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METHODS

Ozone profile Aggregation

As ozone  measurements  from coastal  and  inland  stations  are  expected  to  have  very
distinct  characteristics,  we  employ  the  weighted  mean of  available  measurements  and
corresponding reduced chi-square corrected standard error for trend analysis.

Here, Weight for station j is:

weig h t j=
1

σ j
2∗n j

                                                     (1)

Normalized weight is estimated as follows:

w j=
weigh t j

∑
j=1

n

weigh t j
                                                             (2)

Weighted mean for a particular month is calculated as:

ý=∑
j=1

n

w j y j                                                                (3)

Standard error of weighted mean is calculated using:

σ ý
2
=∑
j=1

n

w j
2σ j

2
                                                                (4)

Reduced chi-square corrected standard error is calculated using:

σ̂ ý
2
=σ ý

2 χ2                                                                    (5)

where reduced chi-square is given as:

χ2=
1
n−1

∑
j=1

n

( y j− ý )
2

σ j

                                                         (6)

where yj and σj is monthly mean and standard deviation for station j, and n j is number of stations

of the same kind (coastal/inland) and n is the total number of stations considered in this study. 
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Dynamic Linear Model (DLM)

To specifically attribute the factors responsible for ozone variability, both the Multiple
Linear Regression (MLR) (discussed in the main text) and the Bayesian Dynamic Linear
Model (DLM)1–4 are used.

In DLM, we model time-series observations y t at time t  as follows:

y t=Ft x t+v t , v t∼N (0 ,V t )                                                     (7)

x t=Gt xt −1+w t ,wt∼N (0 ,W t )                                                  (8)

where  x t is the  unobserved state containing the (non-linear) trend, the seasonal cycle,
dynamical coefficients of the regressor variables, and the auto-regressive (AR) process.

x t=(x t
trend , xt

seas , x t
regressors , x t

AR )                                                  (9)

The state evolution operator Gt and the model error covariance W t  govern the stochastic
evolution of the state whereas the observation matrix F t projects it onto the observations. 

Here, trend X t
trend is modeled as a random walk process which is, in turn, defined by two

states: local background level μt and local trend α t.

x t
trend

=(μt , α t )                                                       (10)

μt=μt− 1+αt −1                                                      (11)

and

α t=αt −1+ϵ trend , ϵ trend∼N (0 , σ t )                                              (12)

The non-linearity of the background trend, is governed entirely by the parameter  σ trend.
σ trend is a free parameter to be fit simultaneously with the rest of the regression model.

Thus, DLM is distinct from MLR in the sense that the trend is not predetermined, but it is
free to vary smoothly over time, and the degree of trend variability  (σ trend)is a parameter
that is estimated a-posteriori from the data using Markov chain Monte Carlo (MCMC)
sampling using data driven prior for trend variability. DLM can easily capture change in
trend  for  which  various  studies  used  independent-linear  trends  or  piecewise  linear
regression, and does not require a-priori determination of turnaround time. In comparison
to the MLR, which is based on the premise that the error distribution on measurements is
constant  in  time  (homoscedasticity),  DLM  implements  heteroscedastic  time-varying
uncerainties. Moreover, DLM also allows the amplitude of the seasonal cycle to vary
dynamically with time. Please see Laine et al. 20141 for detailed discussions about DLM.
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In our study, the state is constituted by the (non-linear) trend, seasonal cycle with two
components (with 6- and 12-month periods respectively), a number of regressor variables
(represented by proxies) and an AR1 process. DLM trends has been calculated only for
monthly mean data. A python library DLMMC has been used for performing the DLM
analysis5.

TABLES

Table  S1: Antarctic  stations  with  surface  ozone  measurements.  Here  latitudes  and
longitudes are in degrees; whereas altitudes are in meters from the mean sea level (agl).

Stations Latitude (°N) Longitude (°E) Altitude (m) Period

Arrival 
Heights

-77.83 166.67 184 1997–2018

Concordia -75.09 123.33 3233 2006–2013

Neumayer -70.65 -8.25 42 1993–2018

South Pole -89.98 -24.80 2810 1993–2018

Syowa -69.00 39.58 16 1997–2014
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Table S2: Surface ozone and tropospheric ozone column (TOC) trends along with its
standard error (in parenthesis) calculated using SLR and MLR. The trends are estimated
in accordance with the availability of data at each station. The Arrival Heights surface
ozone measurements are for the period 1997–2018, Concordia 2006–2013, Syowa 1997-
2014, Neumayer 1993– 2018, and South Pole 1993–2018. Trend values are in ppbv yr -1

for surface ozone and in DU yr-1 for TOC.

Sampling
Arrival
Heights Concordia Neumayer

South
Pole Syowa TOC

SLR

Monthly 0.134 
(0.067)

-0.208 
(0.204)

0.084 
(0.048)

0.161 
(0.036)

0.109 
(0.079)

0.005 
(0.019)

Annual 0.121 
(0.047)

-0.362 
(0.101)

0.077 
(0.022)

0.146 
(0.030)

0.091 
(0.039)

-0.000 
(0.007)

DJF 0.146 
(0.060)

-0.625 
(0.335)

0.031 
(0.032)

0.111 
(0.047)

-0.005 
(0.055)

0.004 
(0.011)

MAM 0.145 
(0.056)

-0.360 
(0.122)

0.137 
(0.024)

0.226 
(0.035)

0.105 
(0.048)

0.031 
(0.006)

JJA 0.140 
(0.047)

-0.224 
(0.060)

0.079 
(0.035)

0.170 
(0.032)

0.158 
(0.058)

-0.024 
(0.013)

SON 0.067 
(0.053)

-0.088 
(0.160)

0.058 
(0.034)

0.077 
(0.032)

0.092 
(0.056)

-0.013 
(0.016)

MLR

Monthly 0.115 
(0.040)

-0.436 
(0.138)

0.083 
(0.019)

0.133 
(0.025)

0.109 
(0.031)

-0.002 
(0.007)

Annual 0.098 
(0.069)

0.098 
(0.043)

0.002 
(0.091)

0.092 
(0.061)

-0.006 
(0.010)

DJF 0.089 
(0.106)

0.022 
(0.031)

-0.096 
(0.196)

-0.046 
(0.068)

0.001 
(0.014)

MAM 0.151 
(0.110)

0.093 
(0.033)

0.023 
(0.094)

0.236 
(0.087)

0.025 
(0.008)

JJA 0.190 
(0.081)

0.087 
(0.050)

0.231 
(0.062)

0.082 
(0.081)

0.000 
(0.015)

SON 0.094 
(0.063)

-0.018 
(0.066)

0.102 
(0.062)

0.124 
(0.088)

-0.033 
(0.028)
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Table  S3: Contribution  of  proxies  to  surface  ozone  and  tropospheric  ozone  column
(TOC) variability at different stations. Here, solar flux (SF) represent the influence of
solar activity, heat flux (HF) represent the residual circulation, potential vorticity (PV)
accounts for the influence of polar vortex and stratosphere-troposphere exchange, and
aerosol optical depth (AOD) accounts for aerosol loading and volcanic eruptions. AAO
represents the Antarctic oscillation, multivariate ENSO index (MEI) represents the ENSO
impact,  and QBO represents  the meteorological  changes  in  the tropics  by the  Quasi-
biennial oscillation. All values are in percentage [%].

Proxies
Arrival
Heights Concordia Neumayer Syowa

South
Pole TOC

AAO 9.0976 5.0805 1.5210 6.228 7.617 20.980

AOD 0.5830 0.4650 2.0440 1.365 5.555 3.822

HF 77.7617 58.3716 72.9089 77.794 36.096 12.415

MEI 6.5299 4.2544 3.9638 1.801 4.717 4.810

PV 0.3106 1.5484 3.8222 2.361 8.283 11.257

QBO 2.5774 14.0453 7.6927 4.640 11.372 17.947

SOLAR 0.5623 2.1894 0.3546 1.171 14.988 10.823

Table S4: Variable influence factor (VIF) for external forcings included in surface ozone
analyses at Syowa.

FORCING VIF

SOLAR   FLUX 1.061

QBO30 2.030

QBO50 2.253

MEI 1.205

AAO 1.138

HEAT FLUX 1.103

PV 2.441

AOD 1.184
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FIGURES

Figure S1: Monthly time-series of surface ozone at different stations in Antarctica and
weighted mean of ozonesonde based ozone observations at 970 hPa.
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Figure S2: The SOM-based 3x3 clusters of Antarctic ozone profiles. The orange solid
lines depict  the mean profiles of the cluster, red dotted lines represent median ozone
profiles whereas 5th and 95th percentiles are shown in red dashed lines.
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Figure S3: The SOM-based 4x4 clusters of Antarctic ozone profiles. The orange solid
lines depict  the mean profiles of the cluster, red dotted lines represent median ozone
profiles whereas 5th and 95th percentiles are shown in red dashed lines.
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Fig. S2 displays the 3x3 SOM nodes of Antarctic ozone profiles. Here, 3 clusters have
less than 5 percent of the total  number of profiles, while 5 clusters have less than 10
percent  of  the  total  number  of  profiles.  Just  3  clusters  have  more  than  10% ozone
profiles.

Fig. S3 displays the 4x4 SOM nodes of Antarctic ozone profiles. Here, 8 clusters have
less than 5 percent of the total number of profiles, while 14 clusters have less than 10
percent  of  the  total  number  of  profiles.  Just  2  clusters  have  more  than  10% ozone
profiles.

Consequently, both Fig. S2 and Fig. S3 indicate that in most of their clusters, 3x3 and
4x4 SOM nodes comprise very few profiles and their geophysical interpretation is very
difficult.
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Figure S4: Concentrated weighted trajectory (CWT) for surface ozone based on 15 days
backward trajectories calculated using HYSPLIT at 500 meters above the ground level at
various Antarctic based stations.
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Figure S5: Seasonal  climatology  of  the contributions  of  various  continents  and Seas
around the Antarctica (including Antarctica) to air mass transport at various stations at
different altitudes above the ground level (agl).
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Figure S6: Cluster of 15 days backward trajectories at different stations generated using
HYSPLIT.
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Figure S7: Trends of annual ozone data estimated using SLR and MLR. (a–d) solid black
line  shows  the  mean  trend  and  gray  error-bars  show  95%  confidence  interval  of
estimated  trends at  different  pressure levels.  (e–f)  black  dots  show the  mean surface
ozone trend at various stations and gray error-bars show 95% confidence interval of
estimated trends.
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Figure S8: Trends of seasonal ozone data estimated using SLR and MLR. (a–d) colored
solid  markers  show the  mean trend and error-bars  show 95% confidence  interval  of
estimated trends at different pressure levels. (e–f) colored solid markers show the mean
trend and error-bars show 95% confidence interval of estimated trends.
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Figure  S9: Trends  of  monthly  ozone  data  estimated  using  DLM at  various  vertical
pressure levels. Here error-bars show 95% credible interval of estimated trends.

Fig. S9 depicts the DLM trends and their variability for tropospheric ozone from 950 hPa
till 100 hPa at 50 hPa intervals. Positive trend in lower troposphere is clear visible in the
figure (from 950 hPa till 600 hPa). However, the trends seem to have turned negative in
recent  years.  This  negative  turn  in  lower  tropospheric  trends  in  recent  years  is  not
discernible from MLR analysis.
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Figure  S10: Model  fit  (MLR  and  DLM)  of  surface  ozone  at  various  stations  in
Antarctica.
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Figure S11: (a–d) Bayesian dynamic linear model (DLM) trend of monthly mean surface
ozone along with 95% credible interval at different stations. (e) Time-series of monthly
mean tropospheric ozone column (TOC) with MLR fit and DLM background ozone (level)
along with 95% confidence interval. (f) DLM trend of monthly mean TOC along with
95% credible interval.

Fig. S11 depicts the DLM trends and their variability for surface ozone at various stations
(a-d) and total ozone column (f). Surface ozone trends are positive throughout the study
period for all stations except for Arrival Heights (after 2015) and Concordia. Similarly,
TOC trends are also positive over the span of the study.
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Figure S12: Contribution of various proxies to inter-annual ozone variability at different
vertical pressure levels.
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