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1. Technical Annex

1.1. Data description

Data representative of the southwest Pacific Ocean (SWPO) swordfish

(Xiphias gladius) stock were used in Bayesian analyses to develop the multi-

variate distribution of key biological parameters and relationships that under-5

pinned the model ensemble comparison. These data came from two sources:

1) biological observations of individuals sampled as a part of longline com-

mercial fishing operations in the south Pacific through the Pacific Islands

Regional Observer Program (PIRFO), and 2) biological observations of in-
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dividuals collected as a part of scientific research conducted by the Com-10

monwealth Scientific and Industrial Research Organisation (CSIRO) aboard

commercial longline vessels operating in the Coral Sea. Data collected as part

of the observer program consisted of lower jaw fork length (LJFL cm) and

whole weight (WW kg) measurements, as well as sex-determination of the

measured individual. For lengths or weights that were not collected as LJFL15

or WW, respectively, were adjusted according to the standard conversion

factors used in Western and Central Pacific Fisheries Commission (WCPFC)

stock assessments (SPC-OFP, 2019). Data collected through CSIRO scien-

tific research consisted of age, length, and maturity status by sex (Young

and Drake, 2002, 2004). Since CSIRO recorded lengths as eye-orbital fork20

length (OFL), these measurements were translated to LJFL using the afore-

mentioned conversion factors.

1.2. Bayesian models

Four independent Bayesian analyses using the STAN probabilistic lan-

guage, implemented in R (v4.0.3) with the rstan package (v2.21.2 R Core25

Team, 2021; STAN Development Team, 2021) were employed to create pos-

terior distributions for the parameters needed to parameterize the growth,

spawning potential (the product of female sex-ratio at length and female ma-

turity at length), and length-weight relationships. For each model, 32,000

samples were drawn from 8 separate chains (5,000 samples per chain with30

1,000 initial samples discarded as “burn-in”), each with random initial con-

ditions. Default settings were used to setup the Hamiltonian Monte Carlo

(HMC) sampling in terms of adapt-delta and tree-depth. Chains were as-

sessed for convergence visually and using the R̂ test statistic. All models
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did not fail convergence tests and appeared well determined on the basis of35

standard Hamiltonian Monte Carlo diagnostics (e.g., no divergent transitions

identified, no maximum tree depth errors, and Bayesian fraction of missing

information was not found to be too low).

1.2.1. Length-weight relationship

The relationship between length and weight of fish was modeled using sex-40

specific power functions. A total of 5,721 individual fish was available and

consisted of 2,451 males and 3,270 females. The standard implementation

of these models was utilized and consisted of a simple regression on the log

scale of weight (wi) against length (li) of each fish i, e.g.,

log(ẃi) ∼ Normal(logαj[i] + βj[i] × log(li), σ) (1)

wi = exp(ẃi) (2)

where αj[i] and βj[i] are intercept and slope terms specific to the sex j of45

fish i. Both sexes assumed identical but sex-specific priors for all parame-

ters. Priors were specified to be relatively uninformative with a large CV

on the log-scale (0.5). The prior for the regression standard deviation, σ,

was log(σ) ∼ Normal(log(0.5), 0.5), for the regression intercept parameter

αj log(αj) ∼ Normal(log(10−5), 0.5) and for the regression slope parameter50

log(βj) ∼ Normal(log(3), 0.5). The prior means were taken to be similar

to the assumed values for α and β used in the 2017 SWPO swordfish stock

assessment (Takeuchi et al., 2017). Linear regression of log-transformed data

introduces a bias on the regression intercept parameter α, and we accounted

for this by applying a multiplicative correction factor (e
σ2

2 ) to our estimates55
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of αj (Hayes et al., 1995).

For each posterior sample, sex-aggregated parameters ᾱ and β̄ were de-

rived. Rather than simply averaging them which would not preserve the

correlation structure between parameters, new sex-aggregated parameters

were estimated by fitting to the predicted sex-specific weight at length rela-60

tionship. This was done using non-linear least squares(nls() from the stats

package in R v4.0.3):

w∗ = ᾱ× l∗β̄ (3)

where w∗ was the combined expected sex-specific estimates of weight

determined by applying the estimated sex-specific parameters αj and βj to

a vector of integer lengths l∗ from 1 to 300.65

1.2.2. Spawning potential

As mentioned, spawning potential at length was determined as the mul-

tiplicative combination of female sex-ratio at length and female maturity at

length. These relationships were modeled using separate Bayesian models.

The female maturity-at-length relationship was investigated using biolog-70

ical data collected from longline caught swordfish in the Coral Sea (Young

and Drake, 2002; Young et al., 2003). A total of 916 individual fish were

sampled over the period 1999–2001, consisting of 231 males and 685 females.

The lengths of each fish were recorded and histological samples were analyzed

to assess the sexual maturity of each fish as outlined in Farley et al. (2016).75

Only female fish were considered for further analysis.

The resulting dataset consisted of binary data where maturity of fish i,mi,

was determined to be either mature (1) or immature (0). Data were modeled
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using a modified logistic regression against length li. It is occasionally diffi-

cult to accurately determine maturity status of some fish, depending on when80

in the spawning season individuals were sampled. The modifications to the

logistic model accommodated errors in determination of maturity (McInturff

et al., 2004), either in the form of false positives (designated mature when

immature) and false negatives (designated immature when mature). The set

of equations for this approach is:85

mi ∼ Bernoulli(pi) (4)

pi = ηπi + (1− θ)(1− πi) (5)

πi =
1

(1 + exp(ϕ× (li − τ)))
(6)

where the probability of being mature pi involves adjustment of the usual

function represented by πi (linear relationship on the logit scale) using the

parameters η and θ. These parameters are equivalent to the sensitivity and

specificity of the classification problem, respectively. These are given unin-

formative priors logit(θ) ∼ Normal(0, 1), and logit(η) ∼ Normal(0, 1). The90

parameters ϕ and τ represent the slope and inflection point (e.g., length at

50% maturity; L50) of the maturity relationship, respectively. These pa-

rameters were also given uninformative priors ϕ ∼ Normal(0, 5) and τ ∼

Normal(180, 180). The mean value for the prior on τ was informed by prior

estimates of L50 for this species (Farley et al., 2016).95

Female sex-ratio at length data were modeled using a variant of the gen-

eralized logistic function. The data comprised all individual fish from PIRFO

records south of 5◦N through the year 2019, and consisted of 47,506 individ-

ual fish. Data were modeled as binary variables si, where 0s denoted males
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(n = 22,089) and and 1s denoted females (n = 25,417). The probability of100

fish i being female, ρi, was modeled as a function of fish length li using the

following five-parameter model:

si ∼ Bernoulli(ρi) (7)

ρi = ω +
λ− ω

(1 + exp(−κ× (li − δ)))ν
(8)

where ω is the lower asymptote with prior logit(ω) ∼ Normal(0, 0.05), λ

is the upper asymptote with logit(λ) ∼ Normal(1, 1), κ is the slope of the

function with length, with a prior of κ ∼ Normal(0, 0.1), δ is a parameter105

that determines the fish length (cm) at which the inflection point of the

function occurs, which had a prior of δ ∼ Normal(150, 150), and ν which

allows asymmetry in the form of the function either side of the inflection

point and was given a prior of ν ∼ Normal(0, 1). All priors were relatively

uninformative except for the prior on ω which was very informative (0.5 on110

logit scale) based on the assumption that sex-ratio at small size (e.g., birth)

was 50:50.

The vector of spawning potential(SP ∗) was defined for a vector of lengths

(l∗) for each posterior sample as:

SP ∗ = ω +
λ− ω

(1 + exp(−κ× (l∗ − δ)))ν
× 1

(1 + exp(ϕ× (l∗ − τ)))
(9)

where l∗ was sequence of lengths corresponding to the midpoint of the115

length composition bins used in the 2017 SWPO stock assessment (Takeuchi

et al., 2017). SP ∗ was normalized to a minimum of 0 and maximum of 1 for

each posterior sample.
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1.2.3. Growth

Sex-specific growth was modeled using a standard von Bertalanffy func-120

tion. This model assumed uninformative priors centered on previously esti-

mated values for this species (Farley et al., 2016) and was fit to the CSIRO

age and length dataset (Young and Drake, 2004; Farley et al., 2016) where

a decimal age was determined from otolith aging(Farley et al., 2020). This

data set consisted of 301 individuals, 184 of which were female. The model125

is given by the following equation:

li ∼ Normal(L∞,j[i]

(
1− exp

(
−kj[i] (ai − t0,j)

))
, σl) (10)

where li is the length of fish i for a fish at age a (annual), σl is the stan-

dard deviation of length which has a prior of log(σl) ∼ Normal(log(26), 0.5).

The sex-specific average length of fish at hypothetical infinite ages for sex

j L∞,j had priors log(L∞,j) ∼ Normal(µL∞
j , σL∞

j ) where µL∞ was log(212)130

and log(276) for males and females respectively, and σL∞ was 0.5 for both

sexes. The sex-specific von Bertalanffy growth coefficient kj had priors

log(k∞,j) ∼ Normal(µk
j , σ

k
j ) where µk was log(0.24) and log(0.16) for males

and females respectively, and σk was 0.5 for both sexes. The hypotheti-

cal age of a fish when length is 0 t0,j was sex-specific and had priors of135

t0,j ∼ Normal(µt0
j , σ

t0
j ) where µt0

j was -2.10 and -2.13 for males and female

respectively, and σt0
j was set at 5 for both sexes.

For each posterior sample, sex-aggregated parameters L̄∞ k̄ and t̄0 were

derived. Rather than simply averaging the sex-specific parameters, which

would not preserve the correlation structure between parameters, new sex-140

aggregated parameters were estimated by fitting to the predicted sex-specific
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length at age relationship. This was done using non-linear least squares(nls()

from the stats package in R v4.0.3):

L∗ = L̄∞
(
1− exp

(
−k̄ (a∗ − t̄0)

))
(11)

where L∗ was the combined expected sex-specific estimates of length de-

termined by applying the estimated sex-specific parameters L∞,j, kj, and t0,j145

to a vector of integer ages a∗ from 1 to 20.

1.3. Natural mortality

Recent work (Maunder et al., 2021; Submitted) suggests using either a

maximum age based ( 5.4
Amax

; Hamel and Cope, 2021; Submitted) or life-history

based (4.118k0.73L−0.33
∞ Then et al., 2015) approach for developing an estimate150

of M for mature individuals (Mref ). In this case, Mref was defined as the M

at a reference length where the reference length was chosen to be the length

at the maximum age (20).

To create a distribution of Mref which corresponded to the parameters

from the growth analysis, correlated pairs of L∞ and k were drawn from the155

growth model posterior distribution and applied to the life-history approach.

Additionally, the coefficients from the life-history approach have their own

uncertainty (Then et al., 2015) so a parametric bootstrap was used following

the approach from Lopez-Quintero et al. (2017) to draw correlated pairs of

parameters for the Paulynls-T relationship in order to incorporate uncertainty160

in the life-history relationship parameters.

A distribution of age-specific vectors of natural mortality was developed

using the Stock Synthesis parameterization (Methot Jr. and Wetzel, 2013)

8



of the Lorenzen Lorenzen (2000) natural mortality curve. This formulation

derives age-specific values of natural mortality using the growth curve, and165

Mref .

1.4. Steepness

Steepness (h) in a stock assessment context is defined over the interval 0.2

– 1 as the ratio of the equilibrium recruitment produced by 20% of the equi-

librium unexploited spawning potential to that produced by the equilibrium170

unexploited spawning potential (Francis, 1992; Harley, 2011). Typically, fish-

eries data are not very informative about the steepness parameter of the SRR

parameters (ISSF, 2011); hence, the steepness parameter was fixed in the as-

sessment. A distribution of steepness was created to account for the limited

existing information available for swordfish (Myers et al., 1999). Based on175

this information, a censored Beta prior was specified in order to restrict the

domain to valid values for steepness:

h = 0.2 + 0.8× x (12)

x ∼ B(α = 12.878788, β = 2.484848) (13)

This Beta distribution has a median of 0.88, matching the available sci-

entific information (Myers et al., 1999).

1.5. delta-MVLN approximation for three dimensional joint Kobe-Majuro180

distribution

Let x = SB/SBMSY , y = F/FMSY , and z = SB/SBF=0 with means

(e.g., µx), variances (e.g., σ2
x), and correlations (e.g., ρxy) that are outputs
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from MULTIFAN-CL. Both x and y were estimated on a normal scale in

MULTIFAN-CL, while z was estimated on the log-scale. In order to sample185

from a multivariate lognormal (MVLN) distribution the means and variances

for x and y were transformed to the log-scale , along with all covariances. A

2nd order Taylor series was used to approximate the log transformed means,

variances and covariances following the delta method Fournier et al. (2012).

Following the Taylor series approximation, the MVLN distribution for each190

model was defined by the following equations:

µ

(
ln(x), ln(y), z

)
=

[
ln(µx)− σ2

x

2µ2
x

ln(µy)−
σ2
y

2µ2
y

µz

]
(14)

Cov

(
ln(x), ln(y), z

)
=


σ2
x

µ2
x
+ σ4

x

4µ4
x

ρxyσxσy

µxµy
− σ2

xσ
2
y

4µ2
xµ

2
y

ρxzσxσz

µx
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µxµy
− σ2

xσ
2
y

4µ2
xµ

2
y

σ2
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y
+

σ4
y

4µ4
y

ρyzσyσz

µy

ρxzσxσz

µx

ρyzσyσz

µy
σ2
z

 (15)

For each model retained in the ensemble, the estimation uncertainty for

the three reference points was approximated by drawing 10,000 samples from

the above MVLN distribution. Samples were exponentiated to return them

to the normal scale.195
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