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Supplementary Text S1 - Water mass ages  

Since we here use anthropogenic carbon estimates based on the TTD method we also 

present water mass ages based on CFC-12 (Figure S1). We are aware that CFC-12 

underestimates water mass age in the deepest and oldest water, but the spatial pattern is 

nevertheless robust.  For comparison, we also looked at the GLODAPv1 database [Key et 

al., 2004], which includes data of the water mass age based on radiocarbon (14C). The 

correlation identified between remineralized carbon and water mass age (section 3.1) is 

rather better when the conventional radiocarbon age is used. Below 500 m the correlation 

between radiocarbon age and remineralized carbon is 0.68 (n=11546) and below 1000 m 

it is 0.84 (n=8453) with a rate of increase of DIC of 0.10±0.1 µmol kg-1 yr-1.  

 
Figure S1. Vertical cross-sections, along the transects shown in Figure 1, showing the water mass age (year) 
derived from CFC-12 and the transit time distribution (TTD) method. The vertical axis shows depth (m) 
below sea level. 
 
Supplementary Text S2 - The impact of temperature on pHAn operational aspect related 

to temperature comes from the methodological practice of referencing and measuring pH 

at a constant temperature (usually 25 °C). The effect of referring the pH in the water 

column at 25 ºC instead of the in situ temperature is quantified as: 

 

∆𝑝𝐻் = 𝑝𝐻்ୀଶହ℃
௙(஽ூ஼,்஺)

−  𝑝𝐻௙(஽ூ஼,்஺)               Eqn. S1 

 

Warming decreases pH so normalizing pH to 25 °C, which is almost always warmer than 

the in situ temperature, acts to decrease pH (Figure S2). On the surface (Figure S2a) the 

spatial variability is large since the temperature gradients are large, and in the equatorial 

region and the subtropical gyres where surface temperatures can exceed 25 °C 

pH୘ୀଶହ℃
௙(ୈ୍େ,୘୅) is slightly higher than pH2002. Since interior ocean temperatures are relatively 

homogeneous (because most water mass formation happens at high latitudes), there is 
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almost no spatial variability in the impact of temperature in the interior ocean (Figure 

S2b). Along our section pHT is typically 0.32±0.05 below 1500 m.  

 

 
Figure S2. pHT (Eqn. S1) a) on the surface (20 m) and b) along the transect shown in Figure 1. The 
color scale is the same for both subplots and matches that in Figure 5. The vertical axis shows depth 
(m) below sea level. 
 

 
Figure S3. Uncertainties associated with pHT as shown in Figure S2. The vertical axis shows depth 
(m) below sea level. 
 

Supplementary Text S3 - Uncertainties 

Uncertainties in the estimated changes in DIC and TA due to organic matter 

remineralization are propagated using the standard uncertainties for input variables given 

in Table 1 and standard first-order Taylor series expansion (Eqns. S2-S3). For all other 

calculated variables the uncertainties are given as combined uncertainties summed in 
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quadrature (Eqns. S4-S15). All pH variables (pH… as indicated in Eqns. S11-S15) are 

calculated in CO2SYS for Matlab®, and the uncertainties are calculated using the 

associated errors.m routine [Orr et al., 2018]. The choice of constants is as described in 

section 2.3. 
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𝜎∆௣ு೅ = ට𝜎௣ுವ಺಴,೅ಲ

ଶ + 𝜎௣ு೅సమఱ°಴

ଶ                Eqn. S15 

 
 

For many parameters calculated in this study the uncertainty is dominated by the 

mapping error, which to a large degree depends on data density [see Lauvset et al., 2016 

for details], and is therefore largest in areas where we have little data (e.g., the Arctic 

Ocean).  
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Figure S4. Uncertainties associated with the crossections presented in Figure 2. Note that the three 
different panels have different color scales. The vertical axis shows depth (m) below sea level. 
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Figure S5. Uncertainties in the crossections presented in Figure 3. The vertical axis shows depth (m) 
below sea level. 
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Figure S6. Uncertainties associated with the results presented in Figure 4. 
 

 
Figure S7. Uncertainties associated with Figure 5. The vertical axis shows depth (m) below sea level. 
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Figure S8. Uncertainties associated with the results presented in Figure 6.  
 
 

We have in this work quantified the uncertainties in all our calculated values using a 

formal uncertainty propagation method. While this method is correct, and we have used 

appropriate estimates for the uncertainty in all input variables and parameters (Table 1), 

there are some caveats worth mentioning. One is the assumption of uncorrelated 

uncertainties in DIC and TA detailed in section 2.5. Another is that the results we present 

here (except those in Figures 2 and 5a) are all differences. As such, the systematic 

component of the uncertainties in variables and parameters used in calculating pH (and 

) should cancel. Thus, the slightly smaller (pK1) and (pK1) of 0.0055 and 0.01 

respectively should have been used rather than the values given in Table 1. In addition, 

Orr et al. [2018] argue that when considering the change from one time period to another 

all uncertainty in the thermodynamic constants can be assumed to cancel out as long as 

we assume no change in temperature or salinity. The same argument holds for our 

differences (Eqns. 2-4), thus we could have neglected to include uncertainties from the 

thermodynamic constants in our estimates. Since we have not the uncertainties we 

present here are overestimated. In the case of anthropogenic changes in surface ocean pH 

and  (as detailed in section 3.2) removing all uncertainty due to the constants reduce the 

global average uncertainty to ±0.05, ±0.55, and ±0.86 for pHanth, Ar
anth, and Ca

anth 

respectively.  We have made no attempt to separate the uncertainties in DIC and TA, or 

those from Eqns. S1-S10, into systematic and random components, and therefore 
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propagate these as random uncertainties. If there is a systematic component to the 

uncertainties in these then that will also cancel in the differences and further reduce the 

overall uncertainty estimates for Eqns. 2-6. 

The presented uncertainty for the globally averaged surface ocean anthropogenic change 

in pH and  (section 3.2) is very large. In addition to the overestimation due to including 

uncertainties from the constants a significant component of the overall uncertainty is due 

to the mapping error on the GLODAPv2 climatological fields we use in this study. If we 

average only over those cells where there are observations present the global average 

pHanth is -0.10±0.06. If we further cancel out all uncertainties in the constants the result 

is -0.10±0.03. Note that the mapping error used here is very large in locations where there 

are no data and that it increases with distance from the observations [Lauvset et al., 

2016]. For the surface estimates this greatly influence the overall uncertainty (due to low 

data density), but for the cross-sections presented in this study the impact of the mapping 

uncertainty is very small since the data density is high along these sections. Thus, 

uncertainties along the cross-sections will not reduce if the mapping error component is 

removed. The fact that the anthropogenic changes presented in this study have large 

uncertainties should not be interpreted as these changes being insignificant. We know 

from the carbonate chemistry that the increased CO2 concentration has resulted in 

increased surface ocean acidity. That it is proving difficult to quantify the magnitude of 

this change globally is a factor of the current inadequacies in our understanding of the 

thermodynamics of the carbonate chemistry, which leads to non-negligible uncertainties 

in the constants, as well as the very low data density in GLODAPv2.   

Supplementary Text S4 - DICorg and the rate of remineralization 

 
Figure S9. Vertical cross-sections, along the transects shown in Figure 1, showing DICorg (Eqn. 7, 

mol C kg-1). The contours indicate uncertainties. Regions where the mapping errors are 
unacceptable [Lauvset et al., 2016] are white. The vertical axis shows depth (m) below sea level. 
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The spatial distribution of DICorg (Figure S9) completely dominates the spatial pattern of 

pHorg (Figure 3b), as does its uncertainty (Figure S5b). The pHPI,0
P=0 calculated using 

AOU to determine remineralization effects has the expected uniform distribution of 

pHPI,0
P=0 in the ocean (Figure 3d). We also see that the interior ocean pHPI,0

P=0 (Figure 3d 

and 5a) is comparable to the 20 m pHPI,0
P=0 in known water mass formation areas (Figure 

4g). The estimation using AOU produces pHPI,0
P=0 values (8.20±0.13) very similar to 

those expected considering a pre-industrial molar fraction 280 ppm (8.18±0.01).  

To visualize the rate of remineralization we calculate an analogue to the oxygen 

utilization rate by dividing pHorg by water mass age (Figure S10-S11).  

 
Figure S10. Vertical cross-section (along transects shown in Figure 1) showing the rate of 

remineralization, defined as 
∆𝒑𝑯𝒐𝒓𝒈

𝚪
, where is the water mass age defined by the TTD (Section 2.3). 

The vertical axis shows depth (m) below sea level. 
 

 
Figure S11. Maps showing the rate of remineralization, defined as in Figure S10, at 20 m, 1000 m, 
and 3000 m. Note that in order to highlight features in the deep ocean the color scale is not the same 
as in Figure S10. 
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Supplementary Text S5 - Preformed properties 

 
Figure S12. Maps showing TA (GLODAPv2) minus TA0 (TMI) at surface, 1000m and 3000m. 

 
Figure S13. Crossections of TA (GLODAPv2) minus TA0 (TMI) along the transects shown in Figure 
1. The vertical axis shows depth (m) below sea level. 
 
 
As a control check for the validity of our decomposition we use the estimated TA0 (Eqn. 

1) and DICPI,0 (Eqn. 11) to calculate preformed pre-industrial partial pressure of CO2 

(pCO2
PI,0). We then compare this with the assumed atmospheric xCO2 of 280 atm in 

pre-industrial times (Figure S14a). It should be noted that given the calculation 

uncertainties (Figure S14b), which in this case represents an accumulation of all sources 

of error, our pCO2
PI,0 is nowhere significantly different from 280 atm. This lends 

confidence in our preformed properties, and thus in our decomposition. 

On the surface our estimated pCO2
PI,0 is on average 21±28 atm (where the uncertainty 

represents one standard deviation of the mean) lower than the pre-industrial atmosphere. 

Though note that this is the difference compared to pre-industrial atmospheric xCO2 and 
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the comparison to pCO2 would be smaller, particularly in warm surface water. In the 

interior ocean areas with high AOU – like the Atlantic Ocean from surface to 1200 meter, 

the Pacific Ocean north of 40ºS and the Indian Ocean north of 30ºS – have pCO2
PI,0 very 

close to the pre-industrial value. In other areas, particularly the polar regions, the 

differences are larger. In the very cold Arctic Ocean and Nordic Seas pCO2
PI,0 is 40 to 50 

atm lower than the pre-industrial value. This is due in part to the high disequilibrium 

caused by a combination of strong cooling and ice cover which prevent gas equilibration, 

and is consistent with Gruber et al. [1996] which show high values of Cdiseq (-35 to -55 

mol kg-1, corresponding to a pCO disequilibrium  of -55 to -85 atm) in the Greenland 

and Norwegian Seas. The well-mixed and well-ventilated waters – like the Southern 

Ocean south of 45ºS – also show a highly significant disequilibrium of about -25 to -50 

atm which again is consistent with Gruber et al. [1996] who found a pCO2 

disequilibrium of -40 to -60 atm at latitudes between 55ºS and 75ºS (their Figure 7). 

These results shown in Figure S14 are also compatible with the surface pCO2 

disequilibrium by Pardo et al. [2011]. They show Cdiseq of about -25 mol kg-1  in the 

Indian sector of the Southern Ocean and -30 to 40 mol kg-1 in the Pacific sector.  

 

 
Figure S14. a) Vertical crossection of pCO2

PI,0 (calculated from DICPI,0 and TA0) minus 280 atm. b) 
Uncertainty (2) estimate for pCO2

PI,0. The vertical axis shows depth (m) below sea level. 
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Supplementary Text S6 - Natural gradients and anthropogenic change of Ar and 
Ca 

We decomposed Ar and Ca using the same method as for pH (Eqns. 3-6). While the 

spatial impact of anthropogenic carbon accumulation is different on the surface (as 

discussed in section 4.1 in the manuscript), the effects of the natural processes are highly 

similar for pH (Figure 3), Ar (Figure S15), and Ca (Figure S16). While the magnitude 

of the different impacts vary between the variables, the relative contribution of each to 

the total difference between the 2002 values and the pre-industrial preformed values is 

the same for all variables. 

 
Figure S15. Same as Figure 3, but for Ar. The vertical axis shows depth (m) below sea level. 
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Figure S16. Same as Figure 3, but for Ca. The vertical axis shows depth (m) below sea level. 
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Figure S17. Visualization of the sensitivity of change in Ar for a given change in DIC (∂Ar/∂DIC) as 
a function of DIC and TA. ∂Ar/∂DIC is calculated from the GLODAPv2 data using the derivnum 
function. This function is part of the CO2SYS software. Note that the sensitivity has been calculated 
for surface pressure (0 dbar) and 25°C in order to visualize the effects of DIC and TA only. 
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