Focusing on the front end: A framework for incorporating uncertainty in biological parameters in model ensembles of integrated stock assessments - S1 Appendix

Nicholas D. Ducharme-Barth ${ }^{\text {a,b,*, Matthew T. Vincent }}{ }^{\text {c }}$
${ }^{a}$ Pacific Community, 95 Promenade Roger Laroque, B.P. D5 98848, Noumea, New Caledonia
${ }^{{ }^{\dagger}} \dagger$ NOAA National Marine Fisheries Service, Pacific Islands Fisheries Science Center, 1845 Wasp Boulevard, Building 176, Honolulu, Hawaii, USA 96818
${ }^{c}$ Southeast Fisheries Science Center NOAA Beaufort Lab, 101 Pivers Island Rd, Beaufort, NC, USA 28516

1. Technical Annex

1.1. Data description

Data representative of the southwest Pacific Ocean (SWPO) swordfish (Xiphias gladius) stock were used in Bayesian analyses to develop the multivariate distribution of key biological parameters and relationships that underpinned the model ensemble comparison. These data came from two sources: 1) biological observations of individuals sampled as a part of longline commercial fishing operations in the south Pacific through the Pacific Islands Regional Observer Program (PIRFO), and 2) biological observations of in-

[^0] monwealth Scientific and Industrial Research Organisation (CSIRO) aboard commercial longline vessels operating in the Coral Sea. Data collected as part of the observer program consisted of lower jaw fork length (LJFL cm) and whole weight ($\mathrm{WW} \mathrm{kg} \mathrm{)} \mathrm{measurements} ,\mathrm{as} \mathrm{well} \mathrm{as} \mathrm{sex-determination} \mathrm{of} \mathrm{the}$ measured individual. For lengths or weights that were not collected as LJFL or WW, respectively, were adjusted according to the standard conversion factors used in Western and Central Pacific Fisheries Commission (WCPFC) stock assessments (SPC-OFP, 2019). Data collected through CSIRO scientific research consisted of age, length, and maturity status by sex Young and Drake, 2002, 2004). Since CSIRO recorded lengths as eye-orbital fork length (OFL), these measurements were translated to LJFL using the aforementioned conversion factors.

1.2. Bayesian models

Four independent Bayesian analyses using the STAN probabilistic language, implemented in R (v4.0.3) with the rstan package ($v 2.21 .2 \mathrm{R}$ Core Team, 2021, STAN Development Team, 2021) were employed to create posterior distributions for the parameters needed to parameterize the growth, spawning potential (the product of female sex-ratio at length and female maturity at length), and length-weight relationships. For each model, 32,000 samples were drawn from 8 separate chains (5,000 samples per chain with 1,000 initial samples discarded as "burn-in"), each with random initial conditions. Default settings were used to setup the Hamiltonian Monte Carlo (HMC) sampling in terms of adapt-delta and tree-depth. Chains were assessed for convergence visually and using the \hat{R} test statistic. All models standard Hamiltonian Monte Carlo diagnostics (e.g., no divergent transitions identified, no maximum tree depth errors, and Bayesian fraction of missing information was not found to be too low).

1.2.1. Length-weight relationship

The relationship between length and weight of fish was modeled using sexspecific power functions. A total of 5,721 individual fish was available and consisted of 2,451 males and 3,270 females. The standard implementation of these models was utilized and consisted of a simple regression on the log scale of weight $\left(w_{i}\right)$ against length $\left(l_{i}\right)$ of each fish i, e.g.,

$$
\begin{gather*}
\log \left(w_{i}\right) \sim \operatorname{Normal}\left(\log \alpha_{j[i]}+\beta_{j[i]} \times \log \left(l_{i}\right), \sigma\right) \tag{1}\\
w_{i}=\exp \left(\dot{w}_{i}\right) \tag{2}
\end{gather*}
$$

where $\alpha_{j[i]}$ and $\beta_{j[i]}$ are intercept and slope terms specific to the sex j of fish i. Both sexes assumed identical but sex-specific priors for all parameters. Priors were specified to be relatively uninformative with a large CV on the log-scale (0.5). The prior for the regression standard deviation, σ, was $\log (\sigma) \sim \operatorname{Normal}(\log (0.5), 0.5)$, for the regression intercept parameter $\alpha_{j} \log \left(\alpha_{j}\right) \sim \operatorname{Normal}\left(\log \left(10^{-5}\right), 0.5\right)$ and for the regression slope parameter $\log \left(\beta_{j}\right) \sim \operatorname{Normal}(\log (3), 0.5)$. The prior means were taken to be similar to the assumed values for α and β used in the 2017 SWPO swordfish stock assessment (Takeuchi et al., 2017). Linear regression of log-transformed data introduces a bias on the regression intercept parameter α, and we accounted for this by applying a multiplicative correction factor $\left(e^{\frac{\sigma^{2}}{2}}\right)$ to our estimates
of α_{j} (Hayes et al., 1995).
For each posterior sample, sex-aggregated parameters $\bar{\alpha}$ and $\bar{\beta}$ were derived. Rather than simply averaging them which would not preserve the correlation structure between parameters, new sex-aggregated parameters were estimated by fitting to the predicted sex-specific weight at length relationship. This was done using non-linear least squares(nls() from the stats package in R v4.0.3):

$$
\begin{equation*}
w^{*}=\bar{\alpha} \times l^{*} \bar{\beta} \tag{3}
\end{equation*}
$$

where w^{*} was the combined expected sex-specific estimates of weight determined by applying the estimated sex-specific parameters α_{j} and β_{j} to a vector of integer lengths l^{*} from 1 to 300 .

1.2.2. Spawning potential

As mentioned, spawning potential at length was determined as the multiplicative combination of female sex-ratio at length and female maturity at length. These relationships were modeled using separate Bayesian models.

The female maturity-at-length relationship was investigated using biological data collected from longline caught swordfish in the Coral Sea Young and Drake, 2002; Young et al., 2003). A total of 916 individual fish were sampled over the period 1999-2001, consisting of 231 males and 685 females. The lengths of each fish were recorded and histological samples were analyzed to assess the sexual maturity of each fish as outlined in Farley et al. (2016). Only female fish were considered for further analysis.

The resulting dataset consisted of binary data where maturity of fish i, m_{i}, was determined to be either mature (1) or immature (0). Data were modeled
using a modified logistic regression against length l_{i}. It is occasionally diffi- cult to accurately determine maturity status of some fish, depending on when in the spawning season individuals were sampled. The modifications to the logistic model accommodated errors in determination of maturity (McInturff et al., 2004), either in the form of false positives (designated mature when immature) and false negatives (designated immature when mature). The set of equations for this approach is:

$$
\begin{gather*}
m_{i} \sim \operatorname{Bernoulli}\left(p_{i}\right) \tag{4}\\
p_{i}=\eta \pi_{i}+(1-\theta)\left(1-\pi_{i}\right) \tag{5}\\
\pi_{i}=\frac{1}{\left(1+\exp \left(\phi \times\left(l_{i}-\tau\right)\right)\right)} \tag{6}
\end{gather*}
$$

where the probability of being mature p_{i} involves adjustment of the usual function represented by π_{i} (linear relationship on the logit scale) using the parameters η and θ. These parameters are equivalent to the sensitivity and specificity of the classification problem, respectively. These are given uninformative priors $\operatorname{logit}(\theta) \sim \operatorname{Normal}(0,1)$, and $\operatorname{logit}(\eta) \sim \operatorname{Normal}(0,1)$. The parameters ϕ and τ represent the slope and inflection point (e.g., length at 50% maturity; L_{50}) of the maturity relationship, respectively. These parameters were also given uninformative priors $\phi \sim \operatorname{Normal}(0,5)$ and $\tau \sim$ $\operatorname{Normal}(180,180)$. The mean value for the prior on τ was informed by prior estimates of L_{50} for this species (Farley et al., 2016).

Female sex-ratio at length data were modeled using a variant of the generalized logistic function. The data comprised all individual fish from PIRFO records south of $5^{\circ} \mathrm{N}$ through the year 2019, and consisted of 47,506 individual fish. Data were modeled as binary variables s_{i}, where 0s denoted males fish i being female, ρ_{i}, was modeled as a function of fish length l_{i} using the following five-parameter model:

$$
\begin{gather*}
s_{i} \sim \operatorname{Bernoulli}\left(\rho_{i}\right) \tag{7}\\
\rho_{i}=\omega+\frac{\lambda-\omega}{\left(1+\exp \left(-\kappa \times\left(l_{i}-\delta\right)\right)\right)^{\nu}} \tag{8}
\end{gather*}
$$

where ω is the lower asymptote with prior $\operatorname{logit}(\omega) \sim \operatorname{Normal}(0,0.05), \lambda$ is the upper asymptote with $\operatorname{logit}(\lambda) \sim \operatorname{Normal}(1,1), \kappa$ is the slope of the
uninformative except for the prior on ω which was very informative (0.5 on logit scale) based on the assumption that sex-ratio at small size (e.g., birth) was 50:50.

The vector of spawning potential $\left(S P^{*}\right)$ was defined for a vector of lengths $\left(l^{*}\right)$ for each posterior sample as:

$$
\begin{equation*}
S P^{*}=\omega+\frac{\lambda-\omega}{\left(1+\exp \left(-\kappa \times\left(l^{*}-\delta\right)\right)\right)^{\nu}} \times \frac{1}{\left(1+\exp \left(\phi \times\left(l^{*}-\tau\right)\right)\right)} \tag{9}
\end{equation*}
$$

where l^{*} was sequence of lengths corresponding to the midpoint of the length composition bins used in the 2017 SWPO stock assessment Takeuchi et al., 2017). $S P^{*}$ was normalized to a minimum of 0 and maximum of 1 for each posterior sample.

1.2.3. Growth

is given by the following equation:

$$
\begin{equation*}
l_{i} \sim \operatorname{Normal}\left(L_{\infty, j[i]}\left(1-\exp \left(-k_{j[i]}\left(a_{i}-t_{0, j}\right)\right)\right), \sigma_{l}\right) \tag{10}
\end{equation*}
$$

where l_{i} is the length of fish i for a fish at age a (annual), σ_{l} is the standard deviation of length which has a prior of $\log \left(\sigma_{l}\right) \sim \operatorname{Normal}(\log (26), 0.5)$. The sex-specific average length of fish at hypothetical infinite ages for sex $j L_{\infty, j}$ had priors $\log \left(L_{\infty, j}\right) \sim \operatorname{Normal}\left(\mu_{j}^{L_{\infty}}, \sigma_{j}^{L_{\infty}}\right)$ where $\mu^{L_{\infty}}$ was $\log (212)$ and $\log (276)$ for males and females respectively, and $\sigma^{L_{\infty}}$ was 0.5 for both sexes. The sex-specific von Bertalanffy growth coefficient k_{j} had priors $\log \left(k_{\infty, j}\right) \sim \operatorname{Normal}\left(\mu_{j}^{k}, \sigma_{j}^{k}\right)$ where μ^{k} was $\log (0.24)$ and $\log (0.16)$ for males and females respectively, and σ^{k} was 0.5 for both sexes. The hypotheti-

Sex-specific growth was modeled using a standard von Bertalanffy function. This model assumed uninformative priors centered on previously estimated values for this species (Farley et al., 2016) and was fit to the CSIRO age and length dataset (Young and Drake, 2004, Farley et al., 2016) where a decimal age was determined from otolith aging(Farley et al., 2020). This data set consisted of 301 individuals, 184 of which were female. The model cal age of a fish when length is $0 t_{0, j}$ was sex-specific and had priors of $t_{0, j} \sim \operatorname{Normal}\left(\mu_{j}^{t_{0}}, \sigma_{j}^{t_{0}}\right)$ where $\mu_{j}^{t_{0}}$ was -2.10 and -2.13 for males and female respectively, and $\sigma_{j}^{t_{0}}$ was set at 5 for both sexes.

For each posterior sample, sex-aggregated parameters $\overline{L_{\infty}} \bar{k}$ and $\overline{t_{0}}$ were derived. Rather than simply averaging the sex-specific parameters, which would not preserve the correlation structure between parameters, new sex- aggregated parameters were estimated by fitting to the predicted sex-specific
length at age relationship. This was done using non-linear least squares(nls() from the stats package in R v4.0.3):

$$
\begin{equation*}
L^{*}=\overline{L_{\infty}}\left(1-\exp \left(-\bar{k}\left(a^{*}-\overline{t_{0}}\right)\right)\right) \tag{11}
\end{equation*}
$$

where L^{*} was the combined expected sex-specific estimates of length de- termined by applying the estimated sex-specific parameters $L_{\infty, j}, k_{j}$, and $t_{0, j}$ to a vector of integer ages a^{*} from 1 to 20.

1.3. Natural mortality

Recent work (Maunder et al., 2021; Submitted) suggests using either a maximum age based ($\frac{5.4}{A_{\text {max }}}$; Hamel and Cope, 2021; Submitted) or life-history based (4.118k $k^{0.73} L_{\infty}^{-0.33}$ Then et al. 2015) approach for developing an estimate of M for mature individuals $\left(M_{r e f}\right)$. In this case, $M_{\text {ref }}$ was defined as the M at a reference length where the reference length was chosen to be the length at the maximum age (20).

To create a distribution of $M_{r e f}$ which corresponded to the parameters from the growth analysis, correlated pairs of L_{∞} and k were drawn from the growth model posterior distribution and applied to the life-history approach. Additionally, the coefficients from the life-history approach have their own uncertainty (Then et al., 2015) so a parametric bootstrap was used following the approach from Lopez-Quintero et al. (2017) to draw correlated pairs of parameters for the Pauly ${ }_{n l s-T}$ relationship in order to incorporate uncertainty in the life-history relationship parameters.

A distribution of age-specific vectors of natural mortality was developed using the Stock Synthesis parameterization (Methot Jr. and Wetzel, 2013)
of the Lorenzen Lorenzen (2000) natural mortality curve. This formulation
$M_{r e f}$.

1.4. Steepness

Steepness (h) in a stock assessment context is defined over the interval 0.2 - 1 as the ratio of the equilibrium recruitment produced by 20% of the equilibrium unexploited spawning potential to that produced by the equilibrium unexploited spawning potential (Francis, 1992; Harley, 2011). Typically, fisheries data are not very informative about the steepness parameter of the SRR parameters (ISSF, 2011); hence, the steepness parameter was fixed in the assessment. A distribution of steepness was created to account for the limited existing information available for swordfish (Myers et al., 1999). Based on this information, a censored Beta prior was specified in order to restrict the domain to valid values for steepness:

$$
\begin{gather*}
h=0.2+0.8 \times x \tag{12}\\
x \sim \mathrm{~B}(\alpha=12.878788, \beta=2.484848) \tag{13}
\end{gather*}
$$

This Beta distribution has a median of 0.88 , matching the available scientific information (Myers et al., 1999).
1.5. delta-MVLN approximation for three dimensional joint Kobe-Majuro distribution

Let $x=S B / S B_{M S Y}, y=F / F_{M S Y}$, and $z=S B / S B_{F=0}$ with means (e.g., μ_{x}), variances (e.g., σ_{x}^{2}), and correlations (e.g., $\rho_{x y}$) that are outputs
from MULTIFAN-CL. Both x and y were estimated on a normal scale in
model was defined by the following equations:

$$
\begin{align*}
& \mu(\ln (x), \ln (y), z)=\left[\ln \left(\mu_{x}\right)-\frac{\sigma_{x}^{2}}{2 \mu_{x}^{2}} \quad \ln \left(\mu_{y}\right)-\frac{\sigma_{y}^{2}}{2 \mu_{y}^{2}} \quad \mu_{z}\right] \tag{14}\\
& \operatorname{Cov}(\ln (x), \ln (y), z)=\left[\begin{array}{ccc}
\frac{\sigma_{x}^{2}}{\mu_{x}^{2}}+\frac{\sigma_{x}^{4}}{4 \mu_{x}^{x}} & \frac{\rho_{x y} \sigma_{x} \sigma_{y}}{\mu_{x} \mu_{y}}-\frac{\sigma_{x}^{2} \sigma_{z}^{2}}{4 \mu_{x} \mu_{y}^{2}} & \frac{\rho_{x z} \sigma_{x} \sigma_{z}}{\mu_{x}} \\
\frac{\rho_{x y} \sigma_{x} \sigma_{y}}{\mu_{x} \mu_{y}}-\frac{\sigma_{\sigma}^{2} \sigma_{y}^{2}}{4 \mu_{x}^{2} \mu_{y}^{2}} & \frac{\sigma_{y}^{2}}{\mu_{y}^{2}}+\frac{\sigma_{y}^{4}}{4 \mu_{y}^{4}} & \frac{\rho_{y z} \sigma_{y} \sigma_{z}}{\mu_{y}} \\
\frac{\rho_{x z} \sigma_{x} \sigma_{z}}{\mu_{x}} & \frac{\rho_{y z} \sigma_{y} \sigma_{z}}{\mu_{y}} & \sigma_{z}^{2}
\end{array}\right] \tag{15}
\end{align*}
$$

For each model retained in the ensemble, the estimation uncertainty for the three reference points was approximated by drawing 10,000 samples from the above MVLN distribution. Samples were exponentiated to return them MULTIFAN-CL, while z was estimated on the log-scale. In order to sample from a multivariate lognormal (MVLN) distribution the means and variances for x and y were transformed to the log-scale, along with all covariances. A $2^{\text {nd }}$ order Taylor series was used to approximate the log transformed means, variances and covariances following the delta method Fournier et al. (2012). Following the Taylor series approximation, the MVLN distribution for each to the normal scale.

References

Farley, J., Clear, N., Kolody, D., Krusic-Golub, K., Eveson, P., and Young, J. (2016). Determination of swordfish growth and maturity relevant to the southwest Pacific stock. Technical Report WCPFC-SC12-2016/SA-WP11, Bali, Indonesia, 3-11 August 2016.

Farley, J., Krusic-Golub, K., Eveson, P., Clear, N., Roupsard, F., Sanchez, C., Nicol, S., and Hampton, J. (2020). Age and growth of yellowfin and bigeye tuna in the western and central Pacific Ocean from otoliths. Technical Report WCPFC-SC16-2020/SA-WP-02, Electronic meeting, 11-20 August 2020.

Fournier, D. A., Skaug, H. J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M. N., Nielsen, A., and Sibert, J. (2012). AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods and Software, 27(2):233 - 249 .

Francis, R. I. C. C. (1992). Use of risk analysis to assess fishery management strategies: A case study using orange roughy (Hoplostethus atlanticus) on the Chatham Rise, New Zealand. Canadian Journal of Fisheries and Aquatic Science, 49:922-930.

Hamel, O. and Cope, J. (2021). Considerations for developing a longevitybased prior for the natural mortality rate. Fisheries Research, Submitted.

Harley, S. J. (2011). A preliminary investigation of steepness in tunas based on stock assessment results. Technical Report WCPFC-SC7-2011/SA-IP08, Pohnpei, Federated States of Micronesia, 9-17 August 2011.

Hayes, D. B., Brodziak, J. K. T., and O'Gorman, J. B. (1995). Efficiency and bias of estimators and sampling designs for determining length-weight relationships of fish. Canadian Journal of Fisheries and Aquatic Sciences, 52(1):84-92. _eprint: https://doi.org/10.1139/f95-008.

ISSF (2011). Report of the 2011 ISSF stock assessment workshop. Technical Report ISSF Technical Report 2011-02, Rome, Italy, March 14-17.

Lopez-Quintero, F. O., Contreras-Reyes, J. E., and Wiff, R. (2017). Incorporating uncertainty into a length-based estimator of natural mortality in fish populations. Fishery Bulletin.

Lorenzen, K. (2000). Allometry of natural mortality as a basis for assessing optimal release size in fish-stocking programs. Canadian Journal of Fisheries and Aquatic Sciences, 57:2374-2381.

Maunder, M., Lee, H., Piner, K., Hamel, O., Cope, J., Punt, A., Ianelli, J., and Methot, R. (2021). A review of estimation methods for natural mortality and their performance in the context of fishery stock assessment. Fisheries Research, Submitted.

McInturff, P., Johnson, W. O., Cowling, D., and Gardner, I. A. (2004). Modelling risk when binary outcomes are subject to error. Statistics in Medicine, 23(7):1095-1109. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/sim.1656.

Methot Jr., R. D. and Wetzel, C. R. (2013). Stock synthesis: A biological and statistical framework for fish stock assessment and fishery management. Fisheries Research, 142:86-99.

Myers, R. A., Bowen, K. G., and Barrowman, N. J. (1999). Maximum reproductive rate of fish at low population sizes. Canadian Journal of Fisheries and Aquatic Sciences, 56(12):2404-2419. _eprint: https://doi.org/10.1139/f99-201.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

SPC-OFP (2019). Project 90 Update: Better data on fish weights and lengths for scientific analyses. Technical Report WCPFC-SC15-2019/ST-WP-03, Oceanic Fisheries Programme, The Pacific Community.

STAN Development Team (2021). STAN Modeling Language Users Guide and Reference Manual.

Takeuchi, Y., Pilling, G., and Hampton, J. (2017). Stock assessment of sowrdfish(Xiphias gladius) in the southwest Pacific Ocean. Technical Report WCPFC-SC13-2017/SA-WP-13, Western and Central Pacific Fisheries Commission: Scientific Committee, Rarotonga, Cook Islands.

Then, A. Y., Hoenig, J. M., Hall, N. G., and Hewitt, D. A. (2015). Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES Journal of Marine Science, 72(1):82-92.

Young, J. and Drake, A. (2002). Reproductive dynamics of broadbill swordfish (Xiphias gladius) in the domestic longline fishery off eastern Australia. Technical Report Project FRDC 1999/108, CSIRO.

Young, J. and Drake, A. (2004). Age and growth of broadbill swordfish (Xiphias gladius) from Australian waters. Technical Report FRDC Project 2001/014, CSIRO.

Young, J., Drake, A., Brickhill, M., Farley, J., and Carter, T. (2003). Reproductive dynamics of broadbill swordfish, Xiphias gladius, in the domestic
longline fishery off eastern Australia. Marine and Freshwater Research, 54(4):1-18.

[^0]: *Corresponding author
 Email address: nicholas.ducharme-barth@noaa.gov (Nicholas D. Ducharme-Barth)

 Note: Both authors contributed equally to this study and share first authorship. \dagger Present address.

