9) 

which is the exact solution which we will denote by subscript E. Turning to 

the approximate solutions, we substitute (3.1) in (2.18) and obtain 

14 



w0tanh kh
U = U

s 
-

2k 
(3. 10) 

The exact solution may then be written as 

(3.11) 

where c is taken from (0 2 .15). Evaluating the 0(€2 ) correction c from (2 2 .30)

gives 

2 w
0 

tanh kh 

c2 = co { 8gk } (3 .12)

and the phase speeds to O(E) and 0(€2 ) are given by 

2 w tanh kh

 

(3 .13) 

z 0 
c(E ) = c0 {1 + Bgk } + U (3.14) 

15 

Comparing (3.11), (3.13) and (3.14), it is apparent that the 0(€) 

approximation is fairly weak unless normalized w 2 is in some sense<< 1. The
0 

approximation to 0(€2 ) adds the first small term in the binomial expansion of 

the square root appearing in the exact solution. Referring to (2 .30), it is 

apparent that c also provides the leading-order correction for non-zero2 

current shear. 

The approximations obtained above are least accurate in shallow water. 

To inspect this limit, we normalize the phase speeds by (gh ) 1/2 and define 



F = U / ( gh) 
l

/ 2 

s 

Further, the weighted mean current U is given by 

(3.15) 

where U is the unweighted, depth-averaged current. (U and U tend to converge 

as kh+0 for all velocity profiles as the wave motion loses its vertical 

structure; this may be verified by inspection of (2 .18).) Introducing a 

defined in (3.2) and taking the limit kh+0, we may express the phase speeds 
11 1

relative to U/ (gh) 2 1or U/ (gh) 2 as

exact (3 .16a) 

= 1 0(E) (3.16b) 

0(€) 2 (3.16c) 

We may take a>0, where a=l reduces the velocity to zero at the bed and a)l 

indicates reversed flow at the bed relative to the surface. Ignoring the 

latter possibility, the worst case is for a=l, and we require F<<2 to employ 

the truncated binomial expansion implied by (3.16c). The approximation to 

0(E)
2 

is thus quite good for any subcritical flow. Plots of results for 

various choices of a and F are given in Figure 2 for c0 
= 1.

We remark that higher-order approximations to the problem posed by (3.5) 

- (3.7) may be obtained quite simply using a modification of the technique of

section 2. Substituting the expansions for c in (3.6) and using (3.8) gives

16 



1.15 

1.10 

F= I. 

L05 

1.00 

035..._ ___ ..,__ ___ _._ ___ ___.__ ___ __._ ___ _..J 

0.00 0.20 0.40 0.60 Q80 100 

Figure 2. Phase speed corrections (c - U)/c for long waves on a linear shear0 current. --, exact solution; --- 0(E) approximation;-•-• 0(E2) 
approximation. 
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n 

n 

n 

a, 00 

(e:u - L 
n ) 2 

{g + e:w
o[e:us 

- L e:nc ]} tanh khe: C = 
s 

n=0 n 
n=0 

n k 

e:wo
00 

2 
{1 [ e:U - L e:nc ]} = c

o +--g s n 
n=0 

(3.17) 

The next several approximations beyond the level attained in section 2 are 

2 kh 2 

1 
w

0 
tanh

c
3

= 0 c4 
= { 4gk } c

o8 

2 kh 3
1 w

0 
tanh

c
s 

= 0 c6 
= -

{ 4gk } co16 (3.18) 

c4 and c6 are consistent with the next two smaller terms in the binomial 

expansion of (3.11), and it is apparent that the perturbation solution will 

eventually co 2
nverge to the exact solution when w0 /gk is suitably small. 

(Note that in the limit of w + 

0 
0, the solution to 0(e:) is exact for all 

current velocities, including stationary waves for which U/c = m.) 

3.2 Cosine Profile 

We now consider the cosine profile (3.3). Values of 0<a<�/2 produce 

unidirectional flow, with a uniform velocity for a=0 and velocity reduced to 

zero at the bed for a =�/2. Using the results of section 2 .2, we obtain at 

0( e:) 

u = u
s 

(3.19) 

where 

sina S* = _..;;..;.;;..;...;.;_
sin h 2kh 

(3. 20) 

18 



The particular solution f1(z) is given by 

- a
2[cosa + cos(�z)] sinhk(h+z)} (3.21) 

Also, the depth-mean velocity U is given by 

n 

..., 

U = U sina/a 
s 

(3.22) 

and U+U as kh+O for arbitrary a. At O(e2), we obtain 

U 2 2 2 s { a kh 
[ 1 + a - 1 ]= -- --- ---- + 88*cosa ---c

2 c
0 l + 82 sinh 2kh l + 482 

2(l + 82)2 

- ( 88* )
2 

cash 2kh + [ 1 + 28 2

1 + 82 
2 <1 + 48

2) 

2 0 + 8 8* ) ]} 
20 + 82/ 

< 3 • 2 3)

The asymptotic validity of the approximate solution in the limit of weak 

vorticity (8,8* << 1) may be investigated by comparison with the exact 

solution for the special case of c = 0 (stationary waves). Using this 

condition in (2.2-3) and then solving (2.2-4) for the cosine profile (3.3) 

leads to the results 

f(z) = sinh[kh(l - 482) 
1
/2 ] 

l

(3.24) 

and 

U2 
= g tanh{kh( 1 - 482) /2 ]

s 
k(l - 48

2) 1/2

(3.25) 

19 



Expanding (3.2 5) for the case 8 2 
<< 1 leads to the expression 

02 = g tanhkh
s k 

2 2 

= g tanhkh (1 + 8) 
+ 0(84)

k (1 + 88*) 2 

,-, 

..... 

(3.26) 

The second form of the right hand side is equivalent to the result of the 

approximate solution to O(E), given by 

=> (3. 27) 

We see again that the approximate solution (for weak U ) converges to thes

exact solution under the condition of weak vorticity with no restriction on 

U , as in the constant vorticity case. In particular, U/c s + m for this case

and the perturbation method is seemingly inapplicable. 

For cases where c*O, the full solution must be obtained numerically. We 

have obtained solutions here using a modification of Fenton's (1973) shooting 

method. Referring back to (2 .2-), we define a Froude number F according to4

F = U(z) - c

1gb 
(3 . 28) 

(Note the difference from F in section 3.1. ) We non-dimensionalize z 

according to z' = z/h and define the variable transformation 

q(z')  = f(z)/(hf'(z)) 

20 

(3.29) 

The problem is then reduced to a Riccati equation 

- 1 < z' < 0 (3.30) 



where 

y2 = (kh)2 { }
ocos(az') - 1 (3.31) 

(3. 32) 

Equation (3.30) is solved over the interval - 1 < z' < 0 with initial 

condition 

q(-1) = 0 (3.33) 

and with kh, a (and hence B) and o specified. 'nle surface boundary condition 

becomes 

(3.34) 

which determines c. U
5 

is then determined using (3.32). The numerical scheme 

may be tested for accuracy against the long wave result (kh+O), which is 

determined directly from the expression 

2 (l - 4a ) ocos(az') - l

dz 0 

1 = g f 
-h (U(z) - c)2 (3.35) 

(Burns, 1953) and gives 

2 1 

c2 osina 1 (l+o) tan(;) 
tan-{----}

gh 
=

2 a(l-o )( 1-oco sa) (1-02) 
l/2 

o<I (3. 36a) 

and 

2
C osina 
gh 

=
2 a(l-o )(1-ocosa)

(l+o) tan(f) - (02-1) 
l
/2 

1 in-----------

a(o 2
-1) 1!2 

o> 1 
(3.36b)



which is implicit in c and where o is given by (3.32). Five decimal place 

accuracy was achieved straightforwardly in the numerical solution. 

In Figure 3, we show the numerically determined exact dispersion relation 

for the cosine profile for the case a=�/2 (velocity = 0 at bottom). The 

Froude number chosen is based on the surface current speed. Consideration is 

restricted to subcritical mean flow conditions in the long wave limit. In 

Figure 4, we display the absolute value of the absolute error e - cn E for the

long wave limit and a range of a values, with subscript n denoting the order 

of approximation and e representing the perturbation solution. Figures 4an 

and 4b display results for the first and second order approximations, 

respectively. The second order approximation is seen to provide an order of 

magnitude reduction in error in comparison to the first-order approximation 

(indeed, for the range of parameters considered it proves inconvenient to plot 

the two results on equivalent scales). 

Figure Sa and Sb show first and second order results, respectively, for 

!e - cEI for the case of a = �/2 and a range of kh values. Here, then 

comparison is between perturbation solutions and numerical solutions. The 

dramatic increase in accuracy given by the second approximation is again 

apparent. 

3.3 1/7-Power Law Profile 

We now turn to the 1/7-power profile given by (3.4). This profile 

differs from the previous examples both in analytic complexity and in the fact 

that a weak-vorticity range is not available through choice of parameters, due 

to the form of the profile near the bed. Using the results of section 2.2, 

the expression U at 0(€) is given by 

22 
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Figure 3. Cosine profile. a=�/2, numerical results for dispersion relation. 
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Figure 4. Absolute error lc - cEI for cosine profile. kh=O.n
a) n=l, first order approximation. b) n=2, second order
approximation.
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..., 

,..., 

2kU h-l/7 0
U = --s---f sinh 2kh -h

1/7 
(h+z) cosh2k(h+z)dz (3.37) 

This expression is of little direct use. Two integrations by parts yields 

u = U [l _ tanh kh
s 14kh 

6 l -7 2 7 
7kh sinh Zkh ft sinh kht dt]

0 
(3.38) 

where t = (1 + z/h)117 • This expression has been given previously by Hunt 

(1955). The remaining integral in (3.38) vanishes in the limit kh+m but 

contributes significantly at finite values of kh (see below). Approximation 

is thus required in order to evaluate the integral. Numerical experiments 

with quadrature indicated that 32 weighting points were required in order to 

obtain three decimal place accuracy for kh = 1, with the number increasing for 

increasing kh. For this reason, we chose to treat the integral by taking the 

Taylor series expansion for cosh2k(h+z) about h+z = 0 

cosh2k(h+z) = L 
n=O 

(2k)2n(h+z)2n

(2n)! (3.39) 

and then summing the resulting expression for the integral up to the required 

number of terms. The resulting expression is given by 

14kh U s U = -�--
sinh 2kh 

N (2kh)2n 

I 
n=O (2n)!(l4n + 8) (3.40) 

Values of N required to obtain three-decimal place accuracy are given for 

various kh in Table 1. The expansion procedure is most appropriate for 

shallow water, with convergence being obtained more slowly as depth increases. 
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kh N 

o.s 3 

1 .o 4 

2.5 8 

s.o 14 

Table 1. Rate of convergence of U 
~ 

(3.38) for varying kh. N is nlBllber of 
required terms in series expansion in order to obtain 3 place 
accuracy. 

As kh+-0, we obtain the shallow water limit 

~ 7 -
U+-U =U 

8 s 
(3 .41) 

Exact numerical results indicate that higher-order effects are not as 

important in this case as in previous examples, and so the solution is not 

2carried to 0(E ) here. This result is due to the weak vorticity of the

current profile near the surface; only the longest waves are strongly affected 

by the current shear. Reference may be made to the results of Thomas (1981), 

who conducted experiments on nearly deep-water waves over a turbulent shear 

flow of nearly 1/7-power form, and found the waves to respond only to the 

surface current speed. 

Numerical results were obtained following Fenton (1973) and the procedure 

outlined in section 3. 2. Using 5 defined by (3.32 ) and q(z') defined by 

(3.29), we obtain the problem (as in Fenton (1973)) 

2 2 
q' = 1 - y (z')q (3 .42) 

q(-1) = 0 (3.43) 
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(3.44) 

The surface boundary condition yields the relation 

F(0)
2 

-----,......,...-,- = q ( 0)
[l + F(O)F' (O)] 

(3 .45) 

...., 

where F = (U-c)/(gh) 1/2 . This result leads to the expression 

c2 q(O) 
gh = (o - 1)[(0 - 1) - oq(0)/71

(3.46) 

Equations (3.42-43) are solved using specified values of kh and o. We then 

use (3.46) to determine c and then (3.32) to determine Us. Numerical results 

were checked against plots given by Fenton and also against the long-wave 

analytic result, given by 

u s 
--= 

gh 1[.!. + .!. (�)
5 2 U s 

5 
6(�)

s 

2 
+ (�)s 

C - u 
R.n( C 

3 4 
+ 2(� ) + s(�)

s s 

4 s
) + (� ) (C 

C 

u )] s s 

2

(3.47) 

Note that (3.47) corrects an error appearing in Fenton's unnumbered expression 

in the logarithmic term. 

Plots of normalized phase speed vs. normalized Us are given in Figure 6 

as solid curves for kh values ranging from O to m (long to short waves). Also 

plotted in Figure 6 are results of the O(E) perturbation solution given as 

dashed lines. The perturbation solution is seen to be in close agreement with 

the full solution except for kh small and lus/(gh) 1/2 I large, representing 

long waves on strong currents. 
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Figure 6. Dispersion relation for 1/7 p ower profile. -- numerical results; 
--- first-order approximation. 

The expression (3.40) used to determine U was found to be  useful at all 

water depths tested but converges very slowly for large values of kh. An 

alternate expansion procedure for (3.37) could be based on using the binomial 

exp ansion 

1/7 

( 1 + f) + • • • (3. 48) 

Substituting (3.48) in (3.37) leads to an expression for U which 

increases in accuracy as more terms in the expansion are retained. The first 

several expressions obtained in this manner are given by 
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Two terms: U = U (l _ tanh kh)
s 14kh 

(3.49a) 

Three terms: (3.49b) 

Four terms: 
~ 

U ( l _ tanh kh 81 U = s 14kh + 686kh sinh 2kh

_ 78tanh kh) 
2744(kh) 3 

9 8(kh) 2

(3.49c) 

l 
These expressions represent an ascending series in powers of (kh)- as kh+=,

and convergence is rapid. As kh+0, however, all terms beyond the first two in 

a truncated expansion cancel identically, and the value of U+0.929 U. s Note 

that the third term in (3.38) contributes all the higher-order terms in the 

expansion; however, the 0(1) contribution as kh+0 is not obtained in a 

truncated expansion due to the fact that the expression (1 + z/h)1/7 is not

differentiable at z=-h. Convergence of the tr\lllcated series is thus limited 

to a range excluding the neighborhood of kh=0. 

Figure 7 shows several expressions for u. The solid curve represents the 

series (3.40) with a sufficient number of terms retained to obtain 

convergence. Each of the three truncated expansions (3.49a-c) are also 

included, and show the increase in accuracy with each included term as well as 

the failure of the series at kh=0. Finally, a plot of (3.40) truncated to 10 

terms is included, and shows the extreme sensitivity of the series to the 

number of retained terms as kh increases. It is noted also that the 

expression for U given by (3.49a) has a maximum relative error of only 5.8% in 

the shallow water limit. 
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4. Expansion for Weak Vorticity

The results of sections 3.1 and 3.2 have indicated that the approximate 

solutions for the regime of weak currents with arbitrary vorticity are 

seemingly valid for the regime of arbitrarily strong currents having weak 

vorticity. This result may be expected in hindsight due to the form of the 

approximate solutions. In particular, the weighted mean current U deviates 

from the true mean current U by an amount proportional to the first power of 

some vorticity parameter, while the expressions for c /c are proportional to2 0 

some (current parameter x vorticity parameter)2 • Thus, in the limit of small 

vorticity, U + U and c
2
/c represents a consistently small correction for 

0 

arbitrarily large U values. In order to further support these results and 

claims, we provide the schematic for an expansion for weak vorticity and 

examine the case of a linear shear current. 

We proceed by defining a reference current U* according to 

U(z) = U* + U(z) (4.1) 

where IU/U*I << 1 owing to the weak vorticity assumption. From the results of 

section 3, a natural choice for U* would be U; however, U must be regarded as 

undetermined in the present context since it was found for the case IU*/cl << 

1, which doesn't hold here. We thus take U* = u. For the case of a linear 

shear current, we obtain 

(4. 2) 

from (3.1). (2 .2-4) may then be solved to obtain 
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f(z) = sinh k(h+z) (4.3) 

subject to the condition 

(u + EU(O) - c) 2 
= [g + U

1

(0)(u + EU(O) - c)] tan: kh (4.4) 

where E << 1. Introducing the expansion 

c = L E
n

cn 
n=0 

(4.5) 

and solving sequentially for the e
n 

then gives (to 0(E2)) 

(4.6a) 

(4.6b) 

2 

(g tan

k
h kh

) 
1/

2 

w
O tanh kh

c
2 = =---- ( 8gk ) (4.6c) 

or 

C = 

2

(g ta
�

h kh) 
1/

2 { 
l w

0 
tanh kh

} 
_ w0h w

0 
tanh kh 3 + 8gk + U + -2- - 2k + 0(E) (4. 7) 

nUsing (4.2) a d (3.10), (4.7) may be written as
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(4 .8) 

where U is given by (3.10). (4.8) is identical to (3.14), and the two 

expansions are seen to be equivalent. 
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5. Results for Deep-Water Waves

Skop (1987) has investigated the application of the first-order

approximation of Stewart and Joy (1974) in the deep-water limit to several 

cases for which analytic results exist, including the general case for depth­

limited current profiles of zero and constant vorticity (Taylor, 1955) and the 

case of stationary waves on these profiles as well as cosine and exponential 

profiles (tabulated by Peregrine and Smith, 1975). Skop has shown that the 

first-order approximation provides generally good estimates of the wave 

parameters. However, the second-order approximation for deep-water waves is 

particularly simple in form, and we include it here for comparison. 

The deep-water formulation follows from (2 .2-4) by replacing the bottom 

boundary condition with a boundedness condition on f; in the remainder of the 

formulation, lower limits of integration become -=. The results for the wave 

phase speed become 

(5.1) 

where 

co = (g/k) 
1/2 (5.2) 

cl
= u = 2 k  

0 

J 
-m 

U(z )e 2kz dz (5. 3) 

cz
k 

=-

c
o

0 

J 
-

u2(z )e2kz dz - 2 c
1 / 2c

0 (5 .4) 

where c was given by Stewart and Joy (1974) and c1 2 
is new here. These

results may also be obtained by taking the appropriate limits of (2.15), 

(2.18) and (2.31) directly. 
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5.1 Comparison with Analytic Results 

We consider first the case of waves propagating on opposing depth limited 

currents. The case of a uniform current is given by

z < - d 

(5.5) 

In order to facilitate comparison with Skop's results, we introduce 

dimensionless variables according to 

kdc n =-­
u 

s 

= 
(gd) l/2

s 
u 

s 

IC= kd (5.6) 

where Q is dimensionless frequency and Sis an inverse Froude number. From 

Taylor (1955), the exact solution gives the dispersion relation 

..., 

7 

where subscript E denotes the exact value of n.

The first-order approximation is given by (Skop, 1987) 

1/ -21C
n 1 

= IC 2 s + IC ( 1-e ) (5.8) 

while the second approximation is given by 

1/ 
1/2 ( -21C

) ( 
IC 2 -21C

)n
2 

= 1C s + 1C 1-e 1 + 
25 

e 
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Skop has presented.plots of nE and n1 vs. K for a range of values of S. In

Figure 8, we provide plots of absolute error nn - nE(n = 1,2) vs. K for a 

range of S values. For S � 2, the trend of increased accuracy for the second­

order approximation breaks down, indicating divergence of the expansion for 

the case of strong currents in deep water. 

For the case of stationary waves on a current, n = 0 and we determine the 

value of S(K). The exact results is given by 

(5.10) 

and the two approximations are given by 

(5.11) 

( 5 .12) 

...., 

Each form is asymptotic to the limit S = K1/2 as K+m. The results here also 

mirror problems with the expansion for strong currents, in that the term 

inside the square root in (5.12) has a zero at positive K given by KCR = 

- ! tn(�) = 0.549, for which the corresponding exact stopping inverse Froude

number SE= 0.524. For K < KCR' the second order solution cannot predict the 

value of the stopping current. In contrast, the first-order solution predicts 

the value reasonably well for the entire range of K, with increasing error as 

K+O. Note that 

(5.13) 

38 



w 

a 
I 

C 

a 

.010 ------------------------, 

.005 

0.0 

-.005 

-.010 

-.015 

-.020 

.,,,. 

;1� 
//.7 

/11 
11/ 

,,, 
\ 

/ 
I
If 

"''s ✓
1 1 

I\\ ,_/ ,' ,, 
' 

\ 
\ / ,, ,, ,�., ,'1 

\ 
\ 

I I

\ \ I I

\ ,3., /
\ - I 

I 

\ 2 I
\.;, 

I!:-
--

-. o 2 s o'-----
1
1..... __ ...1.

2 
___ .1..

3
---4�--..... 

5
----____,6

1( 

..... 

7 

Figure 8. Absolute frequency error Q - G . Depth limited, opposing uniformn E
current in deep water. - O(e2) approximation (n=2); --- O(e) 
approximation (n= l). Curve labels are values of s.

39 



Hm S = 2K
3 /z 

1 
K+O 

(5 °14) 

A plot of absolute error for Sn - SE; n= l,2 is given in Figure 9. The 

first-order approximation is essentially accurate for K > 2 (SE> 1.39) while 

accuracy in the second-order approximation is deferred to K > 5 (SE> 2.24). 

This range of validity is likely to still be representative of relevant field 

conditions (note that for a surface current of speed 1 m / sec, S = 2.25 implies 

a depth of flow of 51.7 cm; increased depth of flow further increases S and 

strengthens the validity of the second-order expansion). 

A second case for which analytic results are available is the case of a 

linearly-sheared jet 

- d < z < 0

z < - d 

(5.15) 

The exact dispersion relation (Taylor, 1955) is given by 

,...., 

7 

-, 

(5.16) 

and first and second approximations are given by 

nl 
= 1/ K 2 S - K{ 1 -

-2K 
(1 - e )

} 2K (5 .17) 

n2  
=

1
/2 

Ql 
K 

{
1

+ Ts" 4K
(l _ e-4K) _ e-2K}
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Plots of absolute error n - n ; n = 1,2 are given in Figure 10  for O ( K < 6
E n

and 2.5 ( S < 4. For this case, the improvement afforded by the second-order 

approximation is dramatic. This result is most likely due to enhanced 

representation of the effect of surface shear, as was noted in the results for 

linear shear currents in section 3. 

The prediction of stopping currents leads to the exact formula 

S
E 

= (Keath K - 1) l/2 (5.19) 

and the approximations 

(5.20) 

and 

1/ 2 ( 1 -4K -2K)] 2 } - -- 4K (1 - e ) - e 
s 2 1 

n 

(5.21) 

The expression under the square root in (5.21) again has a zero at K =CR 

0.78633, which corresponds to a stopping current S = 0.44506. The second­
E

order approximation gives no prediction of S below this value of K PlotsCR" 

of absolute error S - S are included in Figure 11. For this case, the error
E n 

in predicted stopping current obtained from the second-order approximation is 

reduced essentially to zero for K > S, which corresponds to S = 2.0001 from 

(5.19). The approach of the first-order prediction to the exact solution is 

deferred to much higher values of K and is not as qualitatively satisfactory, 

possibly due again to inadequate representation of the effects of surface 

current shear. 
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5.2 Exponential and Linear Shear Profiles 

Wave-current interaction assumes a role of great importance in the theory 

of generation of wind waves. Waves generated by wind action interact with a 

wind-driven, sheared current profile with a thickness of the order of the 

wavelength. Several recent studies have shown that the dispersion properties 

of the initial wavelets are not strongly dependent on the form of the current 

chosen as long as the current profile reproduces the value of the current and 

shear existing at the surface. (See Gastel et.!!_, 1985, for a recent 

contribution.) 

In this section, we comp are the dispersion relation for an exponential 

current profile 

U(z) z < 0 (5.22) 

to the dispersion relation for a depth limited profile having the same 

velocity and surface shear, namely 

- d < z < 0

U(z) = 

0 z < - d 

(5.23) 

These profiles have total mass flux rates differing by a factor of 2 but have 

very similar structure close to the surface, where the linear profile neglects 

2 terms of O(z/d) in (5.22) where d is the e-folding length scale for decay of

the exponential profile. To the second order of approximation in the present 

theory, the dispersion relations for the two profiles are given by 
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nexp = 
2Ks/12+ ( 2K+l) + K { K

-s- 2( K+l)
2K }

( 2K+ 1) 2 (5.24) 

nun = 1j 1 -2K SK 2 + K - - ( 1 - e ) 2 
K 1/2 1+ 2S h;; (1 _ e - 4 K) - e -2K} 

2 3/2 2 

(5 .25)

where U is defined positive for a following current (k)0) and where thes 

notation of the previous section is retained. Figure 12 shows a plot of vs.n 

K for a range of S values. There is close agreement bet"Ween the two 

approximate dispersion relationships. This result suggests that a velocity 

potential solution based on a depth-limited linear shear profile could be used 

to some advantage in the study of initial wave growth, since three-dimensional 

effects could be handled more simply than is possible when the analysis is 

based on a stream function. 

We remark that agreement between the first-order approximations for the 

two profiles considered are also close, but that there is a general overall 

deviation between the dispersion curves for the first and second 

approximations, reflecting the reduced accuracy of the first-order 

approximation. In reference to the discussion of the limited range of 

validity of the second-order approximation, we consider the basic no-wave 

state described in Figure 1 of Gastel�.!!!.· For this case, d is 

approximately 5 mm with Us
= 

-10.08 ms , yielding a value S = 2.77, which is 

well up into the range of validity of the present approximations. Capillarity 

is neglected here and would significantly alter the expressions (5.24-25) at

the length scale for this particular example. 

46 



36 

-8

Figure 12. Comparison of dispersion relations for exponential profile (5.22) 
and linear profile (5.23) having equal speed and shear at 
z=O -- exp onential; --- linear. 
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6. Comments on Action Flux Conservation

One of the chief applications for approximate dispersion relations for 

wave-current interaction is in the construction of models for waves in slowly 

vary ing domains. Such an application deserves a detailed analysis in its own 

respect and will be the subject of further work, which in any case is 

necessitated by the findings below; here, we can provide some initial results, 

using the results of the O(E) problem in the context of irrotational wave 

theory . In particular, Skop (1987) suggests that the velocity U obtained in 

section 2.2 may be used as the basis for the wave-current interaction in 

propagation models, but provides no further analysis or support. Here, we 

proceed using such an assumption and then analyze the results for the special 

case of a linear shear current, using the results of Jonsson et al (1978) as 

the basis for analytic comparisons. 

We consider a linear wave riding on a flow of uniform-over-depth 

velocity U, given by 

<I> = Re{- iga cash k(h+z)
� cash kh eiljJ} + fQ•d! (6.1) 

= Re{aeiljJ} - lQ.t_2g

~ 2 
(6. 2) 

where 

Ill = - 1jJ t

2

(6.3) 

subject to the dispersion relation 

w = cr + k•U 
~ ~ 

cr = (gk tanh kh) l/2 
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which is a simple extension of (2.21) to two dimensions. Following Kirby 

(1984), (6.1) may be used as a trial function in a variational principle due 

to Luke (1967), leading to a wave equation 

(6.5) 

where 

~ 
�= �cash k(h+z)/cosh kh (6.6) 

and 

.Q__ = _!_ + U-v Dt 3t ~ h c = -
k 

(6. 7) 

We allow Q and h to have slow spatial derivatives and a (the amplitude) to 

vary slowly in space and time. Taking a and$ to be real functions allows 

(6.5) to be reduced to an eikonal equation for� and a transport equation 

given by 

.J 

(6.8) 

~ 
where Eis given by the simple expression 

~ 1 2 
E = 2 pga (6.9) 

and where C = C k/k. The quantity E/; is an estimate of the wave action 
~g g~ 

density, and (6.8) expresses the conservation of flux of wave action. The 

question to be addressed is whether 
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~ ~
~ E ~ E ~ 

F = - ( C + Q) = - C 
a ~g 

a 
~g

a 
(6.10) 

is a proper estimate of action flux to the level of approximation considered 

here. 

Jonsson� al (1978) give an exact expression for action flux on a linear 

shear current in one direction, which we write here as 

(6.11) 

where 

a =  w - kU ( 6 .12) 

and 

(6.13) 

where C is the phase speed relative to the surface current, given by (3.9)rs 

as 

C 
rs 

w
0

tanh kh 

2k 
(6 .14) 

Considering terms only to 0(€), it is apparent that 
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and hence 
~ 

Cg , given bya

(6.16) 

is the correct advection velocity to 0(€). Howeve r, note that 

aa 
=-+ 

ak 
(6.17) 

is not equivalent to the simple estimate obtained from irrotational theory, 

where U is entered simply as a local estimate of depth-uniform velocity, and 

hence is not apparently a function of k. It is necessary to take this 

dependence into account explicitly in arriving at the correct expression for 

the group velocity in the absolute reference frame. Details of a comparison 

of the expressions for C
~ 

g and C are given in Appendix A.a ga 

Turning to the expression for wave action, we may write the exact 

expression for E for a linear shear current (from Jonsson et al) as 

1 2 ( E = 2 pga 1 -
w C -

0 rs) a 
2g (J s 

(6.18) 

where 

is the frequency relative to the surface current. To 0(€), we may then write 

E as 

WOCO -E = E (1 - --) � + 0 
2g (J s 

(6.20) 
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The expression for.wave action density is E/cr which then gives 

(6.21) 

Examining a
s

, we have 

a = w - kU = w - kU - k( U - U)s s s 

= a - (6.22) 

Factoring out a= kc0 then gives

W C 

= a ( 1 - ___Q__Q_) a
s 2g (6.23) 

Substituting (6.22) in (6.20) finally gives 

(6.24) 

and we see that E/a is a proper estimate of action density to the required 

order. The final expression for wave action flux is then given by 

(6.25) 

where we have used (A.1) and where G is defined in (A.2). 
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It is apparent that the derivation of a wave propagation model based on 

irrotational theory and using U as the local uniform-over-depth velocity does 

not produce a consistent model at the order of the expansion considered. The 

construction of proper wave equations or evolution equations depends on 

further investigation of the full rotational problem in the context of a 

slowly-varying, one- or two-dimensional (in plan) domain. Direct use of U as 

a depth-averaged velocity in existing evolution equation models based on 

irrotational theory will incur an error of 0(€) in action flux conservation, 

-1thus rendering the models invalid over accumulated distances of 0(€ ).

However, the expression (6.2 5) (or alternate forms of (6.16) for non-constant 

shear) may be used in eikonal-transport models for refraction calculations, 

2with consistency maintained up to 0(€ ).
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7. Conclusions

2This study has provided approximate dispersion relations to 0(e ) for

waves propagating on weak currents U(z) = 0(ec). In contrast to approximate 

results for deepwater, where 0(€) approximations are quite sufficient (Stewart 

and Joy, 1974, Skop, 1987), the results here indicate that approximations to 

20(e ) are required for any degree of accuracy to be obtained in finite water

depth, except for very weak current conditions or for cases where vorticity is 

2confined near the bed and waves are relatively short. The 0(e ) results

provide the next correction to the results of Skop (1987) and provide 

significant improvements for cases where vorticity is distributed more or less 

evenly over the depth. Additional analysis indicates that an expansion 

procedure for arbitrarily strong currents with weak vorticity yields 

equivalent results to the weak current case; this conjecture is proven here 

only for the case of a linear shear current. 

A consideration of the formulae for action flux resulting from the 0(e) 

approximation and the exact solution for a linear shear current indicates that 

the use of the 0(e) average velocity U as an estimate of depth-averaged

velocity in existing wave models incurs an error of 0(e) in the action flux, 

rendering existing models invalid for length scales of 0(e-1). Correction of

this problem awaits further research on rotational waves in slowly-varying 

domains. 
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Appendix A: Action Flux Velocity for Linear Shear Current 

Based on the results in (6.1 4) - (6.17), we consider the equivalence of 

the advection velocity Cg between the O(e) solution and the expansion ofa 

Jonsson et al's exact solution to that order. (Here, we take the viewpoint of 

E = 

1
the large current, small vorticity expansion so that O(w h/(gh) 120 )

<< 1.) Evaluating C from (6.17) gives

~ c0 w0tanh kh
C = 2 (1 + G) + Us - 2k G ga

c0 ~ w0tanh kh
= z ( 1 + G) + U +

Zk 
( 1 - G) (A.l) 

where 

G = 2kh/sinh 2kh (A.2) 

From Jonsson� al, we have 

w C 
C [(1 + G) - 0 rs

]rs g 
= -2- _____ w_C_.....__ + Us

[ _ 0 rs
]

To the required order, we have 

ga 

l 2g 

(A.4) 

Using (A.4) in (A.3) and retaining terms only to first order in w gives back0 

(A.I), indicating the desired result 

(A.S) 
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