

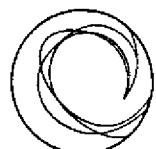
DIVER EDUCATION SERIES

The First Responder

Lee H. Somers

Contents

Introduction	1
The First Responder: A Personal Profile	5
Essentials of Accident Management..	5
The Diver's First Aid Kit	6
Responding to an Accident	7
Life-Threatening Emergencies	10
Basic First Aid	11
Examining an Injured Diver	11
Questionable Situations	16
Administering Oxygen	18
In-Water Recompression	19
Helicopter Evacuation	19
Serious Diver Injury: Air Embolism and Decompression Sickness	20
Cold Injury	26
Respiratory Problems	27
Ear and Sinus Barotrauma	28
Other Problems	28
Marine Life Injuries	28
Conclusions	31
References	32


During the 1980s the number of recreational scuba divers trained and actively participating in the sport has increased significantly. Presently, there are more than 2.5 million Americans trained in scuba diving, and this number is increasing by thousands each year. Diving equipment and diver education have evolved to keep pace with modern technology, marketing, and the requirements of a more sophisticated diving population

This document has been prepared to assist entry-level divers, divemasters, and instructors in developing a better understanding of the requirements for field management of an injured diver. It is intended for use as a support document for illustrated lectures and workshops. *This document by itself does not constitute adequate training in first aid for diving-related injuries.*

The reader is also reminded that first aid procedures change as the diving and medical communities develop new insights into pressure related injuries and hyperbaric physiology. Although many of the procedures presented in this document have remained unchanged for many years, others have changed significantly over the past decade. In some injuries, the appropriate first aid procedure is still a subject of debate.

Some diving manuals, even of recent publication, may not necessarily reflect modern views on injury management. Furthermore, the information presented here may be soon outdated. All divers must maintain current knowledge through reading and attending seminars.

Diving accident management is a vital part of a diver's training. Unfortunately, modern trends in diver training reflect decreases in both course content and duration for entry level scuba diving instruction. The instructional community relies instead on a strong continuing education program. Essentially, the course content of earlier basic and advanced diver training programs is now spread out over 6 to 9 courses. In

MICHU-SG-91-500

theory the concept of strong continuing education is excellent. Unfortunately, far too many divers do not participate in continuing education programs and are insufficiently prepared to deal with diver injuries.

Fortunately, the Divers Alert Network (DAN) based at the Duke University Medical Center, is available 24 hours a day to provide diving accident management information and assistance to divers, instructors, emergency medical personnel, and physicians [36]. The availability of this service has both simplified and complemented the training of divers, physicians, and other support personnel.

Diving Accidents in the United States

The University of Rhode Island's Underwater Accident Data Center has reported an average of 147 fatal scuba diving accidents in the United States annually since 1970 [41]. The number of fatal diving accidents dropped to 116 in 1986 and 108 in 1987 [42]. In spite of the increase in the number of active divers, the number of annual diving fatalities appears to be on the decline. However, the number of non-fatal diving accidents appears to be increasing. During 1981-82, 117 non-fatal sport diver accidents involving neurologic injury were reported to the Divers Alert Network (DAN) [23, 24, 43]. The number of nonfatal recreational scuba diving accidents reported to the Divers Alert Network for 1983-1987 was [56]:

1983	177 cases
1984	196 cases
1985	462 cases
1986	537 cases
1987	409 cases
1988*	553 cases

* Unpublished verbal report.

The actual number of diving injuries treated annually during these years still remains unclear. For example, a survey of hyperbaric chamber facilities in the United States and Canada for the years 1979 to 1983 indicated an average annual treatment of 399 cases of decompression sickness and 99 cases of air embolism. This survey did not address treatments conducted in Carib-

bean-based hyperbaric chambers which were estimated at 121 cases per year [56]. Based on these figures it appears that there was an average total of 619 cases annually during the five year period. However, this figure may include some multiple treatments of the same diver.

Furthermore, these reports may include deaths, injuries to military or professional divers, and other medical conditions. Of the 409 cases reported to DAN in 1987 only 270 were addressed in the statistical analysis of recreational scuba diving accidents. The assessment of diver risk is further complicated by the fact that there is not an accurate data base reflecting the actual number of active divers or number of dives made per year. Estimates vary considerably. For example, in the early 1980s, *Skin Diver Magazine* and Diving Equipment Manufacturers Association surveys and National Underwater Accident Data Center estimates varied by a factor of three. Since there is no accurate reporting system in the United States estimates can be inflated and deflated to best serve special interest groups. It is advantageous for the diving industry to demonstrate that the incidence of diver injury is small.

The fact is that the incidence of injury in diving is probably quite small in comparison to other recreational activities such as skiing, hang gliding, and rock climbing. Unfortunately, accurate data is probably not available on these activities either and that which is available is also subject to manipulation by special interest groups. *However, diving injuries do occur and every diver must be prepared to respond.*

Causes and Prevention

The University of Rhode Island National Underwater Accident Data Center publishes annual reports on fatal scuba diving accidents in the United States [41, 42], and the Michigan Sea Grant College Program has sponsored a review of scuba diving accidents in the state of Michigan [31]. As previously stated, the currently available scuba diving accident data base in the United States only addresses fatalities, not incidents which involve non-fatal injury.

The term *accident* is perhaps misleading. Most scuba diving injuries and

fatalities are not accidents in the sense of being random and totally unpredictable. Most often the causes of the injury or fatality are readily apparent when the environmental conditions, the equipment, training, and capabilities of the diver, and diving procedures are analyzed. *The prevention of an injury or fatality involves assuring that there is a reasonable match between the performance capability of the diver and the demands of the environment.* For example, a novice scuba diver with no training in river diving procedures and only limited experience in calm water diving is at significantly higher risk when entering a fast moving river than an experienced diver specifically trained in river techniques. Prevention of potential injury or fatality, therefore, involves altering an immediate potential cause of a mishap (by not diving in the strong current) and acquiring proper training/experience before attempting such a dive in the future.

The following are examples of contributing causes of diving incidents that may result in diver injury or fatality:

Performance/judgment errors

- * Exceeding abilities;
- * Lack of or insufficient training for a particular diving activity;
- * Diving alone or improper buddy diving;
- * Loss of control in current, surf, or waves;
- * Failure to adhere to dive plan;
- * Failure to recognize risk factors;
- * Failure to exercise proper safety precautions;
- * Failure to acknowledge personal health factors;
- * Failure to use decompression tables/devices properly; and
- * Failure to provide a margin of safety.

Bad judgment in using equipment

- * No alternate air source;
- * Improperly maintained equipment;
- * Use of malfunctioning equipment;
- * No or inadequate pre-dive equipment inspection;

- * Inaccurate depth gauge;
- * Failure to monitor scuba pressure gauge;
- * Overweighting;
- * Failure to use a watch or depth gauge;
- * Inadequate or insufficient equipment for a given diving situation;
- * Improper use of dive computers;
- * Improper use of any item of diving equipment; and
- * Inadequate training in the use of equipment in both routine and emergency diving situations.

Environmental conditions

- * Lack of training for specific environmental conditions such as ice, caves, surf, kelp, cold, current, and so on;
- * Failure to analyze environmental conditions prior to committing to a dive; and
- * Strong current, heavy surf, and adverse weather.

Risk is the possibility of loss or injury.

It can be a statistic which implies the likelihood that injury or death will occur. Benefit is something conducive to personal or social well-being. Safety is the condition of relative freedom from harm or risk. In diving one must strive to maximize safety and benefit and minimize risk. A particular diving situation may be assessed in terms of risk-benefit or, in other words, what benefits will be derived from the dive in light of the risk involved.

Keep in mind that it would be impossible to totally eliminate risk from any part of society, let alone scuba diving. Willingness, and even need, to take risks and challenge ourselves can result in important growth experiences. The decision that a diver must make is, "What is an acceptable risk?" Furthermore, the amount of risk that is acceptable for one individual is not necessarily acceptable for another, as capabilities and desires may differ considerably. Recognition of personal limitation is a fundamental basis for safe diving and the prevention of accidents.

Divers can alter these limitations by improving their capabilities through train-

ing, physical conditioning, and experience. It is equally important to recognize that capabilities can be reduced due to exhaustion, emotional stress, alcohol consumption, cold, equipment malfunction, and environmental adversities. Individuals can protect themselves by recognizing and admitting to reduced capabilities. Environmental hazards can be reduced by selecting another dive site or waiting for better conditions. Arriving at an acceptable level of risk involves maintaining an adequate margin of safety, and this requires the use of good judgment.

Judgment is the process of forming an opinion by discerning and comparing. It means deciding if a particular diving situation is acceptable—safe or unsafe—for a given diver. It may mean postponing a dive. *In general, a person who routinely takes risks that greatly exceed the realm of accepted diving practices is to be considered an unsafe and unacceptable diving companion.* Exceeding one's abilities may actually be the primary cause of scuba diving injuries and fatalities.

In summary, being aware of the causes of accidents will help you to prevent them. Both your enjoyment and your safety are best assured through understanding your personal capabilities and limitations and those of your companions and equipment. Participation in a given dive should be a conscious decision, based on sound judgment.

The Accident Management Network

An accident management network consists of a number of responders. Seven basic responder groups are usually involved in the management of a serious diving accident, such as decompression sickness or an air embolism. The role of the first responder is obvious—rescue, first aid, and acquisition of medical services. Immediate and proper first aid can make the difference between life or death and ultimately, the successful management/treatment of the injury. *Consequently, the most important role in diving accident management is that of the first person(s) on the scene—the buddy, divemaster, instructor, or boat operator.*

The second response group includes the professional emergency medical technicians and paramedics who will manage the injured diver during transport to a local medical facility. At a local hospital or clinic the third response group includes the emergency room physicians and support personnel. This group will evaluate the nature of the injury, stabilize the patient, and arrange for prompt transport to a hyperbaric medical facility. Improper medical management and unnecessary delay at this point can significantly compromise the patient's recovery potential.

At this time, a fourth response group may be required for medical consultation and information on the availability of hyperbaric treatment facilities—this is DAN. Unfortunately, many physicians are not schooled in the management of pressure-related or diving injuries. DAN provides a vital service to both the diving and medical communities. *It is the responsibility of all divers to provide attending medical personnel with information about DAN and the emergency telephone number (919/684-8111).*

The fifth response group is the medical/technical team that will transport the patient to a hyperbaric medical facility. Depending on the condition of the patient and the distance, either ground or air transport may be used. Generally, the most rapid means of transport is desirable. Most hospitals with hyperbaric chambers have helicopter landing facilities, and the increasing popularity and availability of medical helicopter services increases the likelihood of the use of air transport. For long distance transport, some small jet air ambulances and military transport aircraft can pressurize to sea level pressure during high altitude flight.

Upon arrival at the hyperbaric facility a special medical team trained in the treatment of diving injuries will take charge of the patient—the sixth response group. This team will manage the patient through one or more hyperbaric treatments and subsequent recovery. In serious cases, a final or seventh response group including both physical and mental therapists may be required as a part of the rehabilitation program for the victim.

The care provided by the first responder is the vital link in the chain of events that will ultimately determine the victim's future. *All divers, instructors, divemasters, and boat operators are encouraged to assess their personal level of training and competence in rescue, first aid, and accident management.*

THE FIRST RESPONDER: A PERSONAL PROFILE

The ability of the first responder to rescue a distressed diver and properly manage a pressure-related injury will, of course, depend on the level of training that the individual has received. Depending on the type of course and the instructor, the training in accident management provided to entry level diving students ranges from essentially none to reasonably comprehensive. Some instructors are reluctant to address the serious nature of diving-related injuries in fear of the possibility of heightening the anxiety level of the student. The scared student may drop out of diving; thus a loss of potential revenue to the entire diving industry. Unfortunately, only a relatively limited number of individuals actually continue up the education ladder.

Very few entry level diving students are trained and competent in life saving, first aid, and cardiopulmonary resuscitation (CPR). The first step in developing a good first responder is the acquisition of American Red Cross (ARC) or equivalent training in Standard and/or Advanced First Aid (including CPR) and Advanced Lifesaving [1, 2, 3, 4, 5]. Many divers and instructors may challenge this statement on the basis that such a requirement is too time consuming and expensive for the average individual. They may fear that if people get the impression that they must go to such extremes to be good divers, they might reject diving in favor of another sport. However, training and certification in these three areas can be accomplished in about 40 hours, depending on the type of course, at minimal cost to the student. ARC chapters throughout the country offer thousands of courses each year. *And I suggest that every citizen, not just scuba divers, should have at least some level of competence in CPR, first aid, and lifesaving.*

Ideally, the above-mentioned training should be a prerequisite to entry level scuba diver training. It is very difficult for a diving instructor to teach in-water rescue and resuscitation techniques unless the student has a basic understanding of life-saving and CPR fundamentals. First aid for pressure-related accidents is somewhat unique to the sport and not addressed in ARC first aid training. However, first aid fundamentals such as the management of shock, thermal problems, and injury assessment procedures are addressed in ARC courses, and these fundamentals are basic to proper diving accident management.

Unfortunately, it is unlikely that the day will ever come when a prospective diving student will be required to provide evidence of such training prior to entering a diving course. In fact, we must consider ourselves fortunate if some entry level divers can swim 200 yards and stay afloat for 10 minutes without the use of mask, fins, or snorkel. A few individuals suggest that even this swimming requirement is too rigid and demanding of prospective students.

Fortunately, all of the diving instruction agencies have developed and promoted diver rescue and accident management specialty courses [14, 15, 25, 35, 47, 49, 59]. *All entry level divers are encouraged to seek continuing education through advanced and specialty diving course offerings such as Medic First Aid and Rescue Diver.* These courses should be completed as soon as possible following entry level training. These specialty courses include 20 to 50 hours of instruction depending on the instructor and the sanctioning agency's requirements. However, divers must keep in mind that some of these courses may not provide comprehensive coverage in the fundamentals of standard first aid, CPR, and lifesaving. Additional ARC or equivalent training may be required.

ESSENTIALS OF ACCIDENT MANAGEMENT

Mental Preparation. To deal with an injury in a diving situation, you must first acknowledge that a diving accident can occur. Many divers, especially entry level

divers, are protected from the realities of diving. There is great concern that some individuals will not enter (or continue) diving if diving injuries are openly discussed. Thus, many individuals truly lack any knowledge of diver and pressure-related injuries and the serious nature of scuba diving.

Furthermore, modern trends in diving instruction suggest that entry level course duration and content may be even further reduced. Complete pool and theory training is now offered in a weekend program or three class periods. This barely provides time for the most basic fundamentals.

In my opinion, every diver must have a working knowledge of accident management and first aid. You must be able to organize a response and apply it to the situation at hand. Adequate planning includes preparing a simple, yet effective, emergency plan for the particular dive site so that you may provide proper care and evacuation for the injured party.

A prudent group leader will visualize the worst accident scenario for a given location and diving activity and mentally rehearse the management of that hypothetical accident. Some leaders/divers will actually sketch an accident management flow diagram. Others will systematically develop specific procedures for each dive site and record them on note cards or in a notebook that can be placed in their first aid kit or briefcase. Once the accident has occurred it is often too late to identify the most satisfactory course of action.

The accident management plan may include, but not necessarily be limited to, the following:

- * Communications (location of nearest telephone, ship-to-shore radio, etc.);
- * Transportation (boat, aircraft, emergency vehicle);
- * Emergency medical/paramedical and advanced life-support service (location and contact procedures);
- * Location of nearest hospital or medical facility;
- * Diver Alert Network number for consultation; and

- * Name, address, and telephone number(s) of a relative or guardian for each diver in party (in the event that permission for treatment, consultation, or unusual medical procedures is required).

Physical Preparation. Physical preparation involves the ability to actually perform rescue and first aid. Reading a book on giving CPR is a good place to start; however, this provides incomplete knowledge until the physical experience of actually performing CPR has been repeated often enough to master the skill. Some dive clubs and advanced diving classes actually stage practice accidents so that members can rehearse.

Group Preparation. Although all members of a dive group should have a working knowledge of first aid and accident management, a few individuals will generally have more advanced knowledge and experience. These individuals must be identified by the leader and known to all members of the group. Ideally, a dive leader will have advanced first aid training and/or will specifically include a person with such capability in the dive group. All members of the group must consider what they would do if someone was injured or lost. Too often *NO ONE* ever thinks about the unfortunate possibility of an accident occurring.

Material Preparation. Material preparation for management of a potential accident includes acquiring, testing, organizing, and packaging appropriate equipment and supplies needed for the diving activity. In addition to all personal diving equipment, this includes personal and group first aid items. Naturally, divers traveling to the Caribbean will not be able to include a backboard and oxygen delivery system in their first aid kit. However, both individual divers and dive groups must make every effort to include (or assure availability of) such items for both local and expedition or vacation outings.

THE DIVER'S FIRST AID KIT

All divers or dive groups should carry a first aid kit. Individual diver kits should be small and compact, yet contain the neces-

sary items to deal with cuts, abrasions, sprains, pain, burns, and so on, in accord with routine first aid requirements [1, 5, 29, 32, 39]. Additional items may be required for specific geographic locations (i.e., a kit for tropical ocean diving will generally include items not generally considered necessary for northern quarry diving). The diver's first aid kit should include, but not necessarily be limited to, the following:

- * Assorted dressings and bandages (adhesive bandages, sterile gauze pads, roller gauze, athletic tape, triangular bandage, and elastic bandage);
- * Antiseptic and cleansing solutions (alcohol pads, povidone iodine solution/swabs, etc.)
- * Pain relief (aspirin or equivalent);
- * Decongestant;
- * Motion sickness preventative (boat diving);
- * Sunscreen and sunburn medication;
- * Snake bite kit (for some geographic areas);
- * Vinegar (for tropical diving);
- * Heat producing packet (or materials for heating water; for tropical diving);
- * Tweezers and/or needle;
- * Pocket mask; and
- * Oxygen delivery system.

Consult my publications on hazardous marine life and adventure travel for more information on special first aid kit requirements [51, 52].

The most important item of equipment for dealing with a true diving emergency is an **oxygen delivery system**. The ability to immediately administer 100% oxygen to a victim of air embolism, decompression sickness, carbon monoxide poisoning or near-drowning cannot be overemphasized. Although the administration of oxygen by first aiders is not included in American Red Cross Standard First Aid Training, all divers are encouraged to learn how to operate a simple oxygen delivery system and administer oxygen to diving accident victims. The equipment is relatively simple and similar in principle to

scuba. Administering oxygen to a conscious, spontaneously breathing person with this equipment is not difficult and is usually safe [43]. Special courses are available from community colleges (EMT courses) and some diving organizations to assist divers in learning to use oxygen delivery equipment and understanding airway management [17, 18, 38].

Proper management of a victim of an air embolism includes keeping the victim in a prone left-side position. Ideally, a special stretcher or backboard is a desirable addition to the first aid kit. However, because of travel and space restrictions the first aider may be required to improvise in many situations.

Many people draw a false sense of security from the physical presence of a first aid kit. Without the knowledge of what to use or when to use it, the items in a kit are useless. The competent first aider should be able to accomplish a number of first aid procedures with no more than two bare hands and the materials normally found in a diver's equipment bag and the surroundings.

RESPONDING TO AN ACCIDENT

When a diving accident occurs, many things must be done. Some must be done immediately, while others may be delayed until the situation is better understood and the victim is safe from further injury. The following steps have been adapted from mountaineering first aid practices [39] and, in order of priority, can be followed with any diving accident.

Take Charge of the Situation. The designated leader or first aid (medical) person must take charge of the situation immediately in order to maximize group response in minimum time. Available personnel must be organized and specific tasks assigned. If no leader has previously been designated, then someone must become the self-appointed leader and assume these responsibilities. Other members of the party must become good followers.

Rescue the Victim. If the victim is still in the water, rescue efforts will generally be initiated by the nearest diver or buddy. If

the divers are a long way from the beach or boat, the divemaster may elect to dispatch other swimmers or a pick-up boat to provide assistance. In-water resuscitation may be necessary during return to base if the distance is great. However, avoid unnecessary delays in moving the victim to a safe, stable platform.

Management of an unconscious victim in the water or removing that victim from the water into a boat or on to a beach can be a difficult task requiring considerable strength and/or special equipment/techniques. A team of only two divers can find themselves in a difficult, if not impossible, situation if one of the divers is rendered unconscious. Furthermore, a very small diver might have great difficulty in handling a larger diver. Use discretion in selecting diving partners and always have beach/boat support personnel. Rescue techniques and in-water resuscitation is discussed in various diver rescue manuals [14, 15, 44, 47, 49].

Occasionally, a diver will surface and report separation from and loss of a buddy underwater. If the lost diver has not surfaced in accord with prescribed procedures, an underwater search must be immediately organized. Before committing to an underwater search, the water's surface must be thoroughly searched by visual scanning and with the pick-up boat. Concurrently, an underwater search team is selected, equipped, briefed, and, if the surface search is unsuccessful, deployed. Systematic underwater search is discussed in several diving textbooks and search and rescue manuals [30, 35, 44]. Generally, the simple circle search pattern is most effective for an untrained search team to organize and execute. Ideally, the search should begin at the last known position of the lost diver. A circle search line can be attached to a heavy anchor or submerged object. All dive leaders and, ideally, all divers, should include a simple reel or line bag with at least 100 feet of line in their personal dive kit.

***DO NOT EXPOSE
UNQUALIFIED PERSONS
TO UNNECESSARY RISK
DURING SEARCH AND
RESCUE OPERATIONS!***

Select the underwater search team carefully. Assign novice divers to perform selected surface tasks. Ideally, a prudent dive leader will have selected one or more potential underwater search teams in advance as part of the emergency planning procedure.

Frequently, the victim of a diving-related illness or injury will be on the boat or beach before symptoms appear. Keep in mind that symptoms of decompression sickness will generally appear within one hour following the dive; however, delays up to 36 hours have been documented. Air embolism is generally evident within minutes of the barotrauma.

Perform Urgent First Aid Procedures. The first responsibility of the first responder or first aider is to treat conditions that can cause loss of life. In the water this often means provisions for immediate flotation in order to prevent possible drowning. Keep in mind that a conscious victim can lose consciousness without warning.

Evaluate the victim at once, at a minimum, to determine if breathing has stopped, if there is no pulse, or if bleeding is severe. Treat these conditions immediately!

Protect the Victim. Now that immediate life-threatening factors such as drowning, breathing, circulation, and bleeding have been addressed, measures must be taken to protect the victim from further physical and *emotional* harm. Whatever the extent of the injury, the victim will require protection from the environment, either hot or cold. Talk to the victim, explaining what you are doing and what you intend to do. Do not allow a crowd to surround the victim! Do not discuss the critical nature of the victim's condition with other persons where he can overhear the discussion! Do not add to the victim's emotional distress by expressions of regret about his condition!

Provide the victim with gentle and encouraging expressions of reassurance. Keep in mind that certain marine life injuries, such as the bite of the blue-ringed octopus involves the injection of a neurotoxin and a neuromuscular blocker, resulting in a painless skeletal paralysis. The victim's conscious state is initially normal in such cases, even though he may not be

able to open his eyes or respond to his environment. Even when administering CPR in such cases, reassure the victim, who may hear you but cannot communicate to you. Let him know that everything will be all right and that you understand his condition.

NEVER LEAVE THE VICTIM UNATTENDED!

Even a conscious and apparently stable victim of air embolism, decompression sickness, gas supply contamination, or some marine life injuries can cease breathing without warning.

Prevent/Manage Shock. Observe the victim for general reactions and shock. Shock can be life-threatening! It is advisable to lay the victim down and keep him as quiet as possible. The symptoms of shock include glassy eyes with dilated pupils; wet and clammy skin; weak and rapid pulse; pale or ashen skin tone; increased breathing rate (shallow or deep and irregular); and sensations of coldness [1]. First aid measures for prevention and management of shock [1] include keeping the victim lying down and covered only enough to prevent loss of body heat. No attempt should be made to add heat since raising the surface temperature of the body can be harmful. Elevate the feet or end of stretcher 8 to 12 inches.

Giving fluids by mouth has value in shock; however, fluids should only be given when medical assistance is not available within a reasonable amount of time (delay of more than one hour). Fluids should not be given when the victim is unconscious, vomiting/likely to vomit, or experiencing seizures, since such states may result in aspiration of fluids into the lungs. Water that is neither hot nor cold (preferably a salt-soda solution, 1 level teaspoon of salt and 1/2 level teaspoon of baking soda per quart of water) is given at about 4 ounces every 15 minutes. Do not give the victim sea water. Discontinue fluids if the victim becomes nauseated or vomits. Obtain medical assistance as soon as possible. *Keep in mind that physiologically or emotionally induced shock may be associated with any diving injury.*

Check for Other Injuries. Once the life-threatening emergencies have been identified and controlled, the victim should be examined in detail to determine if there are any other problems, either major or minor.

Plan a Course of Action. Once urgently needed first aid has been given, protection from the environment provided, and other injuries/problems identified/corrected, time must be spent planning further tasks. Basically, the situation needs an objective analysis and the development/execution of a comprehensive plan of action.

Execute the Plan. After a complete examination of the entire accident situation and development of a course of action, execute the plan. Generally, this involves acquisition of emergency medical services, transportation to a medical facility, stabilization of the patient at that facility, and, in the case of decompression sickness and air embolism, transport to a hyperbaric treatment facility.

The responsibilities of the first aider will generally be completed when the victim's care is transferred to the emergency medical team. However, the leader/first responder should follow the victim's care through the system to insure that proper measures are taken to deal with the diving-related illness or injury. In the event that emergency medical personnel or hospital/clinic personnel are not knowledgeable in the proper management procedures for pressure-related accident victims, the first responder may have to provide further assistance in seeking appropriate consultation and care.

Ideally, the first responder (or a designated member of the dive team) should accompany the victim to the final treatment facility if at all possible. Not only can this person assure that proper care is given, he may be able to provide valuable information about the accident situation and victim to the treatment team. All divers should include a copy of the DAN manual [43] in their kits. The manual can be very valuable to emergency and medical personnel who are unfamiliar with diving-related accidents and their management.

LIFE-THREATENING EMERGENCIES

Absence of breathing or a pulse may result in death after only a few minutes. Since the diving accident victim is often in or under water when the incident occurs, many serious diving-related accidents must ultimately be managed as near-drownings regardless of the initial cause. Near-drowning is no doubt the most common life-threatening situation encountered in diving. If the victim is not breathing, the first responder must begin mouth-to-mouth artificial respiration as soon as possible. When there is no pulse evident, cardiopulmonary resuscitation (CPR) is necessary.

When you approach an apparently unconscious victim, you must immediately check for absence of breathing and pulse [1, 12, 39]:

- * ***Check for unresponsiveness!*** Speak loudly to the victim and gently touch or shake; if no response, open airway.
- * ***Position the victim!*** Roll onto back if necessary.
- * ***Open airway!*** If there is no reason to suspect a neck or back injury, place one hand on the victim's forehead. Place the tips of two fingers of the other hand under the bony part of the victim's chin. Tilt head and lift the jaw up and forward. Avoid closing the victim's mouth or pushing on the soft part under the chin.
If there is reason to expect a neck or back injury, use the jaw thrust method. Place your hand on each side of the victim's head, and push the base of the jaw up and forward. Do not tilt the head back.
- * ***Check for breathing!*** With your head turned so that you can observe the victim's chest and abdomen, place your ear and cheek next to the victim's nose and mouth. ***Look*** for movement of chest and abdomen. ***Listen*** for breath sounds. ***Feel*** for air movement against the side of your cheek.

If you see chest or abdomen movement without hearing or feeling air movement, suspect airway obstruction. Recheck head/jaw position to assure that airway is open.

- * ***If the victim is not breathing!*** Give two full breaths and proceed with resuscitation effort as required. Pinch the victim's nose shut. Open your mouth wide and take a deep breath. Now, make a tight seal around the outside of the victim's mouth. Give two full breaths pausing between each breath so you can breathe. Observe the chest for movement (rise and fall) and listen/feel for escaping air.
- * ***Check for circulation!*** Place your index and middle fingers on the victim's voice box and then slide your fingers down the side of the victim's neck to the space between the voice box and neck muscle. Feel for a pulse for 5 to 10 seconds. If a pulse is present, continue with mouth-to-mouth artificial respiration. If not, give CPR.

Keep in mind that victims of cold-water submersion (water below 68° F.) may be successfully resuscitated even though they have remained submerged without breathing for more than 30 minutes [45]. Consequently, a near-drowned diver should receive complete resuscitation efforts even though the period of submergence may be relatively long.

The procedures for safe and effective mouth-to-mouth artificial respiration and cardiopulmonary resuscitation are beyond the scope of this presentation. Learning to administer CPR requires special training and practice on mannequins in accord with American Red Cross or equivalent training/certification procedures [1, 2, 3, 5].

Major wounds can cause severe, life-threatening bleeding. Although not as common in diving accidents as absence of breathing and pulse, severe bleeding can also be fatal in minutes. Quick, decisive action is mandatory. Severe bleeding injuries in diving are more likely to be associated with such incidences as shark attack or being struck by a boat propeller.

Severe bleeding may be controlled by applying direct pressure to the bleeding area. If the wound is on a limb, elevate the bleeding extremity. If these measures do not control bleeding, application of pressure to an artery, at a pressure point, can reduce the flow of blood through the artery. If these measures fail, and the wound is on an extremity, a tourniquet may be required. *The decision to apply a tourniquet is in reality a decision to risk sacrifice of a limb in order to save a life!* Specific first aid procedures for the management of severe bleeding are addressed in American Red Cross first aid courses and manuals [1, 4].

BASIC FIRST AID

This booklet has been prepared to address the management of specific diving and pressure related illnesses and injuries. However, divers must also be capable of administering proper first aid for other types of injuries. For example, more divers are probably injured in motorbike accidents on Bahamian and Caribbean islands in a single year than in diving-related incidents over a 10-year period.

One of my former students reported an incident involving a diver entering the water using the backward roll method from a boat. Another diver, already in the water, was rendered unconscious when the entering diver's scuba cylinder struck her on the head. Fortunately, the injured diver only sustained a mild concussion. However, skull fracture and cervical (neck) injury could have resulted in life-threatening or crippling consequences. Ironically, the divemaster never even considered the possibility of such serious injuries, *dragged* the unconscious/dazed victim into the boat without precaution, and allowed the individual to continue diving upon regaining consciousness.

Any diving expedition leader will routinely deal with a variety of minor injuries including cuts, abrasions, insect bites, blisters, sprains, and sunburn. On the other hand, the leader must be prepared to provide first aid for neck, head, and back injuries; temperature-related problems such as hypothermia and heat stroke; drug abuse; fracture; and burns. Basic injury management procedures are included in

numerous manuals and textbooks [1, 5, 9, 12, 29, 32, 44, 59]. As previously stated, all divers, and especially divemasters and instructors, are encouraged to complete the ARC first aid training program or its equivalent. Furthermore, dive expedition leaders are encouraged to carry a complete first aid kit, especially when diving in remote locations. For general first aid information I recommend that the diver acquire and read, at a minimum, the following manuals (most current editions):

- * American Red Cross Standard First Aid Workbook [1]
- * Mountaineering First Aid [39]

EXAMINING AN INJURED DIVER

Once the first responder has rescued the distressed diver, dealt with immediate and life-threatening injuries, and taken measures to protect the diver from further harm, a complete assessment of the diver's condition must be made. You must identify if the diver has any other conditions or injuries which pose potential risk to the individual's well-being. In addition, you must be in a position to provide complete information to emergency and medical personnel. Finally, you must have a baseline by which to recognize subsequent changes in the victim's condition.

Assuming that the victim is conscious, introduce yourself to the victim and give some indication of your first aid capability (if not already known and recognized by the victim). **Ask the victim if you may help her.** She has the right to refuse your assistance. Additional explanation may help her to accept aid. Keep in mind that the victim may not be aware of the seriousness of her injury/illness.

Even if the victim appears to be unconscious, not breathing, and unable to communicate, she may be able to hear everything you say and be aware of what is happening. You must reassure the victim that she will be all right and that you understand her condition.

Do not discuss the serious nature of a badly injured victim's condition directly in the presence of the victim! The resulting emotional trauma can add considerable complication to the subsequent

management of the injury or illness. You can actually create psychosomatic symptoms, especially in victims of suspected decompression sickness. Ask the victim the following:

- * What happened?
- * How did it happen?
- * When did it happen?
- * What hurts?
- * Do you have any other problems? Medical conditions? Allergies?
- * Are you exhausted? Cold? Hot?

Information gained from a conscious victim is important in identifying first aid needs. In the event that the victim later loses consciousness, this information may be very important to the emergency medical personnel and attending physician. Ask similar questions of others who might have witnessed the accident or who know the victim. Record all information.

In examining a victim the following basic principles should serve as a guide [33]:

- * Do no further harm to the injured person.
- * Be complete and systematic.
- * Use direct observation.
- * Compare left and right body parts.
- * Have one person do the examination.
- * Record all of your findings (or have an assistant record information).
- * Record both signs (observable indications) and symptoms (sensations reported by the victim).

Since this booklet deals primarily with diving and pressure-related injuries or illnesses, the details of examining a trauma victim, such as someone involved in a mountaineering or motor vehicle accident, will not be addressed. Readers are referred to *Mountaineering First Aid* [39] for an excellent discussion of performing a head-to-toe examination of a trauma victim.

Vital Signs

Observing and recording vital signs is an essential part of any examination. These

signs include pulse, breathing, skin color and temperature, pupillary reaction, state of consciousness, sensation of pain, and ability to move. Vital signs must be recorded initially and periodically thereafter. If the victim's injury is apparently minor, frequent taking of vital signs is not necessary. However, in a seriously injured or apparently unstable victim, vital signs should be taken every ten to fifteen minutes. These vital signs are very important in determining if the victim's condition is stabilizing or deteriorating.

A complete record of the examination and the vital signs must be documented in writing. Record information in a notebook or on a special examination form.

Pulse. Pulse can be felt at the wrist or on the neck. Count the number of beats in fifteen seconds and multiply by four. Also note the strength and regularity/irregularity of the pulse. An adult's pulse rate is normally 60 to 80 per minute; 80 to 100 per minute in children. Fear and exercise may increase heart rate.

Breathing. An adult normally takes 12 to 15 breaths per minute (20 to 30 for young children). Determine if breathing is deep or shallow and easy or labored (difficult). Is there the presence of gurgling sounds or sputum/froth coming from the mouth or nose? Such conditions as labored breathing and/or froth could be a sign of pulmonary barotrauma.

Skin. Normal skin coloration has an underlying reddish tone. Absence of this tone is seen as ashen or pale color in light-skinned persons or dull ashen gray in dark-skinned persons. Bluish tones may indicate oxygen deficiency or carbon dioxide retention due to inadequate ventilation or circulatory deficiencies. A mottled appearance may indicate decompression sickness. Note the presence of sweat (or lack of perspiration on an exceptionally hot day) and if the skin is unusually warm or cool.

Pupils of the Eye. Abnormal pupil response can be an indication of central nervous system dysfunction or head injury. This observation is very important in assessing diving accident victims and will be discussed in more detail later. Size

variations, movement, and reaction to light should be documented.

State of Consciousness. The victim's state of consciousness is another indication of central nervous system function. Note departures from normal alertness, combative-ness, confusion, speech (clear or slurred), or personality changes evident to persons who know the victim.

Pain and Movement. Specific complaints of pain in lower back, legs, and joints may be symptoms of decompression sickness. Lack of reaction to pain-producing stimuli may denote damage to the central nervous system. Even an unconscious person will move away from pain stimuli if there is no paralysis of appropriate muscles. When you touch an injured victim ask if he can feel the touch. Movement should be accom- plished easily upon command. Such tests should begin with small movements such as asking the victim to wiggle toes or fingers. Then progress to the use of large muscle groups. Strength tests, to be discussed later, are commonly used to determine neurologi- cal deficits. Note any specific pain reactions or deficiencies and movement capabilities.

The Neurologic Examination

The first responder will seldom have to perform a neurologic examination. How- ever, in the event that an accident occurs in a remote location where neither emergency medical services or physician services are available, the first responder may have to provide a detailed assessment of the victim's condition to physicians by radio or telephone. In suspected cases of air embolism and decompression sickness, obvious neu- rological symptoms or lack of such symptoms may be very important in determining the seriousness of the illness and a proper course of action.

By following a simple guide, any diver should be able to perform a neurologic ex- amination. Contrary to popular belief, doing a simple neurologic examination in the field does not require as much training or understanding of the nervous system as one might think. It only requires the ability to recognize and report obvious abnormalities. Most neurological symptoms are obvious, even to untrained people, but their signifi-

cance is missed. What is often lacking is the discipline to thoroughly evaluate a dis- tressed diver and look for the less obvious symptoms. The examination procedures given here have been modified from those given by Daugherty for use by diver-medics in commercial offshore diving [20].

A neurologic examination performed by a first aider is not intended to serve as a major diagnostic factor. Most often diagno- sis is made by competent physicians at a medical facility. The examination does not test every single nervous function. How- ever, it can be complete enough to detect and monitor important problems. The ini- tial examination serves as a baseline for repeated evaluations. The examination can be directed by a physician by radio/tele- phone or later discussed with a physician in determining an appropriate course of action. The examining first aider should system- atically follow the guidelines given below and record the findings (including the time of the initial and subsequent examinations).

Mental Alertness. Ask the diver who he is, where he is, and the approximate time of day. Test memory by asking simple ques- tions about his dive buddy, the dive loca- tion, what he ate at his last meal, his mother's maiden name, etc. Have him perform simple arithmetic problems in his head. Do not use trick questions! All that is expected is the ordinary mental function that everyone is assumed to have.

Ordinary conversation is often the best mental examination procedure. The first aider can observe the diver's response to questions and instructions, then ask specific questions if he/she becomes suspi- cious. Mood and personality changes are often a subtle sign of brain dysfunction, and may only be obvious to someone who knows the diver well. If you, the first aider, do not know the diver, have someone who does with you during the evaluation.

An excellent example of personality change was demonstrated when a resident in an emergency room interpreted the rather dull, unintelligent responses of a sheriff's department diver as "normal for a person in that profession." He was preparing to dis- charge the patient when a diving physician arrived on the scene. The line-tended scuba diver had been rapidly and unsuspectingly

pulled to the surface as a result of signal misinterpretation by a tender. The circumstances of the incident prompted the diving physician to perform a more thorough examination. Slight neurologic dysfunction was detected and the diver was recompressed. The diver immediately responded to treatment and exhibited pleasant, outgoing, and intelligent personality characteristics after the treatment. In this case a victim of air embolism was almost discharged without treatment.

Cranial Nerves. The examiner does not have to know the names and Roman numbers of the cranial nerves; such knowledge is unnecessary and soon forgotten. The first aider should learn to recognize functional abnormalities and report them in simple terms (i.e., "the right side of the face sags" or "the left eye cannot look outward").

Eyes. While following a moving finger, both eyes should track the movement together, up and down and side to side. Both pupils should be round and approximately the same size. When a light is shined into one eye, both pupils should react; test both eyes. Pupils should constrict when gaze is shifted from far away to four to six inches in front of the nose.

Face. Both sides should move equally when the diver is asked to raise her eyebrows, frown, close her eyes tightly, smile, or show her teeth.

Mouth. The soft palate (soft fleshy back part of mouth) and uvula (small, fleshy process hanging down from the middle of the soft palate above the back of the tongue) should rise when the diver says "AH." When the tongue is stuck out it should not deviate to either side and the diver should be able to wiggle it from side to side.

Hearing. Ask the diver if she notices anything unusual about her hearing such as roaring, humming, or ringing in the ears. With the diver's eyes closed, test her ability to hear whispers or the rubbing of fingers together. See how far from her ears the diver can hear the sound. Compare with your own hearing.

Neck Muscles. Have the diver turn her chin sideways against the palm of your hand. Feel the force and observe the neck

muscle contraction on each side. Pull down on the wrist and have the diver shrug each shoulder upward against this resistance. Both sides should have approximately equal strength and movement.

Strength. The strength of major muscle groups can be assessed by feeling the force exerted by the victim against a resistance applied by the examiner. The right and left sides of the body are compared.

Upper Extremities. To test grip strength have the victim grip the examiner's index and middle finger and tell him to squeeze as hard as possible. Grip the diver's hand and have him pull and push against the resistance. Keep in mind that the dominant hand and arm may be stronger; note significant differences. Have the victim hold his hands straight out in front and have him attempt to bring his hands together and apart against a resistance. Have the victim hold his elbows out to the side and resist pressure applied to force them downward.

Trunk. Weakness in the trunk is more obvious since the victim will have difficulty sitting, standing, walking, or remaining upright. Tests include observing sit-ups and straight leg lifts.

Lower Extremities. Have the diver do deep-knee bends and toe-ups on one foot at a time. Hold the victim's ankle and ask him to straighten and bend the knee against resistance. Have the victim raise his big toe and hold it strongly against resistance.

Sensation. Numerous tests are possible, but only a few are significant to the first responder. Sensations often obvious to the victim are pain, numbness, tingling, hot-cold, or a wooly, heavy feeling in extremities. The examiner should keep in mind that an injured victim will generally have some sensation or feeling. Therefore, ask the victim, "Does this feel normal?" not, "Can you feel this?"

Light Touch. Drag fingers lightly over the front and back of the victim's arms, trunk, and legs with particular attention to the fingers, toes, palms and soles of feet. Touch the hairs on the arms and legs lightly. Compare the right and left sides.

Sharpness and Dullness. Using the point and head of a safety pin or the point and eraser of a sharp pencil, press on the skin and ask the victim to identify sharp versus dull sensation. Compare the right and left sides and keep in mind that some areas will normally be more sensitive than others. Gently drag the point of the pin across the body surface (vertically on the body and around the extremities) looking for strips of dullness or different feeling. Take care to not scratch the skin.

Position. With eyes closed, have the victim determine the direction in which the examiner is moving various joints (up or down).

Balance and Coordination. The examiner should try these tests himself in order to have some idea of their difficulty.

Gait. This may be the best all-purpose test. Ordinary walking is a deceptively simple act which we do without thought. However, it is impossible to do normally without an intact nervous system. Slight abnormalities in a person's walk are surprisingly easy to detect, even by an untrained observer. The test can be made more difficult by having the diver walk heel to toe (forward and backward) in tightrope fashion. If on a vessel, be certain to consider response to natural vessel motion. Also, in examining a stranger be certain to determine by inquiry whether the individual has any normal gait variations (i.e., a limp).

Rhomberg Test. Have the victim stand with feet together, arms outstretched, and then close his eyes. Most people will weave a little, but the victim should be able to stand in this manner without falling over or leaning severely in one direction.

Alternating Movements. The diver should be able to jog in place, tap toes, and clap hands smoothly without clumsiness.

Orientation in Space. Without looking, have the diver touch his index fingers over his head, separate, and touch again. Have the victim alternately touch his right and left index finger tips to his nose with eyes closed. While sitting and with the eyes closed, have the diver put the heel of one foot on the opposite knee, then slide the heel down the shin bone to the big toe. Repeat with other foot. With eyes open, have the diver place his index finger into the center of the

examiner's palm, which is held in different locations, alternating right and left sides.

Unconscious Victim. The most important factor to consider in this case is the fact that the diver is unconscious. Unless it is immediately evident without doubt that the unconscious state resulted from some other problem such as physical trauma, drug usage, etc., the diver must be considered to be a victim of air embolism or decompression sickness. Even in cases such as trauma and drugs this possibility cannot be totally dismissed. I recall one suspected air embolism victim whom I treated who had reportedly consumed quantities of a hallucinogen and alcoholic beverage prior to diving. The diver apparently surfaced rapidly as if in panic and lost consciousness. Since an objective neurologic exam could not be performed, even when the victim regained consciousness, recompression was absolutely necessary. The victim responded to treatment and was subsequently discharged without residual effects.

The first aider can do little but monitor the victim, assure breathing and circulation, and give appropriate first aid for suspected air embolism. In the event that the consulting physician wants to gain some insight into the neurologic state of the victim, he may direct the first aider to test sensation to pain by pinching muscles, fingertips, or toes, or jabbing with a pin. The normal response is withdrawal of the limb or other protective response. Failure to respond usually means that there is no feeling in that area.

Another pain response test is to use the knuckle of the index or middle finger to press hard into the sternum (breast bone) with a rotating or grinding motion. This can cause great pain, but do no harm (unless unreasonable pressure is applied). The victim may respond in a variety of ways depending upon the state of coma. Note if all extremities react to this stimulus. Compare upper to lower, right to left. If the victim clearly responds to pain but fails to move a limb, this suggests paralysis or severe weakness.

Hold both eyes open to observe reaction to light and if the pupils are approximately equal. Note if the eyes will track or if one moves and not the other.

As previously stated, the first responder will seldom, if ever, have to perform a neurologic examination. In the rare situation of isolation from immediately available medical services, the first aider might have to examine a victim and report the findings to a physician by radio or telephone. However, there are situations in which a dive buddy or leader may use some of the above procedures (primarily those requiring observation only) to determine if a diver has been adversely affected during an emergency ascent or other type of incident.

For example, if a diver experiences an uncontrolled ascent, that diver should not be allowed to immediately submerge again. Rather, the diver should return to base (boat or shore) under positive flotation, relax, and be observed for at least 30 minutes. The observer must take great care to not alarm or emotionally distress the diver with probing questions. Simply observe for obvious indications of normal body function or dysfunction. If dysfunction is noted, appropriate measures must be initiated to further evaluate the diver and administer proper first aid.

The Incident

A complete understanding and documentation of the circumstances or conditions of the accident can be very important in determining the appropriate first aid measures and, ultimately, the medical management of the victim. For example, *a diver experiencing neurological deficiencies following an emergency ascent must be considered as an air embolism victim!* Neurological deficiencies or joint pain following a day of extensive diving close to or beyond the no-decompression limits suggest a high probability of decompression sickness. On the other hand, a person who complains of discomfort in a knee joint following a single dive to 30 feet is probably not suffering from decompression sickness.

The first responder should, if possible, obtain a complete pre-incident history of the victim and activities including, but not necessarily limited to, the following:

- * Signs/symptoms of respiratory infection (common cold, coughing, etc.) prior to the dive;

- * Depth and duration of all dives within the past 24 hours (include previous days if diving is conducted every day);
- * Recalculation of dive schedules and repetitive dives in order to determine if there were any mistakes in the original calculations;
- * Does the diver recall any incidence of physical injury such as twisting a knee, back strain, etc., associated with the dive in question or other activities prior to or following the dive;
- * Amount of sleep, alcohol consumption, food intake, and exercise/strenuous activity in past 24 hours;
- * Prior incidences of decompression sickness, pulmonary barotrauma, and other diving (pressure) related illnesses; and
- * Exertion level and thermal condition during dive(s) in question.

QUESTIONABLE SITUATIONS

Sometimes a diver will experience fatigue, a variety of minor pains, and simply feel poorly following a dive. There are countless factors that could account for such symptoms or feelings. A generation of more mature divers now bring numerous aches and pains of aging muscles and skeletons to the dive site with them. Some days I feel "bent" after taking a shower. Athletically inclined divers may experience residual pain from tennis or jogging. Hours in an airplane seat on the way home can produce discomforts that may mimic mild symptoms of decompression sickness.

Quite often the diver must ask herself, "What are the chances of my having decompression sickness?" Ironically, fatigue is a definite symptom of decompression sickness. Fatigue is also a symptom of thermal stress. If every diver who complained of fatigue following a dive or at the end of a diving day were to submit herself for treatment of decompression sickness, large hyperbaric chambers would be required at or near all dive sites. The diver and the dive leader must be prepared to

sort out the possibility of real decompression sickness versus simple fatigue and general physical discomforts associated with exercise and environment.

There are no simple rules for such determinations except judgment, common sense, and objectivity. Emotional distress and fear of decompression sickness can produce a host of psychosomatic symptoms, especially if other persons begin to support the premise of serious illness. *If a diver complains of discomfort or illness following a dive, the possibility of decompression sickness or pulmonary barotrauma must always be considered.* However, immediate and hasty diagnosis of a minor discomfort or illness as a serious diving-related injury or illness can lead to difficult and expensive consequences.

Ideally, it would be desirable for any individual who is suspected to be a victim of air embolism or decompression sickness to be transported to a hyperbaric facility and examined by a diving physician as a precautionary measure. Unfortunately, in scientific and recreational diving such precautionary procedures and hasty actions could most often be an expensive and complicated procedure. For example, let's assume that the incident occurs on a Caribbean island. In haste, a decision might be made to immediately transport a questionable victim back to Miami for evaluation or treatment. The panicked leader orders a jet air ambulance from the states to pick up the victim and deliver him to Miami.

Most private air ambulances will not take off unless payment is appropriately guaranteed or the bill is paid in advance. The cost of this service from locations in the Caribbean to the States may run as high as \$7,000 to \$10,000. Upon arrival in Miami, the victim may be found to be asymptomatic and hyperbaric treatment not necessary. A more prudent decision would have been to monitor the victim for a short time to determine if the symptoms subsided or intensified. In addition, a telephone call to DAN at Duke University would have provided the leader with consultation and assistance in developing a proper and reasonable course of action.

In cases of minor, and probably non-diving related, discomforts, the diver and dive leader should objectively analyze the

dive schedules and activities for the day (and prior days of consecutive diving) to determine if there have been any mistakes or violations of proper diving schedules. The diver should simply relax and not submit to further emotional or physical stress. The diver should maintain an awareness of any increased severity of symptoms.

For example, if a diver with minor pain or discomfort in the knee has only injured the knee by twisting or physical contact, the discomfort should not worsen significantly if the individual relaxes and does not place weight on the leg. Also, the pain should intensify if the painful area or joint is physically touched or pressed against. However, if the discomfort is a result of decompression sickness, it will probably intensify and spread within a few hours, even if the diver is resting. In addition, discomfort should not intensify with touching. Furthermore, other areas of the body may develop symptoms indicative of decompression sickness. In cases of intensifying or spreading pain and development of neurological abnormalities, serious injury must be suspected and appropriate management measures begun.

Some authorities recommend that a person experiencing minor, questionable discomforts following a dive (or series of dives) be placed on precautionary oxygen breathing and consume plenty of fluids for a period of one to two hours. One dive tour leader reported an incident involving a diver who had made multiple dives each day for several days. The dives were probably within the no-decompression limits; however, since the diver was using an underwater propulsion vehicle for multi-level dives, exact depth-time relationships could not be established. Following a repetitive dive the diver complained of severe headache, neck pain, and extreme fatigue. The diver was directed to rest and breathe oxygen for an hour or so and the discomforts disappeared. Wisely, the tour leader recommended that this individual forgo diving for the remainder of the trip.

Was the diver suffering from decompression sickness? Possibly? Probably? Questionable? Would the diver have experienced more serious symptoms if oxygen

breathing had not been initiated? We will never know. One can only speculate at this point. *The use of precautionary oxygen breathing at atmospheric pressure may be of considerable value.* Possibly, it may prevent the development of further complications. However, more research and medical information will be necessary in order to determine if this is to be designated as a standard practice in scientific and recreational diving situations. *Keep in mind that this practice should not be considered as a substitute for proper hyperbaric treatment of decompression sickness.*

Like sharks, decompression sickness can be predictably unpredictable. Unfortunately, the unlikely may occur in diving. A young, healthy female completed a single dive to 60 feet for 30 minutes. Following the dive, she developed symptoms of decompression sickness. Subsequent hyperbaric treatment relieved all symptoms. According to accepted diving tables the no-decompression limit for a dive to 60 feet is 50 to 60 minutes (depending on the table selected).

In another incident, a young, healthy male diver completed a single dive to 40 feet for about 40 minutes. Four to five hours following the dive he flew in a commercial airliner and developed joint pain. His condition was subsequently diagnosed as decompression sickness and several hyperbaric treatments were administered. Even so residual joint discomfort remains two years following the incident. According to several publications and recently developed recreational dive tables, this diver was considered safe for flying.

In still another case, a diving instructor reported to a hyperbaric chamber facility with pain in both arms approximately 36 hours after a properly executed dive. Symptoms appeared in association with the passage of a low pressure weather front. Hyperbaric treatment on a standard table relieved the discomfort and he was later released from the hospital symptom free. It is interesting to note that this diver's buddy had actually experienced decompression sickness on the dive and had been treated the previous day. Dive leaders should keep in mind that, "If one member of the dive team bends, observe the other diver closely

for development of symptoms!" I can recall several cases where the buddy experienced delayed symptoms.

In 1976 Spencer reported on the evaluation of divers using ultrasonic detection to determine the presence or absence of venous gas emboli (VGE) following exposure to pressure [53]. In this study he found that, "There are bends-prone and bubble-prone individuals who, if they dive, should do so only in very shallow water, i.e., less than 30 feet in depth." His findings demonstrated that there is a strong individual propensity to form VGE, which correlates with a person's susceptibility to decompression sickness.

Unfortunately, the recreational diver does not have the luxury enjoyed by some military and commercial divers where hyperbaric chambers are more readily available and a common diagnostic technique is a test of pressure. If the suspect diver is placed under pressure (recompressed in a hyperbaric chamber) and the discomfort is relieved, the standard procedure is to treat for decompression sickness. In the event that the symptoms are not relieved, further and complete medical evaluation is necessary to determine if the diver is actually a victim of decompression sickness or otherwise. However, even this procedure is not foolproof. In one incident, wrist pain in a military diver was not relieved and reoccurred following several hyperbaric treatments. A subsequent X-ray revealed a wrist bone fracture. It is unlikely that the individual has ever had decompression sickness.

Caution! Divers should not attempt a test of pressure by placing the suspect diver back in the water. This could only lead to the absorption of additional nitrogen and potentially other complications!

ADMINISTERING OXYGEN

The administration of oxygen by first aiders has been questioned by some non-diving authorities. Oxygen is considered to be a drug, and there are laws in some states which regulate the use of oxygen. Rescuers and divers should be aware of such laws, especially if they specifically forbid the use of oxygen in a first aid situation.

Supplemental oxygen is a valuable adjunct in the first aid management of air embolism and decompression sickness. *In fact, many authorities consider it to be an absolute necessity!* Breathing oxygen will eliminate some nitrogen from the body by producing a pressure gradient between the problem bubble(s) and the surrounding tissues. This favors resolution of the bubble since this pressure gradient, or driving force, causes nitrogen in the bubble to dissolve in the bloodstream and be eliminated through the lungs. Any increase in oxygen being supplied to the injured area will also be physiologically beneficial, especially if brain tissue is involved [43].

Administering oxygen to a conscious, spontaneously breathing individual is not difficult and is usually safe with the proper equipment. The concentration of inhaled oxygen should be as near 100% as possible in order to achieve maximum benefit. A demand type oxygen breathing unit with a tight-fitting, double seal mask and an adequate oxygen flow rate is necessary to deliver the required concentration. Constant flow devices (inhalators) using nasal cannula, simple elongated face masks, partial rebreather masks, etc., will only deliver low, ineffective concentrations (25% to 60%) depending on the metered flow rate. In the event that only a constant flow device is available, deliver oxygen at a flow rate of 10 liters per minute [19].

If the victim is unconscious or not breathing spontaneously, oxygen administration becomes more complicated. In this situation, the first aider must have a thorough understanding of airway management and the use of adjunctive equipment. As in the case of CPR, such techniques and equipment are beyond the scope of this publication. The diver and dive leader can only be encouraged to acquire additional special training. Many community colleges offer Emergency Medical Technician courses which include this training [16] and the National Association of Underwater Instructors (NAUI) sponsors workshop programs on emergency oxygen administration [17, 18].

The use of oxygen in the early stages of managing a diving accident victim may reduce or totally relieve the symptoms

within a short time. If this does happen, do not be deceived into thinking that the problem has been completely resolved. Oxygen breathing should be continued, the victim transported to the nearest medical facility, and a diving physician consulted. Oxygen breathing at atmospheric pressure must not be considered as a substitute for hyperbaric treatment in cases of decompression sickness and air embolism [43].

High oxygen concentrations should not be delivered to hyperventilating victims or victims with chronic obstructive pulmonary disease (emphysema).

IN-WATER RECOMPRESSION

The equipment and techniques for in-water recompression have been discussed by Edmonds for application in managing diving accidents in extremely remote tropical areas [26]. However, the standard of care in the American diving and diving medicine community does not advocate such procedures and, in fact, discourages any attempts at in-water recompression. It has been found that the victim is usually further compromised by incomplete treatment, additional nitrogen uptake, and cold. If oxygen is used the high risk of oxygen toxicity must also be considered. If the initial symptoms are serious, the results are usually disastrous. *In-water recompression should never be attempted!* [43]

HELICOPTER EVACUATION

Helicopters are becoming a major means of transporting seriously injured persons. Most major medical centers have helicopters and/or landing areas. Each helicopter evacuation is different. In some situations, helicopter personnel will give directions by radio. In others, ground support personnel such as law enforcement officers and emergency rescue persons who are familiar with helicopters will take charge of the landing area. Knowledge of basic procedures and what to expect will improve the safety and efficiency of a helicopter evacuation. The following procedures for evacuating a patient from a boat have been modified from the NOAA Diving Accident Manual [48]:

- * Try to establish communications with the helicopter. If your boat is unable to furnish the necessary frequency, try to work through another boat.
- * Maintain speed of 10 to 15 knots; do not slow down or stop.
- * Maintain course into the wind about 20 degrees on port bow.
- * Put all antennas down, if possible, without losing communications.
- * Secure all loose objects on or around the deck.
- * Always let the lifting device (stretcher) touch the boat before handling it to prevent electric shock.
- * Place the patient in a lifejacket.
- * Tie/strap the patient in the basket face up.
- * If the patient cannot communicate, secure to the patient or place in the basket written information about the patient and the accident situation including name, age, address, description of the accident or circumstances preceding the injury/illness, first aid provided and so on.
- * If the patient is a diving accident victim, insure that the flight crew has a copy of, or instructions on, medical/first aid procedures for diving accidents. A copy of the DAN manual is beneficial.
- * If the patient is a diving accident victim, insure that the flight crew will deliver the victim to an appropriate medical facility with a hyperbaric chamber if possible.
- * If the patient dies prior to pick-up, inform the flight crew so that they do not take unnecessary risk.

If the helicopter is making a pick-up on land, clear the area of loose debris if possible, devise a signal that will enable the pilot to determine wind direction (smoke flare), and be sure that the landing area is clear of people. Do not approach the helicopter until directed by the flight crew. Be especially careful of the tail rotor.

SERIOUS DIVER INJURY: AIR EMBOLISM AND DECOMPRESSION SICKNESS

The two most potentially disabling and life-threatening conditions that can result from exposure of an individual to elevated ambient pressure situations such as scuba diving are air embolism and decompression sickness. Air embolism, resulting from the entry of air bubbles into circulation as a result of pulmonary barotrauma, can occur in water depth as shallow as four feet. It is most common among trainees, inexperienced divers, and infrequent divers. Decompression sickness involves nitrogen being released from solution in the form of bubbles in body tissues as a result of inadequate decompression procedures. This condition is more common among experienced and frequent divers who dive beyond depths of 30 feet.

Pulmonary Barotrauma

In a diminishing pressure situation, e.g., a scuba diver ascending from depth, the air in the lungs is expanded because of decreasing external pressure. If the normal exhalation route of the expanding air is interrupted either voluntarily, by breath holding, or involuntarily, from local respiratory tract obstruction, the intrapulmonary pressure progressively distends the alveoli (air sacs) and rupture of lung tissue may ensue. A pressure differential of about 100 mm Hg (2 psi or 4 feet of seawater equivalent) may be sufficient to rupture lung tissue. From the point of rupture, the air may disperse along the bronchi and enter the mediastinum (tissues surrounding the heart) to create *mediastinal emphysema*. A diver with a *mediastinal emphysema* may exhibit such manifestations as substernal pain (especially during exercise), breathing difficulties (including shortness of breath), change in voice, and even collapse (fainting) due to direct pressure on the heart and great vessels. Cyanosis (blueness of skin, lips, and fingernails) may be evident.

From the mediastinum, the air frequently migrates into the subcutaneous tissues (*subcutaneous emphysema*), most often in the neck and supraclavicular re-

gion (over the collar bone). This will be evident by enlargement and feeling of fullness around the neck, voice changes, breathing difficulties, and crepitus (cracking sensation or sound when skin is touched in enlarged areas).

If there is a weakened area on the surface of the lung, air may rupture directly into the pleural space (chest cavity) causing the lung to collapse. This is a *pneumothorax* and may involve partial or complete collapse of a lung. As the diver continues to ascend, the air trapped in the pleural space expands at the expense of the collapsing lung and may eventually cause displacement of the heart and great vessels. This is a very serious complication because both respiration and circulation may be impaired. Manifestations include chest pressure and sharp pain, breathing difficulties (shortness of breath and rapid, shallow breathing), and cyanosis.

These conditions in themselves generally do not require hyperbaric treatment. However, the victim must be continuously monitored and immediately placed under the care of a physician. If signs or symptoms of any of these conditions are evident, the first responder must suspect that the injured diver has also experienced an air embolism until proven otherwise by a physician. Keep in mind that more serious and life-threatening manifestations may appear at any time.

Air Embolism

The most serious consequence of alveolar rupture is the release of air bubbles into pulmonary circulation, and via the pulmonary vein, left heart, aorta, and carotids, into cerebral circulation. The cerebral area is most frequently affected since the diver is usually in an erect or head-up position during ascent, and the bubbles tend to rise. Any bubble too large to pass through an artery will lodge and obstruct circulation to adjacent areas or organs. This is an air embolism.

The wide spectrum of symptoms and signs associated with cerebral air embolism include severe headache, vertigo (dizziness), visual disturbances (blurred or lost vision), nausea, paralysis (hemiplegia or involvement of one side of body), seizures,

stupor, limb numbness, weakness, cessation of breathing, and loss of consciousness [57]. Death may result from coronary and/or cerebral occlusions with cardiac arrhythmias, respiratory failure, circulatory collapse, and irreversible shock [34]. The diver may or may not experience discomfort or pain in the chest prior to or during tissue rupture. The tearing of lung tissue may result in the discharge of a bloody froth from the victim's mouth; however, the absence of bloody froth does not preclude the possibility of air embolism [54].

The onset of symptoms is generally dramatic and sudden, usually occurring within seconds of surfacing, or even prior to surfacing. In a review of 39 cases of air embolism, Dick and Massey found that 69% of air embolism victims had symptoms upon surfacing and 91% had symptoms within 10 minutes of surfacing. Rarely, symptoms began as long as 12 hours following the dive. Forty-one percent of the victims in this study became unconscious within minutes of surfacing [23, 24].

Decompression Sickness

Decompression sickness is a pressure-related illness which results from a reduction in ambient pressure sufficient to cause the formation of bubbles from gases dissolved in body fluids and tissues. During exposure to elevated ambient pressure, inert gas in the breathing medium dissolves into the diver's body. During ascent or decompression, some quantity of this inert gas in the tissues must diffuse into the blood, travel to the lungs, and be released from the body in expired air. If decompression exceeds some critical rate, the tissues will not release the gas rapidly enough and will become saturated. When this happens, some of the inert gas comes out of solution in the form of bubbles, and if enough bubbles develop, manifestations of decompression sickness result.

The signs and symptoms of decompression sickness are variable in nature and intensity depending on location and magnitude of the bubbles. Localized pain has always been considered the most predominant symptom of decompression sickness, occurring in about 89% of all cases,

according to early studies and the U. S. Navy [22, 54, 55]. The recent Dick and Massey report on 70 cases of sport diver decompression sickness indicates that the progressive onset of limb numbness and paresthesias (sensation of pricking, tingling, and creeping on the skin) are the most common symptoms, evident in 56% and 34% of the cases, respectively [23].

Limb weakness was more common than paralysis. Limb paralysis was noted in 8 of the 70 cases. Other signs and symptoms included dizziness, nausea, mild headache, and loss of coordination. Twelve (about 17%) of the cases of decompression sickness exhibited symptoms within 10 minutes of surfacing and 44% of the cases were evident within one hour of surfacing. Twenty-four percent of the victims became symptomatic more than six hours following a dive and two divers developed decompression sickness more than 24 hours following a dive.

Skin itching and mottling are considered to be a sign of mild decompression sickness and may precede the development of more severe symptoms. The onset of pain is often gradual with progression in severity and extent. A localized pain may extend centrifugally to involve a progressively larger area. Generally, the pain is neither aggravated nor alleviated by local motion or palpation (touch). Joint and tendinous structures are the most common locations of pain symptoms.

Transient blurring of vision and other visual disturbances occasionally accompany more serious manifestations of decompression sickness. Respiratory distress is a rare symptom of delayed development of substernal "burning" sensation that may intensify and spread. The victim can become cyanotic (blue) and the condition may advance into clinical shock with subsequent loss of consciousness.

Marked fatigue, often disproportional to the physical exertion expended, may be experienced following deep dives or a series of repetitive dives. The onset of fatigue may occur two to five hours after the diver surfaces and is characterized by an overwhelming desire to sleep.

Most central nervous system (CNS) lesions occur in the spinal cord, particularly in the lower segment; cerebral dam-

age is relatively rare. Quadriplegia, paraplegia, and paralysis of a single or several extremities in every combination have been reported. Early vasomotor collapse and severe clinical shock are associated with more serious manifestations. Various body functions may be affected. Initial and permanent residual damage may result in loss of bladder, bowel, and sexual function.

First Aid For Suspected Air Embolism or Decompression Sickness

The first responder(s) must provide immediate and proper care for possible victims of air embolism or decompression sickness at the scene of the accident. Furthermore, arrangements must be made to enter the victim into the hyperbaric trauma system as soon as possible. *Avoid delay!* "One of the biggest factors related to ultimate therapeutic success is minimizing the time between the onset of symptoms and therapeutic recompression. It is suggested that part of the initial process of taking care of the patient include immediate contact with the appropriate emergency medical service in order to expedite transport. A *transport plan should be made prior to every dive trip* so that a diving casualty may be moved to a sophisticated hospital facility with minimum delay, and then to the nearest appropriate recompression facility." (Recommendations from Workshop on Diving Accident Management reported in *Pressure*, Vol. 19, No. 2, March/April 1990.)

All symptoms of air embolism and decompression sickness are generally considered together in the early management of a diving accident. It is more important to use proper early first aid than to attempt to distinguish between the two conditions, because the initial management of both conditions is essentially the same until hyperbaric therapy is started. The first aid procedures recommended below are in accord with those published by the Divers Alert Network (DAN) and the Undersea Medical Society (UMS) [21, 43].

The most important initial factor in managing a diving accident is to recognize that a diver has sustained injury. In most situations this is obvious; however, occa-

sionally mild symptoms may be dismissed or not recognized. As previously discussed, both symptoms/signs and circumstances are important in diagnosis. The following are obvious indicators of serious complications, and air embolism and/or decompression sickness must be suspected until proven otherwise by a physician:

- * Diver loses consciousness underwater or shortly after surfacing (cause unknown);
- * Diver exhibits symptoms of neurological abnormality following ascent from a shallow dive (pulmonary barotrauma/air embolism can occur when ascending from a depth as shallow as four feet);
- * Diver exhibits symptoms of pain or neurological abnormality following ascent from no-decompression dives deeper than 30 feet or even shallower depths for repetitive dives (decompression sickness); and
- * Diver exhibits symptoms of pain or neurological abnormality following ascent from deep dives and dives near or beyond no-decompression limits.

An injured diver may fail to recognize mild symptoms. Severe fatigue or unusual tiredness and itching are considered mild symptoms and may respond to oxygen breathing. If a diver experiences mild symptoms upon surfacing, have the diver lie down and breathe 100% oxygen. The oxygen may relieve the symptoms or prevent them from getting worse. If the symptoms are relieved after an interval of oxygen breathing, do not discontinue oxygen breathing immediately as the symptoms may recur. Continue oxygen breathing for at least 30 minutes. If symptoms are relieved, consult a physician for further instructions and monitor the diver for recurring or new symptoms. If symptoms are not relieved, proceed with first aid protocol given below [43].

Unfortunately, many divers who experience decompression sickness go through a period of *denial*. They simply will not accept the fact that they may be "bent!" I have interviewed deep shipwreck divers who have experienced significant neuro-

logical deficits following deep dives—lower extremities numbness, weakness, pins/needles sensations, fatigue, general overall "feeling poorly", and severe back pain. Most of these divers have not submitted to hyperbaric treatment or even seen a physician. They stay home from work, take pain-relief pills, and deny that they are ill or injured.

The first aid procedures for management of a suspected air embolism or decompression sickness are given and discussed below.

Perform Life-Saving Procedures. Administer CPR if required and protect the diver from further injury.

Victim Position. Historically, for nearly two decades, the standard first aid practice for a suspected air embolism was to place the victim on the left side in a head down, modified Trendelenburg position, with the entire body maintained at an angle up to about 30 degrees [36]. It was felt that this position would encourage a bubble in the brain to dislodge itself and migrate to a less damaging area. This phenomenon has been demonstrated in the laboratory on animals but not on human subjects. In practice this position causes a certain amount of physical stress and discomfort for the victim. It also increases the likelihood of vomiting and aspiration of vomitus as well as complicating breathing and airway management in some individuals. Furthermore, it was difficult to maintain a patient in this position during transport without special equipment.

In about 1988 many authorities suggested that in cases of suspected *air embolism only*, the victim should be placed in a head down position for up to 20 minutes as tolerated and only in cases where the victim is breathing adequately. Today, many authorities continue to challenge this aggressive and acute angle position. It is suggested that the prolonged head-down position may be detrimental, possibly because of extravasation of additional blood flow into the brain due to the higher intravascular pressures.

In fact, a recent review of diving accident management procedures indicated, "While a brief (less than 10 minutes) head-down position might conceivably facilitate

clearance of bubbles from the cerebral circulation after AGE [arterial gas embolism], it seems prudent thereafter to keep the patient in the supine position [on back] rather than in prolonged head-down or head-up position. Head-down position in the initial treatment of AGE should be secondary to maintenance of an adequate air way, oxygen administration, and rapid transfer to a hyperbaric chamber. *Head-down position has no role in the treatment of DCS [decompression sickness].* Unconscious patients should be kept in the lateral decubitus position (lay on side) to minimize the risk of aspiration of vomitus." (Final Summary of Recommendations Issued from 1990 Diving Accident Workshop, published in *Pressure*, Vol. 19, No. 5.)

Although the standard treatment for shock calls for elevation of the legs 8 to 12 inches, DAN representatives (Personal Communication, 7 December 1990) discourage leg elevation, especially in the management of suspected decompression sickness.

Thus, the best information currently available (December 1990) supports placing a diver with suspected air embolism in a supine (lying on back with face upward) position. However, do not allow the victim to stand or sit upright.

Airway Management. It is important to insure that the airway is open and to prevent aspiration of vomitus. Continuously monitor the victim and make adjustments as necessary in order to prevent/manage these conditions. If trained emergency medical personnel and/or a physician is available, the placement of an endotracheal tube can be used to correct these problems.

Administer Oxygen. Administer as high a concentration of oxygen as possible by tight-fitting mask (100%). Continuous 100% oxygen administration and maintenance of intravascular volume is considered the most important feature of immediate management, and should be continued until the victim reaches the hyperbaric chamber [21, 43]. Do not remove the oxygen except to clear the airway, administer fluids (when applicable), or if the victim shows signs of convulsions [43].

Diving accident victims who receive oxygen immediately after their injury have a better recovery rate than if no oxygen is used. The crucial value of early oxygen breathing must always be emphasized, particularly for sport diving injuries not occurring near hyperbaric chambers [43]. The use of oxygen and oxygen breathing equipment has been previously discussed.

Management of Convulsion. If convulsions occur, do not use forceful restraint. Turn the victim on side (supporting head and neck), maintain airway, and remove vomitus. Hold the victim loosely to prevent self-injury and do not force airway or tongue blade. Resume oxygen breathing when convulsions subside.

Protect Victim. Protect the injured diver from excessive heat, cold, wetness, or noxious fumes. Maintain body temperature (insulation under and over body). However, do not overheat the patient.

Fluids. Dehydration is frequently observed in patients suffering from air embolism and/or decompression sickness. For a conscious and stable victim who is more than one hour from medical assistance, give oral non-alcoholic liquids such as fruit juice or balance electrolyte beverage (such as half-strength Gatorade) at a rate of 4 ounces every 15 minutes [17, 18]. Davis, in an earlier publication [21], recommended one liter in the first hour. If the delay in hyperbaric treatment is to be extensive, continue sufficient fluid intake to maintain a urine output of 1 or 2 ml/kg/hr (kg means kilograms body weight) or approximately 1/3 to 2/3 fluid ounces per 22 pounds of body weight per hour [21]. *If possible, consult with a physician by radio/telephone when long delay is anticipated and adjust fluid intake per physician instructions. Fluid level maintenance is considered very important in the management of decompression sickness.*

The most recent recommendation is, "In an awake patient who is not nauseated or vomiting and whose airway reflexes are intact, oral administration of fluids is recommended until such time as intravenous access can be obtained." ("Final Summary of Recommendations Issued from 1990 Diving Accident Workshop," published in *Pressure*, Vol. 19, No. 5.)

The Divers Alert Network has stated, "Encourage a conscious and stable patient to drink non-alcoholic, non-acidic fluids. Record amount and type of fluid given. Record urinary output and check for bladder distension. Fluids are given only if the patient is conscious, stable, and is not suffering from stomach pain, urinary retention or paralysis unless a urinary catheter is used. If the bladder becomes distended give no more fluid until a urinary catheter is inserted." (*The DAN Emergency Handbook*, 1989 edition.)

Anticoagulants. "There is no scientific evidence at present to support the use of any anticoagulants, *including aspirin*, in the treatment of diving injuries. In some forms of decompression sickness administration of anticoagulants might worsen conditions." (Recommendations from Workshop on Diving Accident Management reported in *Pressure*, Vol. 19, No. 2, March/April 1990.)

This is contrary to previous recommendations approving of the use of two aspirin (5 grains each) as an anti-platelet agent, where many authorities had concluded that aspirin can do little harm and might do some good.

Local Medical Care. Evaluate and stabilize the patient at the nearest hospital emergency room prior to transfer to a hyperbaric chamber facility (if needed) [43]. Several factors must be considered. First, serious and potentially life-threatening conditions such as heart failure, kidney failure, severe shock, etc., require immediate attention. Failure to properly stabilize the patient could result in serious complications or even death enroute to the hyperbaric chamber. In serious cases, an aggressive intravenous fluid replacement procedure may be started, a urinary catheter inserted, and drugs administered. Secondly, through proper medical evaluation and consultation with DAN, it may be determined that the patient has not experienced air embolism or decompression sickness and that hyperbaric therapy is not required.

Consultation. Physicians not familiar with the management and treatment of diving related injuries must be encouraged to consult with a diving physician and/or DAN.

The National Divers Alert Network located at the Duke University Medical Center provides 24 hour telephone consultation at (919) 684-8111.

This number may be called collect in an emergency. For medical problems, the caller is connected with a physician experienced in diving medicine. The DAN physicians can assist with diagnosis and initial treatment of an injured diver and supervise referral to appropriate hyperbaric chamber facilities while working with regional coordinators throughout the nation [43].

Hyperbaric Chamber Facility Contact. It is necessary to contact the hyperbaric chamber facility to which the patient is to be transported prior to initiating transport procedures in order to assure that the chamber is available and that a treatment team is assembled and prepared to receive the patient. Hyperbaric chambers may be occupied, out of service for maintenance, or closed.

Transporting the Patient. A major determinant of the successful outcome of a treatment is the expediency with which the patient can receive proper hyperbaric therapy. If the distance is too great for surface transportation, air evacuation must be used. It is critically important that the patient not be exposed to significantly decreased barometric pressure at altitude. Flight crews must maintain cabin pressure at sea level or fly at the lowest safe altitude in unpressurized aircraft. If a patient is moved by helicopter, the pilots must be instructed to keep the flight lower than 500 to 800 feet above ground level. One hundred percent oxygen breathing and fluid therapy must be maintained during flight [21]. If the patient is experiencing obvious distress (equalization problems or otherwise), suggest that the helicopter pilot select an appropriate safe altitude that can be maintained for a level flight instead of attempting to follow the ground terrain.

The DAN Manual. The DAN Manual is intended to serve as a guide for the diver, paramedic, and physician in the recognition and initial management of a diving accident victim [43]. The diver should keep a copy of the DAN Manual in her dive kit so that it is always available. In the event of

an accident, record the details of the accident and initial first aid management in the back of the injured diver's DAN Manual and assure that the manual remains with the diver as she moves through the emergency medical system.

Fluid Therapy and Drugs. In unconscious patients and in patients with manifestations more serious than limb pain bends, intravenous fluid replacement is preferred. Ringer's lactate, normal saline solution, or 5% dextrose in saline solution should be given [43] to maintain urine output at 1 to 2 ml/kg/hr (or approximately 1/3 to 2/3 fluid ounces per 22 pounds body weight per hour) [21]. Do not use 5% dextrose in water. If there is evidence of neurologic involvement, give steroids, hydrocortisone sodium succinate, 1.0 gm. IV or dexamethasone, 20-30 mgm. IV [21, 43]. With spinal cord involvement, an in-dwelling urinary catheter should be considered [21].

The use of intravenous fluids, drugs, and catheter is only applicable for qualified medical personnel.

In 1979 Fructus reported on the benefits of a first aid/enroute protocol for management of decompression sickness [34]. This protocol with minor clarification by Anderson [10] included:

- * 100% oxygen by mask;
- * Steroids, IV, single administration (1000 mg hydrocortisone hemisuccinate or 30 mg dexamethasone or 160 mg methylprednisolone);
- * Aspirin, 10 grains orally if patient is conscious; and
- * Fluid volume replacement, IV infusion, 1 liter per hour for three to four hours (i.e., Ringer's lactate, normal saline, or dextrose 5% in saline) +/- plasma expanders (i.e., dextran 40, 500 ml).

Fructus reported on 67 cases of decompression sickness of which 14 were transported without first aid and 53 received first aid management which included oxygen, aspirin, and/or fluids [34]. Of the 53 victims receiving first aid, 38 (or 72%) showed improvement or were asymptomatic by the

time they arrived at a treatment facility. All of these cases involved neurologic decompression sickness with delays of 3 to 24 hours between onset of symptoms and beginning of hyperbaric therapy (mean delay of about 10 hours). As previously stated, most authorities now discourage the use of anticoagulants (aspirin) by first aid personnel.

In their most recent manual, the Divers Alert Network encourages physicians and paramedics to "insert an IV line of normal saline or Ringers Lactate as soon as possible." They state that the use of glucose "should be avoided in IV fluids." Physicians and paramedics are encouraged to contact DAN directly for instructions in fluid and drug therapy. (*The DAN Emergency Handbook*, 1989 edition.)

COLD INJURY

If a victim is cold and has any of the following signs or symptoms, consider that person to have severe hypothermia:

- * Depressed vital signs;
- * Altered level of consciousness, including slurred speech, staggering gait, and decreased mental skills;
- * Core temperature of 90° F or less;
- * No shivering in spite of being very cold;
- * Associated significant illness or injury that is present or that may have permitted the hypothermia to develop.

If the victim is cold and does not have any of these signs or symptoms, he/she is considered to have mild hypothermia.

The basic treatment for a hypothermic victim is as follows:

- * Treat very gently.
- * Remove wet clothing/diving suits. Replace with dry clothing or dry coverings of some kind.
- * Insulate from the cold.
- * Add heat to the core—head, neck, chest, and groin—externally, or internally if a system for breathing warm moist air is available. Avoid attempts to warm the extremities.

The first responder must prevent further heat loss at the core. This can only be done by insulating the entire patient, plus adding heat to the core area. Application of heat can be accomplished by placing warm objects such as hot water bottles, chemical heat packs (wrapped in a towel), warmed rocks (wrapped in a towel), human bodies, etc. Monitor closely and be certain to protect patient's skin from burns.

- * Do not rub or manipulate the extremities.
- * Do not give coffee or alcohol.
- * Do not put the patient in a shower or bath.
- * Warm liquids may be given only after uncontrollable shivering stops and the victim has a clear level of consciousness, the ability to swallow, and evidence of rewarming already.
- * If severe hypothermia is present, treat as above and transport to a medical facility.

Treatment for severe hypothermia with no life signs is as follows:

- * Provide the basic treatment as indicated above.
- * Carefully assess the presence or absence of pulse or respiration for one to two minutes.
- * If no pulse or respiration, start CPR.
- * Obtain a rectal temperature if possible.
- * If you are less than 15 minutes from a medical facility, do not bother trying to add heat.
- * If you are greater than 15 minutes from a medical facility, add heat gradually and gently.
- * Reassess the physical status periodically.
- * Transfer to a medical facility in all cases.

The above procedures were taken from a booklet titled, "State of Alaska Hypothermia and Cold Water Near Drowning Guidelines" [9]. For additional information consult this booklet or Forgey [33]. At present

there is some degree of controversy within the medical community regarding administering CPR to a hypothermic individual. Some authorities specifically state that a hypothermic person should not be given CPR in the field [7]. In a recent discussion, Martin J. Nemiroff, M. D. indicated that the Alaska Guidelines [9] remain as the most acceptable alternative for the first responder to follow. The general management of cold-related injuries is also discussed by Somers [50] and Lentz, et al. [39].

RESPIRATORY PROBLEMS

Diver maladies involving respiration include asphyxia, carbon dioxide excess, carbon monoxide poisoning, oil-vapor inhalation, and near-drowning. Low level contamination of a diver's air supply during scuba cylinder filling is possible, but uncommon. Carbon monoxide (CO) contamination is probably the most serious potential problem. A diver breathing air containing CO may lose consciousness without warning or experience severe headache, dizziness, weakness, nausea, confusion, clumsiness, or a feeling of tightness in the head. There may be an abnormal blueness or redness of lips, fingernails, and skin. However, the classic "cherry red" sign may or may not be evident and is, therefore, not a reliable diagnostic aid.

Unlike carbon monoxide which is difficult, if not impossible, to detect without special testing equipment, the presence of oil in an air supply is generally quite evident by taste or odor. If oil presence is suspected, immediately discontinue use of the air supply.

Carbon dioxide may be rarely introduced during filling of the scuba cylinder. It is more frequently retained in the body through abnormal breathing patterns (skip-breathing). Occasionally a diver will lose consciousness without respiratory warning. On the other hand, there may be headache, dizziness, confusion, slowing of response, and/or nausea.

Open circuit scuba divers have lost consciousness from anoxia (lack of oxygen). Moisture accidentally introduced into a steel scuba cylinder can combine with oxygen in the air to form rust. This oxidation process consumes the oxygen in the cylinder. If a

diver uses this air cylinder, he/she may breathe the remaining gas, primarily nitrogen, and lose consciousness from anoxia or lack of oxygen. Drowning is one of the major causes of diving fatalities and is usually caused by hypoxia (insufficient oxygen), followed by asphyxia, as a result of loss of air supply or submergence without an air supply.

The primary first aid procedure for respiratory problems is breathing fresh air. If breathing has ceased, start artificial respiration or CPR immediately. All victims must receive first aid for prevention/management of shock, and must receive medical attention even if revived without medical assistance. Carbon monoxide poisoning victims must be treated with oxygen, preferably under hyperbaric conditions. Oil-vapor inhalation victims may be retained for medical observation and managed similarly to pneumonia cases depending upon the severity of dosage.

EAR AND SINUS BAROTRAUMA

Damage to ears and sinuses can result from attempting to dive with a cold or allergy or simply failing to equalize pressure during descent/ascent. Such barotrauma is evident by pain at the time of injury and discharge of bloody mucus during/following ascent. Spitting blood generally indicates middle ear barotrauma and discharge from the nose is characteristic of sinus injury. Most diving authorities concur that a *hands-off* policy for first aiders results in fewer complications and more rapid healing. *Do not attempt to clean damaged ears and do not resume diving until the injury has healed.* Seek medical attention if discharge or tenderness persist or if you suspect the development of infection. If in doubt, consult a physician. Serious injury and infection can result in hearing impairment and other complications.

OTHER PROBLEMS

Nitrogen narcosis and oxygen toxicity are avoidable problems in recreational scuba diving. By limiting depths to less than 100 feet, the recreational diver can avoid the potential problems associated with breathing nitrogen under high pressure. The

responses of a diver under the influence of nitrogen narcosis are not dissimilar to those associated with alcohol intoxication. Simply ascending to a shallower depth, preferably to the surface, with a controlled ascent relieves the problem.

Oxygen toxicity is generally associated with breathing pure oxygen at depths in excess of 25 feet or compressed air at depths in excess of 220 feet. This condition is preventable by assuring that a scuba cylinder is not filled with pure oxygen and by not using closed-circuit oxygen/mixed gas scuba without proper training and maintenance. Obviously, deep diving on compressed air should also be avoided. Today, an increasing number of divers are using gas mixtures with elevated percentages of oxygen (i.e., greater than 21%). Diving with mixed gases requires special training and has specific limitations. Consult the U.S. Navy Diving Manual or NOAA Diving Manual for further information [44, 54, 55].

MARINE LIFE INJURIES

The first aid procedures given below are for those animals commonly encountered by divers in the tropical Western Atlantic Ocean (including the Bahamian, Caribbean, and Florida waters) and on the Pacific Coast of the United States. Additional information on the nature and management of injuries caused by marine animals and on first aid procedures for injuries caused by marine animals of the South Pacific Ocean, Red Sea, and other regions can be obtained from Somers [51] and selected medical textbooks [11, 13, 26, 37].

Marine Life Stings

The first aid procedures recommended for common jellyfish and hydrozoan (Portuguese man-of-war) stings that are considered non-life-threatening in healthy individuals vary with author and geographic area. Many authorities suggest immediate liberal use of a solution with high alcohol content (e.g., isopropyl rubbing alcohol) or vinegar since these allegedly inactivate the nematocysts. If these rinsing solutions are unavailable, the injured area should immediately be flushed with sea water and carefully cleaned of debris. Other inactivating solutions cited in various publications in-

clude formalin, household ammonia, urine, petroleum products (gasoline, kerosene, etc.), and beer. However, recent studies suggest that these solutions may be ineffective [27].

Never rinse the sting area with fresh water to remove tentacles. Fresh water has an osmotic effect on the nematocysts causing them to discharge. Beer apparently has the same effect as fresh water. Also, never rub the area with sand since this procedure will cause discharge of more nematocysts.

Research at James Cook University (Australia) and by the Royal Australian Navy School of Underwater Medicine has revealed that application of methylated spirits, 100% alcohol, and alcohol mixtures with seawater produced dramatic, instantaneous discharge of the nematocysts, and this was associated with increased clinical sensitivity [27]. The James Cook University group found that the application of 3% to 10% acetic acid (or vinegar) was most effective in preventing the massive discharge of nematocysts associated with the application of alcohol and other common solutions tested. Further studies by Carl Edmonds, M.D., of the Diving Medical Center in Australia (one of the foremost world authorities on marine life injuries) concluded that vinegar and Xylocaine (lidocaine) will prevent further nematocysts discharge. Surprisingly, Edmonds also found that selected commercial preparations, anti-sting lotions, and the enzymatic product, Adolf's meat tenderizer, were clinically ineffective [27]. The same was found for other common solutions such as urine, household ammonia, and so on.

Studies have also revealed that some U.S. species should be treated with alcohol rather than vinegar (South Pacific Underwater Medical Journal, 16(3), 1986). These include the hair jelly (*Cyanea*), sea nettle (*Chrysaora*), and little mauve stinger (*Pelogia*).

Next, the tentacles that didn't rinse off must be carefully removed with a towel, stick, knife blade, etc. These residual tentacles may also be removed by coalescing them with a drying agent (e.g., flour, baking soda, talc, etc.) and then scraping them from the skin with a thin knife blade. *Avoid personal contact with the tentacles.*

After tentacles have been removed, some authors recommend neutralizing the toxins by applying one of the compounds/solutions mentioned above and thoroughly scrubbing with an antibacterial soap and water. The sting site is dried and an analgesic-antihistamine ointment applied. To the contrary, Australian authorities specifically state that the affected area must *not* be washed with soap and water for 24 hours [6, 58].

Local anesthetic ointments (lidocaine HCl) or sprays (Benzocaine, 14%), antihistaminic creams, or mild steroid lotions (hydrocortisone, 1%) may be soothing [11]. They are used after the toxin is inactivated. A lidocaine spray (Clinicaine by Johnson and Johnson) may be beneficial as an initial inactivating agent as well as a soothing solution [personal experience].

Observe the victim for general reactions and shock. *Keep in mind that physiologically or emotionally induced shock may be associated with any marine life injury.*

Simple pain relief measures (e.g., aspirin tablets, or equivalent, in accord with dosage instructions on container) are considered acceptable. Do not attempt to administer medications if the victim is unconscious or nauseated/vomiting.

Naturally, all stings will not result in severe reaction or shock and require such aggressive first aid measures. For example, fire coral encounters do not involve tentacle removal, and some small jellyfish stings give only minor, momentary irritation. After minor encounters the diver may continue to dive. However, the victim and his buddies must maintain an awareness for more serious reactions. In rare cases, respiratory or cardiac arrest may occur and require immediate life saving action.

Sponges

The fire sponge (*Tedania ignis*), found off Hawaii and the Florida Keys, and the "Do-Not-Touch-Me" sponge (*Neofibularia nolitangere*), common to the Caribbean, are typical offenders. Reactions are characterized by itching and burning, which may progress to local joint swelling, blisters, and stiffness. Soaks in dilute (5%) acetic acid (vinegar) are considered beneficial [11].

Coral

Wounds inflicted by contact with stony coral are an ever-present annoyance to divers in the tropics. The sharp calcareous edges produce wounds which are generally superficial but notoriously slow to heal. Coral cuts, if left untreated, may become ulcerous. Sting cells may further complicate conditions. The initial effects of coral poisoning are pain and an itching sensation in and around the wound, accompanied by reddening and welt formation in the surrounding areas. Secondary infection is common.

First aid involves prompt removal of visible debris and cleansing of the wound with hot water and antibacterial soap. It is occasionally helpful to use hydrogen peroxide to bubble out coral "dust." Promote free bleeding; however, keep in mind that excessive probing can cause unnecessary tissue damage. Deeply embedded materials may require removal by a physician. Elevation of the involved limb is strongly recommended. The use of antiseptic creams is a matter of personal preference. Monitor the wound closely and cleanse/change dressings as soon as possible upon return from subsequent dives. Even minor wounds can become seriously infected. Current tetanus immunization is recommended for all divers. For severe wounds, or if complications appear, seek immediate medical attention.

Sea Urchin

The sea urchin most familiar to the United States diver is the genus *Diadema*, which includes the long-spined or black sea urchin common to the Bahamas, Florida Keys, and West Indies. These sea urchins with long, brittle spines are not considered to be a serious hazard by most divers; however, they may produce a painful puncture wound with redness and swelling. The fragments of the spine will produce a purple discoloration in the area of the wound. In minor injuries, the spines of some species will dissolve with few complications besides localized discomfort. However, deeply embedded spines will cause irritating discomfort of long duration if not removed. These should be removed with a fine tweezer or small needle (sterilized), the area thoroughly scrubbed with hot water and anti-

bacterial soap, and a sterile dressing applied. Medication to control pain, inflammation, and infection may be required. Consult a physician immediately if symptoms of infection or other complications appear. Surgical removal of deeply embedded spines may be necessary.

Venomous Fish

First aid for venomous fish wounds (such as scorpion fish) includes alleviating pain, combating shock and the effects of the venom, and preventing infection. Since unconsciousness is common, the victim should be removed from the water promptly. Pain will be severe. Have the victim lie down and apply measures to prevent/combat shock. Keep the affected limb level with the body and as still as possible to minimize the spread of venom. Carefully wash out or irrigate the wound with cold salt water or with sterile saline. Although the use of a tourniquet is indicated in some manuals, the practice is considered to be of limited value [26, 37]. However, Auerbach and Halstead do indicate that the application of a *loose tourniquet* which occludes only superficial venous and lymphatic return may be of some value [11]. This "loose tourniquet" should be released for 90 seconds every 10 minutes in order to preserve circulation. *Considering the inherent risk associated with the use of tourniquets and the potential for improper application of loose tourniquets, this practice is generally discouraged for first aiders.* Attempt to remove any remaining portions of the spine sheath.

Soak in plain water, as hot as can be tolerated (up to 50°C/122°F), for at least 30 minutes. Use hot compresses on areas that cannot be immersed. Heat may produce rapid pain relief and is believed to destroy the venom. Be careful not to scald the tissue. Immersion in hot water appears to be the most important first aid procedure for venomous fish injuries universally agreed upon by authorities.

Although some diving manuals recommend that the first aider make a small incision at the site to encourage bleeding and facilitate irrigation, Halstead [37] indicates that the incision may be of limited value. Edmonds [26] indicates that if other methods are not available, a small incision

can be made across the wound and parallel to the axis of the limb, to encourage mild bleeding and pain relief. In light of modern trends in first aid and the potentially limited value of the incision method indicated by physicians, this author is inclined to not recommend this procedure unless future evidence supports its benefit.

Visible foreign material should be removed. Auerbach and Halstead suggest that local suction may be of some value; however, they do not indicate the use of incision [11]. Medical attention will be needed for further treatment of the wound and prevention of infection.

Bites

Injuries inflicted by moray eels, barracuda, and sharks are generally severe lacerations with profuse bleeding. First aid procedures for controlling bleeding and subsequent shock should be started immediately [1]. In severe injuries such as shark bites resulting in extensive tissue damage and severing of major arteries, the immediate application of a tourniquet may be necessary. *However, in applying a tourniquet you must keep in mind that you may be electing to sacrifice a limb in order to save a life.* Prompt medical attention will usually be required.

Octopus

The bite is similar for all species and usually consists of two small puncture wounds. A burning sensation with localized discomfort may later spread from the bite. Bleeding is usually profuse, and swelling and redness are common in the immediate area. First-aid measures include scrubbing the bite with antibacterial soap. Measures to combat shock should be taken, and medical attention may be required.

Annelid Worms

The segmented marine bristleworm, *Eurythoe complanata*, possesses tufted, silky, chitinous bristles in a row along each side. Upon contact or stimulation of any kind, the bristles rise on edge as a defensive mechanism. The fine bristles penetrate the skin and are very difficult to remove. This results in a burning sensation, inflammation, and possibly local swelling and numb-

ness. It may be possible to remove bristles with fine forceps or by applying tape to the area and gently removing. After removal, application of an antiseptic solution may alleviate the discomfort. Bristleworms are found in the Bahamas, Florida Keys, Gulf of Mexico, and throughout the tropical Pacific.

CONCLUSIONS

The actions of the first responder are the key elements in the successful management of a diving accident victim. Failure to take immediate and appropriate steps to deal with the injured diver's condition can cost a life or contribute to serious disability. All divers are encouraged to acquire a copy of Lippmann, J. and Buggs, S., *The DAN Emergency Handbook*, 2nd Edition (Carnegie, Victoria, Australia: J.L. Publications, 1989). This waterproof book may be purchased from the Divers Alert Network for \$14.50; mail orders to DAN, Box 3823 DUMC, Durham, NC 27710.

It is every diver's responsibility to remain abreast of the most recent developments in diving accident management. Remember, when you approach an injured diver, "You are part of the beginning of the rest of that diver's life!"

REFERENCES

1. American National Red Cross, Standard First Aid Workbook (Washington: American Red Cross, 1988).
2. American National Red Cross, Adult CPR Workbook (Washington: American Red Cross, 1988).
3. American National Red Cross, Basic Life Support for the Professional Rescuer (Washington: American Red Cross, 1988).
4. American National Red Cross, Emergency Water Safety Textbook (Washington: American Red Cross, 1988).
5. American National Red Cross, Advanced First Aid and Emergency Care, 2nd ed. (Washington: American National Red Cross, 1979).
6. Anonymous, Danger: Stingers (Queensland State Center: Queensland Surf Life Saving Association, 1975).
7. Anonymous, Emergency Handling Diving Casualties (Ottawa: Association of Canadian Underwater Councils, 1978).
8. Anonymous, Report on 1987 Diving Accidents (Durham, NC: Divers Alert Network, 1988).
9. Anonymous, State of Alaska Hypothermia and Cold Water Near Drowning Guidelines, AK/DHSS/82/26 (Juneau, Alaska: Alaska Department of Health and Social Services, 1982).
10. Anderson, Judith, M.D.: Personal Communication (1985).
11. Auerbach, P. and Halstead, B., "Hazardous Marine Life," pp. 213-259 in Auerbach, P. and Geegr, E. (eds.) Management of Wilderness and Environmental Emergencies (New York: Macmillan Publishing Company, 1983).
12. Barker, M. and Heineman, P. Medical Emergency Manual No. 1 (Eugene, OR: Emergency Medical Planning, Inc., 1986).
13. Bove, A. and Davis, J. (ed.), Diving Medicine (Philadelphia: W.B. Sanders Co., 1990).
14. Brylske, A., PADI Rescue Diver Course Instructor Guide (Santa Ana, CA: Professional Association of Diving Instructors, 1984).
15. Brylske, A. (ed.), PADI Diver Rescue Manual (Santa Ana, CA: Professional Association of Diving Instructors, 1984).
16. Butman, A., Reinberg, S., McSwain, N., Pendagast, E., Skelton, M., and Wayne, M., Advanced Skills in Emergency Care: A Text for the Intermediate EMT (Westport, CN: Education Direction, Inc., 1982).
17. Corry, J., Student Workbook for Emergency Oxygen Administration and Field Management of Scuba Diving Accidents Workshop: Instructor Training Course (Montclair, CA: National Association of Underwater Instructors, 1989).
18. Corry, J., Student Workbook for Emergency Oxygen Administration and Field Management of Scuba Diving Accidents Workshop (Montclair, CA: National Association of Underwater Instructors, 1987).
19. Corry, J., "Compressed Gas Injuries," pp. 45-48 in Bangasser, S. (ed.), Proceedings of the International Conference on Underwater Education (Montclair, CA: National Association of Underwater Instructors, 1985).
20. Daughery, C., Field Guide for the Dive Medic (Houston, TX: National Association of Diver Medical Technicians, 1983).
21. Davis, J., "Workshop Conclusions," pp. 75-82 in Davis, J. (ch.), Treatment of Serious Decompression Sickness and Arterial Gas Embolism Workshop, UMS Publication No. 34 WS(SDS) (Bethesda, MD: Undersea Medical Society, 1979).

22. Dewey, A., "Decompression Sickness: An Emerging Recreational Hazard," *New England Journal of Medicine* 267(15): 759-765; 267(16):812-820 (1962).
23. Dick, A. and Massey, E., "Neurologic Presentation of Decompression Sickness and Air Embolism in Sport Divers," *Neurology* 35(5):667-671 (1985).
24. Dick, A. and Massey, E., "Decompression Sickness and Air Embolism: New Findings on Symptoms and Severity," *Undercurrents* 10(11-12): 16-10 (1985).
25. Doubt, T. (ed.), YMCA Diving Medic Course Syllabus (Key West, FL: The YMCA Center for Underwater Activities, 1979).
26. Edmonds, C., Lowry, C., and Pennefather, J., *Diving and Subaquatic Medicine* (Mosman, N.S.W., Australia: Diving Medical Center, 1981).
27. Edmonds, C., "Combating the Coelenterates," *Pressure* 12(10):15 (1983).
28. Edmonds, C., "Marine Animal Injuries," in Bove, A. and Davis, J. (ed.), *Diving Medicine* (Philadelphia: W.B. Sanders Co., 1990).
29. Empleton, B. (ed.), *First Aid for Skin and Scuba Divers* (New York: Association Press, 1977).
30. Erickson, R. (ed.), *Search and Rescue* (Santa Ana, CA: Professional Association of Diving Instructors, 1978).
31. Ellis, C., Nemiroff, M., Petersen, P., and Somers, L., *State of Michigan Skin, Scuba, and Surface-Supplied Diving Fatality Statistics, 1965-1978*, MICHU-SG-79-212 (Ann Arbor: Michigan Sea Grant Program, 1979) (out of print).
32. Forgey, W., *Wilderness Medicine* (Pittsboro, IN: Indiana Camp Supply Books, 1979).
33. Forgey, W., *Death By Exposure: Hypothermia* (Merrillville, IN: ICS Books, Inc., 1985).
34. Fructus, X., "Treatment of Serious Decompression Sickness," pp. 37-43 in Davis, J. (ch.), *Treatment of Serious Decompression Sickness and Arterial Gas Embolism Workshop*, UMS Publication No. 34 WS (SDS) (Bethesda, MD: Under Sea Medical Society, 1979).
35. Graver, D., *The NAUI Textbook II* (Montclair, CA: National Association of Underwater Instructors, 1985).
36. Griffiths, T., *Sport Scuba Diving in Depth* (Princeton, NJ: Princeton Book Company, 1985).
37. Halstead, B., "Hazardous Marine Life," pp. 227-256 in Strauss, R. (ed.), *Diving Medicine* (New York: Grune and Stratton, 1976).
38. Hendrix, W., *Oxygen and the Scuba Diver* (Hurley, NY: Lifeguard Systems, Inc., 1988).
39. Lentz, M., Macdonald, S., and Carline, J., *Mountaineering First Aid*, 3rd Edition (Seattle, WA: The Mountaineers, 1985).
40. Linaweaer, P., "Injuries to the Chest Caused By Pressure Changes, Compression and Decompression," *American Journal of Surgery* 105:514-521 (1963).
41. McAniff, J., *U. S. Underwater Diving Fatality Statistics: 1970-82*, National Underwater Accident Data Center Report No. URI-SSR-84-17 (Kingston: University of Rhode Island, 1984).
42. McAniff, J., *U.S. Underwater Diving Fatality Statistics: 1986-87*, National Underwater Accident Data Center Report No. URI-SSR-89-20 (Kingston: University of Rhode Island, 1988).
43. Mebane, G. and Dick, A., *DAN Underwater Diving Accident Manual*, Revised Edition (Durham, NC: Duke University Medical Center, 1985).
44. Miller, J. (ed.), *NOAA Diving Manual* (Washington, DC: National Oceanic and Atmospheric Administration, 1979).

45. Nemiroff, M., "Near-Drowning" in Davis, J. (ed.), *Hyperbaric and Undersea Medicine* (San Antonio: Medical Seminars, Inc., 1981). Reprinted: Michigan State University Cooperative Extension Service, Bulletin E-1414, MICHU-SG-80-312.
46. Nemiroff, Martin J., MD: Personal Communication (1986).
47. Pierce, A. *Scuba Life Saving* (Toronto: The Royal Life Saving Society Canada, 1985).
48. Rutkowski, D., *Diving Accident Manual, Revised Edition* (Miami, FL: National Oceanic and Atmospheric Administration/Florida Underwater Council, 1982).
49. Smith, R. and Allen, H. (eds.) *Scuba Lifesaving and Accident Management* (Key West, FL: The YMCA Center for Underwater Activities, 1978).
50. Somers, L., *Under Ice Scuba Diving*, MICHU-SG-86-500 (Ann Arbor: Michigan Sea Grant College Program, 1986).
51. Somers, L., *Oceanography for Divers: Hazardous Marine Life*, MICHU-SG-86-510 (Ann Arbor: Michigan Sea Grant College Program, 1986).
52. Somers, L., "Personal Health Considerations for the Adventure Traveler," *NAUI Diving Association News*, Part I: May/June, Part II: July/August (Montclair, CA: National Association of Underwater Instructors, 1986).
53. Spencer, M., "Decompression Limits for Compressed Air Determined by Ultrasonically Detected Blood Bubbles," *Journal of Applied Physiology* 40(2): 229-235 (1976).
54. U.S. Navy, *U.S. Navy Diving Manual*, Volume 1, NAVSHIPS 0994-LP-001-9010 (San Pedro, CA: Best Publishing Company, 1895).
55. U.S. Navy, *U.S. Navy Diving Manual*, Part I, NAVSEA 0994-LP-9010 (Washington, DC: U.S. Government Printing Office, 1973).
56. Wachholz, C., "How Safe is Recreational Diving? An Estimate of the Incidence of Non-Fatal Scuba Diving Injuries," *Alert Diver: The Newsletter of the Divers Alert Network* 2(2): 1-2 (1985).
57. Waite, C., Mazzone, W., Greenwood, M., and Larsen, R., "Dysbaric Cerebral Air Embolism," pp. 205-215 in Lambertsen, C. (ed.), *Proceedings of the 3rd Symposium on Underwater Physiology* (Baltimore: Williams and Wilkins Co., 1967).
58. Williams, J., *Some Australian Marine Stings and Envenomations* (Queensland State Centre: The Surf Life Saving Association of Australia, 1974).
59. Wood, M., *The Diver's Field Guide to First Aid and Emergency Care for Divers* (Fort Collins, CO: Concept Systems, Inc., 1985).

Acknowledgments

This paper is published by the Michigan Sea Grant College Program as part of the Diver Education Series. It is the result of work sponsored by the Michigan Sea Grant College Program with grants from the National Sea Grant College Program, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, and funds from the State of Michigan.

Revised: February 1991

The Author

Lee H. Somers is Assistant Professor of Sports Medicine and Communications in the Division of Physical Education and Associate Research Scientist in the Department of Atmospheric, Oceanic, and Space Sciences, at the University of Michigan. He is the Diving Safety Coordinator for the University and a Campus Specialist for the Michigan Sea Grant College Program's Marine Extension Service. Dr. Somers' diving career, beginning in 1954, has included scientific, commercial, public safety, and recreational diving. He served as director of the University of Michigan's hyperbaric chamber facility for 12 years. Dr. Somers has been a certified scuba diving instructor for 30 years and in charge of the Underwater Education Program at the University of Michigan since 1969.