
APPENDIX A. SUPPLEMENTARY INFORMATION FOR METHODS 

Table A.1. Search strings used for the discovery of relevant literature in the Web of Science (all results). 

Informal supplementary searches were also conducted for reports, theses and dissertations via Google 

Scholar and Open Access Theses and Dissertations (https://oatd.org). Searches were conducted in 

September 2020. 

Search topic Search string 

Nutrient removal 
rates at seaweed 
farms (306 hits in 
WoS) 

(aquacultur* OR farm* OR maricultur*) AND (seaweed OR alga* OR 
macroalga* OR kelp) AND (nutrient OR nitrogen OR phosphorus OR 
eutrophi*)AND (uptak* OR remov* OR bioextract* OR mitigat* OR 
bioremedia* OR remedia* OR denitrif*) AND (quantif* OR measur* OR 
assess* OR estimat* OR report* OR rate* OR efficien*) NOT (biofuel OR 
soil OR pond OR microalga* OR biofilm* OR dinoflag* OR cyanobacteri* OR 
hyacinth OR wetland OR freshwater) 

Nutrient removal 
rates at bivalve 
farms (514 hits in 
WoS) 

(aquaculture OR mariculture OR farm* OR cultur*) AND (shellfish OR 
bivalve*  OR oyster* OR mussel* OR clam* OR geoduck* OR quahog* OR 
scallop*)  AND (nutrient* OR nitrogen OR phosphorus) AND (bioextract* 
OR extract*  OR remov* OR mitigat* OR filt* OR remedia*) 

Denitrification 
rates at bivalve 
farms (71 hits in 
WoS) 

(aquacultur* OR farm* OR cultur* OR maricultur*) AND (shellfish OR 
bivalve OR mussel* OR Aulacomya OR Choromytilus OR Mytilus OR Perna 
OR oyster* OR pearl OR Crassostrea OR Ostrea OR Saccostrea OR Pinctada 
OR Pteria OR scallop* OR Aequipecten OR Argopecten OR Chlamys OR 
Patinopecten OR Pecten OR Placopecten OR clam* OR cockle* OR geoduck 
OR quahog OR Anadara OR Scapharca OR Cerastoderma OR Tridacna OR 
Mactra OR Spisula OR Sinonovacula OR Corbicula OR Mercenaria OR 
Meretrix OR Paphia OR Protothaca OR Ruditapes OR Saxidomus OR 
Venerupis Mya OR Panopea) AND (denitrif*) 

Habitat provision 
effects at bivalve 
and seaweed farms 
(1607 hits in WoS) 

(aquacultur* OR farm* OR maricultur*) AND (seaweed OR alga* OR 
macroalga* OR kelp OR shellfish OR bivalve OR mussel* OR Aulacomya OR 
Choromytilus OR Mytilus OR Perna OR oyster* OR pearl OR Crassostrea OR 
Ostrea OR Saccostrea OR Pinctada OR Pteria OR scallop* OR Aequipecten 
OR Argopecten OR Chlamys OR Patinopecten OR Pecten OR Placopecten 
OR clam* OR cockle* OR geoduck OR quahog OR Anadara OR Scapharca 
OR Cerastoderma OR Tridacna OR Mactra OR Spisula OR Sinonovacula OR 
Corbicula OR Mercenaria OR Meretrix OR Paphia OR Protothaca OR 
Ruditapes OR Saxidomus OR Venerupis Mya OR Panopea) AND (habitat OR 
abund* OR "population density") NOT (soil OR pond) 
Note: Data were also included from four unpublished studies by Bridget 
Ferriss et al., Renee Mercaldo-Allen et al., James Foley and Jenny Shinn et 
al. (Appendix C). 
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Supplementary Text A.1. Treatment of fish population data and simulation of production 

enhancement. 

For cases where there was zero abundance in one habitat, we conservatively assumed a relative 

abundance of 10:1 in the observed direction. Where a study provided abundance data for several 

qualitatively different farm or reference habitat types (e.g. presence/absence of gear or habitat 

structure), we calculated effect sizes for each. We aggregated a mean value across all timepoints at 

which farming was taking place, improving our ability to compare habitat effects across studies and 

regions, but at the cost of flattening seasonal patterns. 

Representative sampling of the farm footprint requires that all microhabitats within the farm 

boundary are surveyed with the same detection rate of individuals present in that macrohabitat. This 

is rarely the case. For example, randomly-placed visual census transects spanning gear and the seabed 

between may sample relatively large, non-cryptic fish representatively but miss those within baskets 

or cages, while bagging or lift-netting oyster cages will effectively sample individuals closely associated 

with the aquaculture gear, but miss any large individuals that flee rather than hiding within the 

structure. For conservatism, we only corrected downwards, by reducing reported densities for studies 

that selectively sampled aquaculture gear, but not increasing reported densities for studies that 

sampled between gear and therefore may have missed higher densities of fish associated with gear. 

Most fish survey methods only sample a subset of the species and size classes present at a site, with 

the result the reported density is both (i) an underestimate of the true density, and (ii) reflective of a 

biased subset of individuals. For example, lift nets may sample the majority of small fish present, while 

almost all larger or more mobile fishes will evade capture. Conversely, visual census is most effective 

at sampling relatively large, bold fishes, while the size-selectivity of seine and trawl methods depends 

on a range of factors including mesh size, net width, speed, turbidity and habitat complexity. 

Obtaining starting values for juvenile density required two broad assumptions to be made: First, nearly 

half of the species comparisons in our dataset were provided as catch-per-unit-effort or another 

relative abundance unit. We converted these to density units based on defensible estimates of the 

effective area sampled by each method. These values are given in the supplementary data file 

(Appendix C), and we report the effect of omitting such cases from the analysis in-text (also see Figure 

A.1). Second, very few studies in our dataset presented size- or age-frequency distributions of the 

individuals sampled. We therefore implemented a standardised protocol for estimation of age 0+ 

juvenile density (Djuv). For each comparison, we first defined the size range that was likely to be 

effectively sampled by the survey methods used, based on variables such as mesh size or trap entrance 

dimensions relative to body size (Appendix B). Habitat- and species-specific production was then 

simulated as follows: 

Surviving density-at-age Dt was estimated using the equation 

(Eqn A.1) Dt+1 = Dt · e^(–Mt) 

where Dt is the surviving density at age t (calculated at increments up to the species maximum age, 

tmax), Mt is the instantaneous natural mortality rate at age t (mean of several M-estimation methods, 

detailed below). Age-specific mortality (Mt) was based on a species-level estimate for M adjusted 

according to (Lorenzen 2000) 

(A.2) Mt = M · (Lc/Lt) 



where Lc is the value for length at recruitment to the fishery (here assumed to occur at 40% of 

maximum length) and Lt is length-at-age according to the von Bertalanffy growth function (Von 

Bertalanffy 1938) 

(A.3) Lt = Linf(1 - e^(-K(t-t0))) 

where Linf is the length in cm at an infinitely high age, and K is a growth coefficient. t0 is the theoretical 

age at length zero predicted by the growth rate function, assumed to be equal to zero. Using the 

simulated size-frequency distribution (Dt at age), we measured the size-frequency kernel over two 

length ranges: the range effectively sampled (Ksampled), and the range from length-at-recruitment to 

length-at-age-1 (Kjuv). Djuv is then taken to be equal to the sampled density multiplied by Kjuv/Ksampled. 

The estimated value for Djuv was, on average, equal to 66% of Dsampled (Figure A.2). With an estimate of 

Djuv as a starting cohort density, surviving density-at-age was integrated from the assumed mean age 

of the Djuv cohort (0.5 years) to the species maximum age tmax (Eqn A.1). We did not attempt to model 

production below 0.5 years of age. Mean length at age (Lt) was fitted using Eqn A.3, and converted to 

mean weight at age (Wt) using the weight-at-length equation (Le Cren 1951) 

(A.4) Wt = a · Lt^b 

where Wt is the weight at age in grams and a and b are species-specific constants. Multiplying Lt and 

Wt then gave surviving biomass at age (Bt). Integrating Bt and Dt from age 0.5 to tmax (Figure A.3, Figure 

A.4) gave values that we took to represent the theoretical steady state annual production (zu 

Ermgassen et al. 2016). Annual production of landable fish was estimated by integrating above the 

age at which fish were expected to reach landable size. Landable sizes were assigned according to 

regulatory size limits or else set at 40% of the species maximum length, with a universal minimum of 

20 cm for fishes unless the species is known to be harvested at smaller sizes. 

An analysis by (Then et al. 2015) found that tmax-based methods performed best, and particularly a 

nonlinear least squares variation on (Hoenig 1983) method, parameterised as 

(A.6) Mnls = 4.889 · tmax^(−0.916) 

We also computed production estimates using three alternative M-estimation methods re- 

parameterised by (Then et al. 2015), namely a simplified version of (Pauly 1980) growth-based method 

(Eqn A.7), and one- and two-parameter growth-based methods (Eqns A.8, A.9) (Jensen 1996, 2001). 

(A.7) MPauly = 4.118 · K^0.73 · Linf^(−0.33) 

(A.8) MK = 1.692 · K 

(A.9) MK2 = 0.098 + 1.55 · K 

We use these methods to estimate M for both fishes and invertebrates, using carapace width or length 

in place of total length for the MPauly method. We primarily report production estimates based on the 

mean of Mnls, MPauly, MK and MK2. 

Our method does not require prior evidence of habitat use for inclusion of species, but instead takes 

observed population densities at farm and reference sites as indicators of relative habitat value. This 

means that while we impose a stricter test of the measured enhancement effect by subtracting 

production at reference habitats from production at farms, we also allow more species to contribute 

to assemblage-level production than previous applications of this method. Despite this, we likely still 



underestimate the assemblage-level density, as only species that were effectively sampled (minimum 

10 individuals sampled within at least one habitat type) were included. 

  



 

Figure A.1. Representations of projected fish production. Panel A shows the comparison of sampled 

fish density (Dsampled) and estimated age 0+ juvenile density (Djuv). On average, Djuv is equal to 64% and 

66% of Dsampled for farm and reference habitats, respectively. Panels B and C show production of an 

example cohort from 0.5 years to maximum age, in terms of (panel B) surviving density-at-age, Dt, and 

(panel C) surviving biomass-at-age, Bt. Production in this case is higher at farm sites and will yield a 

positive value for additional fish produced at farm habitats. Thick lines show production trajectories 

according to the mean natural mortality estimate M, while thin lines show the range of trajectories 

according to Mnls, MPauly, MK and MK2 methods. The thick dashed line shows the effect of increasing 

mean M by 10% at farm sites only. Panel D Shows all lifetime production trajectories considered in 

the analysis. 

 

  



 

Figure A.2. Frequency polygon of monetary values for nitrogen removal (Panel A) and recreational 

fish capture (Panel B) returned by the literature review, standardised to 2020 USD and grouped into 

low, central or high estimates as identified by the primary source. In most cases, studies contributed 

both a low and high estimate to the plotted dataset, or else only a central estimate. Where only low 

and high estimates were reported, we used the midpoint of the reported range as an approximate 

central estimate. For nitrogen removal estimates, we also distinguish between market and non-

market valuation methods. 

  



 

Figure A.3. Geographic representation of (Panel A) nutrient removal estimates at the level of sites (or 

studies, if sites were not given separately) and (Panel B) fish abundance estimates at the level of 

species within studies. Panel A omits 5 non-region-specific estimates for nitrogen content of seaweeds 

(Kim et al. 2017). In 2018, regional bivalve and seaweed production volumes were: Africa: 4 and 113 

kt; Asia and the Pacific: 15581 and 32176 kt; Europe: 680 and 5 kt; Latin America: 405 and 21 kt; North 

America: 234 and ~0 kt (values obtained using FishStatJ software: FAO Fisheries and Aquaculture, 

2020). 
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