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ABSTRACT: Recent tropical cyclones (TCs) have highlighted the hazards that TC rainfall poses 
to human life and property. These hazards are not adequately conveyed by the commonly used 
Saffir–Simpson scale. Additionally, while recurrence intervals (or, their inverse, annual exceedance 
probabilities) are sometimes used in the popular media to convey the magnitude and likelihood 
of extreme rainfall and floods, these concepts are often misunderstood by the public and have 
important statistical limitations. We introduce an alternative metric—the extreme rain multiplier 
(ERM), which expresses TC rainfall as a multiple of the climatologically derived 2-yr rainfall value. 
ERM allows individuals to connect (“anchor,” in cognitive psychology terms) the magnitude of 
a TC rainfall event to the magnitude of rain events that are more typically experienced in their 
area. A retrospective analysis of ERM values for TCs from 1948 to 2017 demonstrates the utility 
of the metric as a hazard quantification and communication tool. Hurricane Harvey (2017) had 
the highest ERM value during this period, underlining the storm’s extreme nature. ERM correctly 
identifies damaging historical TC rainfall events that would have been classified as “weak” us-
ing wind-based metrics. The analysis also reveals that the distribution of ERM maxima is similar 
throughout the eastern and southern United States, allowing for both the accurate identification 
of locally extreme rainfall events and the development of regional-scale (rather than local-scale) 
recurrence interval estimates for extreme TC rainfall. Last, an analysis of precipitation forecast 
data for Hurricane Florence (2018) demonstrates ERM’s ability to characterize Florence’s extreme 
rainfall hazard in the days preceding landfall.
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I ntense rainfall associated with tropical cyclones (TC) is a significant hazard to human life 
and property. From 1963 to 2012, extreme rainfall was the most frequent cause of tropical 
cyclone–related fatalities in the United States (Rappaport 2014). Climate models have 

indicated, with high confidence, that TC rainfall rates in the North Atlantic will increase due 
the effects of global warming (Knutson et al. 2010; USGCRP 2017), with projected increases 
of 5%–20% (Walsh et al. 2016). Furthermore, the mean translational speed of North Atlantic 
TCs over land has decreased by 20% since the mid-twentieth century (Kossin 2018). These 
changes have important implications since more intense, slower-moving storms are more 
likely to linger for long durations and to generate extreme rainfall totals.

The widely used Saffir–Simpson scale assigns TCs a hazard category from 1 to 5 based 
on maximum sustained wind speed, with category 5 being the most catastrophic. However, 
maximum wind speed is a not a reliable indicator of overall hazard. Six of the 10 deadliest 
TCs in the United States in the 50 years from 1963 to 2012 were tropical storms or category 1 
hurricanes at landfall (Rappaport 2014), and the Saffir–Simpson scale does not provide an 
accurate estimate of potential damage for a TC post-landfall (Senkbeil and Sheridan 2006). 
While a TC’s wind speed over land is typically much weaker than over the ocean (Sparks 
2003), the rainfall threat may still be high post-landfall. Additionally, the area most impacted 
by extreme rainfall during a particular TC may be both spatially and temporally distinct from 
the region with the highest winds. These factors point to the need for an alternative means 
of characterizing and communicating TC rainfall threats.

Hurricane Harvey (2017) and Hurricane Florence (2018) highlighted the hazard posed by 
TC rainfall and the challenge of effectively communicating this information to the public. 
Hurricane Florence, for example, approached the East Coast of the United States as a category 
4 hurricane, before weakening and making landfall as a category 1 storm. The storm gener-
ated extreme rainfall and severe flooding throughout the Carolinas. Over 900 mm of rainfall 
was recorded in Elizabethtown, North Carolina, breaking the state’s record for TC rainfall. 
There is anecdotal evidence that the downgrade in Florence’s category as it approached the 
coast was perceived by members of the public as an indication of reduced hazard, resulting 
in some residents choosing not to evacuate (Achenbach and Wax-Thibodeaux 2018).

The previous year, in 2017, Hurricane Harvey stalled over southeastern Texas for several 
days, making landfall as a category 4 hurricane and weakening to a tropical storm shortly 
thereafter. Over 1,500 mm of rain fell in Nederland, Texas—the highest TC-related rainfall 
total ever recorded in the United States. Experts and the media attempted to use recurrence 
intervals to contextualize the associated rainfall and flooding, with some media outlets 
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reporting that Harvey was a “500-yr” or “1,000-yr” event (Ingraham 2017; Lind 2017; Same-
now 2017), while some outlets noted the shortcomings of these claims (Koerth-Baker 2017; 
D’Angelo 2017; Bledsoe 2017).

Recurrence interval (i.e., return period) estimates are critical to the fields of engineering 
design and probabilistic hazard and risk assessment. They are typically estimated by fitting 
a statistical distribution to a time series of observations (Coles 2001). A rainfall or flood event 
with a 500-yr recurrence interval has a 1 in 500 (0.2%) probability of being exceeded in any 
year (i.e., annual exceedance probability); such an event will occur, on average, once every 
500 years in a stationary (i.e., unchanging) climate. The usage of these statistical measures 
is complicated by the fact that storm duration is a critical component in determining the 
impacts of an extreme rainfall event. A 1-day, 500-yr rainfall event could generate localized 
flash flooding, for example, while a 3-day, 500-yr event could cause widespread flooding in 
large watersheds. Previous attempts to develop TC classification systems have highlighted 
how differences in storm duration result in different magnitudes of TC impacts (Senkbeil and 
Sheridan 2006).

Rainfall records are rarely longer than 75 years in the United States and are consider-
ably shorter in many other parts of the world. Thus, rainfall recurrence interval estimates 
tend to be subject to substantial sampling uncertainty because the period of record is often 
substantially shorter than the desired quantile. Rainfall distributions are typically derived 
from point-scale observations (such as rain gauges), describing the distribution of extreme 
rainfall at a specific location, but with a limited ability to describe distributions at larger 
spatial scales. Additionally, when new events occur that lie outside the range of previously 
observed rainfalls, recurrence interval estimates should, in principle, be updated to reflect 
these new records. These changes can be quite large, as seen in the revised Atlas 14 precipita-
tion frequency estimates from the National Oceanic and Atmospheric Administration (NOAA) 
for the state of Texas, released in September 2018. An earlier estimate of the 100-yr rainfall 
in Houston, based on rainfall records up to the 1960s, was approximately 330 mm (13 in.) in 
24 h (Hershfield 1961); this was updated to 457 mm (18 in.) in Atlas 14 using the most up-to-
date data for the region, including observations of rainfall from Harvey (Perica et al. 2018).

In addition to these statistical challenges, recurrence intervals can be confusing and 
misleading to the public (Keller et al. 2006). Probabilities and frequencies are abstract con-
cepts, creating room for misinterpretation (Schneider 2016). For example, there is a common 
misperception that multiple 100-yr events cannot occur within a short timeframe. Statistically, 
however, there is a 26.4% chance of two or more 100-year events of the same duration occur-
ring at a particular location within any century-long period; this issue is complicated even 
further when events of varying durations are considered. Additionally, the understanding of 
probabilistic metrics is highly individual—the same metric can have different meanings for 
different users based on their own perception of risk (Schneider 2016).

A growing number of studies highlight the importance of “experiential processing” 
in everyday decision-making—the idea that decisions are often made by relating current 
situations to events that individuals can recall from prior personal experience or recent 
media reports and images (Marx et al. 2007). Investigations into how individuals process 
information related to weather hazards have shown some shortcomings of current approaches, 
including recurrence intervals, and some have proposed alternatives that could convey this 
information more effectively (Schroeder et al. 2016; Lave and Lave 1991; Wachinger et al. 
2013). A survey of residents in a flood-prone community in Texas in the United States, for 
example, highlighted how residents were more concerned about a potential flooding hazard 
when concrete information about the nature of flooding was provided, as opposed to abstract 
probabilities (Bell and Tobin 2007). Preparedness ahead of high-impact floods in 2015 and 
2016 in the United Kingdom may have been reduced because residents had trouble adequately 
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conceptualizing the magnitude of the flooding, which exceeded any that had occurred in 
recent memory (Cologna et al. 2017).

The extreme rainfall multiplier
Given these documented shortcomings with existing methods, we propose four requirements 
that should be considered when developing an ideal “scale” to quantify and communicate 
TC rainfall hazard:

1) The scale must accurately characterize TC rainfall hazard.
2) The scale should identify “locally extreme” rainfall events, based on the recognition that 

local negative impacts increase in conjunction with increasing positive deviations from 
the local rainfall climatology.

3) The scale should succinctly describe TC rainfall hazards of various durations by identifying 
the threats posed by extreme rainfall at a range of time scales up to the lifetime of the 
storm system.

4) The scale should have an easy-to-understand meaning rooted in experiential processing 
to ensure efficacy in communicating the TC rainfall hazard to the public.

We use the extreme rainfall multiplier (ERM) as a metric for TC rainfall hazard that can 
satisfy these requirements. For storm s and location x, the rainfall depth over duration t can 
be written as Rs,x,t and

 .

The denominator  is the rainfall depth for the T-yr average recurrence interval for the 
same location and duration. To our knowledge, this concept was first applied to river flood 
peaks instead of rainfall extremes in Smith et al. (2018), using the name “upper-tail ratio,” 
though the practice of normalizing extreme rainfall and flood observations by a more 
frequent quantile has longstanding precedent in hydrologic practice, including so-called 
“index flood”–based estimation of rainfall and flood quantiles using regional observations 
(e.g., Stedinger et al. 1993). Other metrics, such as the “wet-millimeter day” (Shepherd 
et al. 2007), have attempted to quantify extreme TC rainfall via quantitative comparison 
to a reference value.

In this study, we use the 2-yr rainfall event as the denominator in the above equation, 
to represent a baseline “heavy” rainstorm that would occur relatively frequently. The 2-yr 
rainfall represents the median annual maximum rainfall—the median value in a time series 
of the largest rain events per year, based on recent climatology—and, statistically has a 50% 
chance of being exceeded in any given year. In hydrologic engineering, the 2-yr flood event 
is often considered a reasonable approximation of the threshold above which floodwaters 
overflow stream banks and negative impacts begin (Leopold 1968). This “rule of thumb” 
suggests that events below the 2-yr rainfall (e.g., ERM < 1.0) generally will not produce 
negative impacts, while those above the 2-yr rainfall (e.g., ERM > 1.0) may. The 2-yr rain-
fall has the added statistical advantage that, unlike more extreme quantiles, it is easier to 
estimate accurately and is less prone to fluctuate as additional extreme events are added to 
the observational record, making it a more “stable” normalization factor with less need for 
frequent updating. (The sidebar contains additional information about how the 2-yr rainfall 
is defined and calculated.)

An individual may struggle to understand the event magnitude associated with a rare event 
(such as a 500-yr rainfall), particularly if a such an event has not occurred recently in their 
location. However, it is likely that an individual has experienced a more typical rainstorm 
(similar to the 2-yr storm) in the relatively recent past. Intuitive understanding of one’s local 
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climatology can therefore serve as an 
“anchor,” which, in cognitive psychology 
research, is an initial piece of information 
upon which subsequent judgements are 
based (Tversky and Kahneman 1974). 
Expressing the magnitude of rare events 
as multiples of this anchor, which is de-
rived from local climatology rather than 
abstract probabilities, can help the public 
utilize their own experiences to concep-
tualize the magnitude of extreme events.

Analysis of historical tropical 
cyclone ERMs
A total of 385 North Atlantic TCs that made 
landfall or passed within 500 km of the 
eastern United States between 1948 and 
2017 were analyzed for this study. NOAA’s 
gridded, gauge-based CPC-Unified dataset 
(Xie et al. 2007, 2010; Chen et al. 2008) 
was the source of precipitation data for 
this analysis. The CPC-Unified dataset 
contains precipitation information for the 
continental United States (CONUS) at a 
spatial resolution of 0.25° × 0.25° (ap-
proximately 600 km2) and a temporal 
resolution of 1 day. The CONNECT algo-
rithm (Sellars et al. 2015; see appendix for 
details) was used to convert the gridded 
precipitation data into four-dimensional 
precipitation objects, identifying over 
12,000 unique rainfall events. To narrow 
this database, historical TC tracks from 
NOAA’s HURDAT-2 were used to identify 
the objects associated with North Atlantic 
TCs that made landfall (or passed near) the 
continental United States (see appendix 
for details).

CPC-Unified was also used to estimate the 2-yr rainfall for each grid cell. Using these values, 
daily and multiday rainfall totals, up to the lifetime of each storm, were converted into their 
corresponding ERM. The single grid cell from each cyclone with the highest ERM (regardless 
of duration) was selected for additional analysis (referred to hereafter as “single-cell storm 
maximum ERM”). Single-cell ERMs were used here for simplicity and because of their resem-
blance to how TCs are currently classified by maximum sustained wind speed (which usually 
exists over a relatively small region of a TC) using the Saffir–Simpson scale. Analysis of the 
area (or the number of grid cells) exceeding certain ERM thresholds could be another way 
of quantifying extreme TC rainfall events, which often produce spatially extensive rainfall 
(Stevenson and Schumacher 2014).

The overall distribution of single-cell storm maximum ERM is shown in Fig. 1, along with 
distributions of these values by the associated rainfall duration and TC strength based on the 

Defining a “typical” heavy rainfall event
The ERM metric is useful because it normalizes extreme rainfall 
events in the context of the rainfall climatology at particular 
locations. Compared to using event total rainfall, ERM allows 
for a more detailed comparison of the relative severity of rainfall 
events between locations, focusing not solely on the sheer 
magnitude of the event, but on how much it deviates from 
typical rainfall events. Compared to other metrics of precipitation 
climatology—such as daily precipitation records or monthly or 
seasonal climate normals—ERM is calculated independent of 
date of occurrence, allowing for events from different times of the 
year to be compared.

However, selecting the appropriate value for the normalizing 
factor (the denominator of the ERM equation) involves several 
important considerations, particularly in terms of the time 
period used to estimate the 2-yr rainfall. Statistically, it is 
generally desirable to use the longest data record possible 
when generating recurrence interval estimates; the uncertainty 
of recurrence interval estimates typically decreases as the 
period of record increases. However, this is not necessarily true 
when nonstationarity exists within the data. Based of CPC-
Unified rainfall data, there are statistically significant positive 
linear trends (p values much less than 0.05) for the mean 2-yr 
rainfall amount across much of the United States and within 
the geographic regions considered in this study, for all rainfall 
durations between 1 and 7 days. This implies that rainfall 
observations from earlier in the CPC-Unified record may be less 
representative of present-day “typical” heavy rainfall events.

To solve this issue, we propose that ERM be calculated similarly 
to the well-known concept of “climate normals,” as defined by 
the World Meteorological Organization (World Meteorological 
Organization 2017). Climate normals for ERM were calculated by 
determining the median (i.e., 2-yr) annual maximum rainfall for 
each grid cell for the 30-yr period from 1981 to 2010. This has 
the added advantage of making ERM similar to other climate 
normals the general public may already familiar with; for instance, 
current normal high and low temperatures are also based on the 
1981–2010 reference time period. Additionally, using of the median, 
rather than the mean, of annual maximum rainfall minimizes the 
impact of outlier events in determining the climate normals (e.g., 
Arguez and Vose 2011).
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Saffir–Simpson scale. While 
the mean single-cell storm 
maximum ERM is approxi-
mately 2.0, the distribution 
features multiple high-impact 
TC rainfall events. Nineteen 
TCs (4.8%) have ERM values 
greater than 4, including Hur-
ricane Harvey (2017), which 
has an ERM maxima of 6.4—the 
highest value found within the 
TC database. This indicates 
that the rainfall from Hurricane 
Harvey was more than 6 times 
greater than the typical heavy 
(2-yr) rainfall event at that loca-
tion (Fig. 2).

The large majority (74.0%) 
of single-cell storm maximum 
ERM values are associated with 
rainfall durations of 1 day, 
highlighting how TCs only oc-
casionally become long-lived 
rainfall events. The distribution 
of these ERM values by dura-
tion highlights that high ERM 
events occur at both daily and 
multiday time scales (Fig. 1b). 
There is a weak but statistically 
significant correlation between 
storm maximum ERM and event 
duration (Kendall’s tau rank cor-
relation of 0.125; p = 0.002). When classified by peak Saffir–Simpson category at (or near) initial 
U.S. landfall, there is a positive relationship between Saffir–Simpson wind speed categories 
and single-cell storm maximum ERM (Fig. 1c; Kendall’s tau rank correlation of 0.324; p < 10−1).

Deeper examination of three TCs with the highest ERM values in three regions of the United 
States highlights some of ERM’s properties. As mentioned previously, Hurricane Harvey 
produced the largest ERM (6.4) since 1948, near Giddings, Texas. This ERM was the result of 
565 mm of rainfall over a 3-day period, a value 6.4 times greater than the 3-day, 2-yr rainfall 
(88 mm) in that grid cell. Because CPC-Unified data represent a spatial average over a 0.25° 
grid cell and is interpolated from rain gauges, the rainfall total for this grid cell is lower than 
some individual gauge measurements from Hurricane Harvey. Additionally, this grid cell rep-
resents the location where Harvey’s rainfall deviated most from the local rainfall climatology, 
which is not necessarily collocated with the place of highest rainfall. (An ERM value above 
6.0 was also found near Houston, Texas, associated with CPC-Unified rainfall of 787 mm.)

Hurricane Georges made its final landfall near Biloxi, Mississippi, on 28 September 1998 
as a category 2 storm. Within 24 h, the system weakened to a tropical depression and became 
nearly stationary. Georges generated 561 mm of rain in 2 days near Andalusia, Alabama, 
resulting in a single-cell maximum ERM of 5.5. Hurricane Floyd first came ashore in North 
Carolina as a category 2 storm on 16 September 1999. A particularly large storm, Floyd left 415 

Fig. 1. (a) Overall distribution of single-cell maximum ERM, (b) distribution 
of ERM based on rainfall duration associated with ERM maxima, and (c) 
distribution of ERM based on peak TC strength (based on Saffir–Simpson 
scale) within 500 km of location of initial TC landfall in the CONUS. Blue 
lines indicate the mean for each distribution.
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mm of rainfall in 1 day near 
Bald Head Island, North Caro-
lina, producing a single-cell 
maximum ERM of 5.7. These 
results highlight that very high 
ERM values can occur at a 
range of rainfall durations and 
geographic locations.

We computed the ERMs for 
durations ranging from 1 to 3 
days to further demonstrate the 
relationship between ERM and 
rainfall duration. At the 1-day 
duration, the ERM for Hur-
ricane Harvey near Giddings, 
Texas is less than 4.0, climbing 
to over 5.0 at the 2-day duration 
before reaching its maximum of 
6.4 at 3 days (Fig. 3a). The ERM 
for Georges, in contrast, peaks 
at 2 days but remains above 
5.0 for the 3-day duration (Fig. 
3b). As a system that quickly moved up the East Coast of the United States, the ERM for Floyd 
peaks at 1-day duration and declines slightly at the 2-day duration (Fig. 3c).

These three storms generated significant impacts in the continental United States. Hurricane 
Harvey caused $125 billion in damages (second only to Hurricane Katrina) and 68 deaths in 
Texas; 65 of these deaths were attributed to freshwater flooding (Blake and Zelinsky 2018). 
Hurricane Georges was responsible for $3.8 billion in damages and one direct death in the 
United States, which was linked to freshwater flooding (Guiney 1999). Hurricane Floyd caused 
$9.6 billion in damages and 56 direct deaths in the United States, most of which were caused 
by freshwater flooding (Pasch et al. 1999). [All TC damage figures are inflation-adjusted to 

Fig. 2. (a) Storm total precipitation, based on CPC-Unified data and 
CONNECT precipitation objects, for Harvey (2017). (b) Maximum ERM 
values for locations with rainfall associated with Harvey (2017). Black lines 
show the HURDAT-2 storm track. Black circles highlight the 1200 UTC posi-
tion of Harvey. Characters inside black circles represent 1200 UTC intensity 
of Harvey (D: tropical depression; S: tropical storm; 1–5: hurricane, with 
Saffir–Simpson category).

Fig. 3. Comparison of location-specific ERM values (y axis), rainfall (gray isolines and gray markers), and 
associated single-cell TC ERM values (green diamonds; red diamonds show the ERM-maximizing duration) 
for varying durations for (left) Harvey (2017), (center) Georges (1998), and (right) Floyd (1999). Rainfall 
for Floyd did not last beyond 2 days at that location, and thus the 3-day ERM for that storm is omitted.
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2017 and are from the National Hurricane 
Center’s 2018 update of estimates from 
Blake et al. (2011).] The correspondence 
between high ERM and high storm impacts 
for these three TCs, despite their relatively 
low Saffir–Simpson categories at the time 
of rainfall impact, lends support to the 
suitability of ERM as a metric for character-
izing TC rainfall hazard.

Regional distribution of tropical 
cyclone upper-tail ratios
Figure 4 shows the single highest ERM 
for each 0.25° grid cell in the eastern and 
southern United States that has experi-
enced at least one TC rainfall event from 
1948 to 2017. While ERM values generally 
decrease with distance from the coast, 
there is a wide geographic distribution of 
high ERM values throughout the 
analyzed region.

Empirical probability density 
functions (Fig. 5a) and inverse 
cumulative distribution functions 
(Figs. 5b–d) of single-cell storm 
maximum ERM were constructed to 
compare the historical distributions 
of this metric in three regions of the 
United States subject to TC rainfall 
extremes: the Texas–Louisiana area 
of the Gulf Coast, the rest of the 
Gulf Coast and the inland southeast 
(including Florida and Georgia), 
and the remaining states along the 
Atlantic Coast. Due to topographic 
and climatic features, these three 
regions differ in terms of the types 
and paths of TCs that make land-
fall (Elsner et al. 2000; Matyas 
2013). Despite such differences, the 
distributions of single-cell storm 
maximum ERMs for the regions 
shown in Fig. 5 are remarkably 
similar. These results suggest that 
the distribution of ERM maxima is 
relatively invariant to geographic 
location. This property would allow 
for hazard communication to be 
placed within the context of the 
local rainfall hydroclimate, despite 

Fig. 4. Map of maximum ERM for grid cells in coastal regions of 
the United States experiencing rainfall from at least one North 
Atlantic TC. Locations of single-cell storm maximum ERM values 
are marked by black dots.

Fig. 5. (a) Empirical probability density functions of regional 
distributions of single-cell storm maximum ERM for North Atlantic TCs, 
based on Gaussian kernel density estimates. (b)–(d) Empirical inverse 
cumulative distribution functions of single-cell storm maximum ERM 
by region; some TCs produced maxima in multiple regions. Colored 
shading represents 95% confidence intervals derived via nonparametric 
bootstrapping. Regional means are also displayed as inset text; values 
in parentheses represent 95% confidence intervals of these means, also 
derived via nonparametric bootstrapping. Inset map in (a) identifies 
regions used for subsequent analysis.
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significant differences in the extreme rainfall 
hydroclimatology throughout the eastern 
United States. This property also facilitates 
estimation of ERM annual exceedance prob-
abilities, described in the next section.

Estimating the climatological frequency 
of high ERM events
As shown above, the distribution of single-
cell storm maximum ERM is practically 
invariant to geographic location (Figs. 4 and 
5) and only moderately sensitive to duration 
(Fig. 1b). These properties imply that a single 
statistical distribution can approximate ERM 
over the eastern and southern United States 
for all storm durations. Such a distribution 
could be useful to the hydrologic hazard and 
risk assessment communities since it could 
yield estimates of the recurrence intervals 
of past or future TC rainfall events. In addi-
tion, if recurrence intervals are to be used 
in public communication, estimates derived 
from this ERM distribution may prove more 
effective, as we argue below.

A peaks-over-threshold (POT) extreme value model was fitted using the 385 single-cell storm 
maximum ERM values in order to estimate the frequency of TC rainfall events that exceed 
a range of ERM values within the eastern and southern United States (Fig. 6; see appendix 
for details on extreme value modeling and Fig. 4 for the region of analysis). In developing 
this model, normalizing TC rainfall totals by the 2-yr rainfall is statistically beneficial since 
it reduces the variance and skewness of ERM relative to “raw” (i.e., non-normalized) rainfall 
values. For example, the coefficient of variation (skewness) reduces from 0.68 (1.50) for the 
rainfall time series to 0.58 (0.78) for the ERM time series (Fig. 7). (Coefficient of variation is 
the sample standard deviation divided by the sample mean). Lower values of these higher-
order statistical moments generally lead to more robust parameter estimates and inferences.

Based on this model, a TC rainfall event with an ERM of 4.0 or higher would be expected 
to occur approximately once every 3 years somewhere in the study region. Events with ERMs 
exceeding 5.0 and 6.0 have recurrence intervals of roughly 13 and 57 years, respectively. A TC 
with an ERM magnitude equal or greater to Hurricane Harvey (ERM ≥ 6.4) has an estimated 
recurrence interval of approximately 102 years.

It is important to note, however, that the model shown in Fig. 6 provides the recurrence intervals 
or annual exceedance probabilities of events occurring anywhere within the study region shown 
in Fig. 4. This is in contrast with the common usage of recurrence intervals to describe event 
likelihood at a specific location. While the likelihood of an extreme event like Hurricane Harvey 
occurring at any specific location—such as the Houston metropolitan area—is very low, the 
probability of an event of this magnitude occurring somewhere within the eastern United States 
may be considerably higher. This distinction is probably lost on many members of the public, 
which may contribute to further confusion when recurrence interval terminology is used in the 
popular media. If recurrence intervals are to be used to contextualize individual events (as they 
were in the popular media during and after Hurricane Harvey), it may be more appropriate to 
report them based on “regional recurrence” estimates like those presented in Fig. 6.

Fig. 6. Plot of recurrence intervals for the fitted POT extreme-
value model. The red diamond indicates the recurrence 
interval corresponding to the storm maximum ERM of 
6.4 from Hurricane Harvey. White diamonds indicate the 
recurrence interval of TC rainfall events with storm maximum 
ERMs greater than or equal to listed thresholds within the 
United States. Green lines indicate the 90% confidence 
interval of ERM as a function of recurrence interval.
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In contrast, it is not defensible to compute regional recurrence estimates based on rainfall 
observations themselves, since the rainfall distributions at individual locations in the study 
region—for instance, Texas and New Jersey—differ substantially. Meanwhile, the regional 
invariance of ERM demonstrated in the “Regional distribution of tropical cyclone upper-tail 
ratios” section means that it is defensible to consider all ERM events as belonging to a single 
population, thus increasing sample size and permitting robust regional recurrence estimation.

Using this property of regional invariance, it may also be possible to develop models to 
estimate the recurrence interval of high-ERM events with extensive geographic footprints; 
the large spatial extent of Hurricane Harvey’s extreme rainfall was major contributor to its 
catastrophic impacts. With this information, recurrence interval estimates of ERM extent could 
be derived, which may have utility in specific forecasting or risk assessment applications.

Using ERM to communicate a TC rainfall forecast
To demonstrate how ERM could be used in a forecast setting, ERM values for Hurricane 
Florence were calculated from 5-day quantitative precipitation forecasts (QPFs) issued by 
NOAA’s National Weather Service Weather Prediction Center (WPC) before the storm made 
landfall. More details on these forecasts and how ERM values were computed for them are 
found in the appendix. Forecasts issued by the National Hurricane Center called for Florence 
to approach the North Carolina coast as a major hurricane. However, Florence weakened 
more rapidly than expected, ultimately making landfall as a category 1 system. The resulting 
wind-related impacts, while severe, were less than originally anticipated.

In contrast to the wind hazard, forecast ERM for Hurricane Florence indicates that the ex-
pected rainfall hazard was very high, and increasing, as the storm neared the United States. 
Estimates of the peak, single-cell, 5-day ERM for Hurricane Florence increased from 4.2 on 
12 September (Fig. 8a) to 5.0 on 14 September (Fig. 8b). The estimated 3-day ERM on the day 

Fig. 7. Time series of (a) maximum single-cell ERM and (b) rainfall for all TCs, 1948–2017. Highest values 
per year indicated with colored markers. Colored lines represent linear regression fit for annual maxima 
time series. A Mann–Kendall test for monotonic trends in annual maxima values did not reveal significant 
changes over time for either ERM (z = 0.441, n = 70, p = 0.659) or rainfall (z = 0.203, n = 70, p = 0.839).
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of Florence’s landfall was even higher at 5.7 (not shown). Not only did these forecast ERM 
values remain elevated amid Florence’s weakening winds, the magnitude of these forecast 
ERM values is extremely high. A value of 5.7 would equal Hurricane Floyd (1999) as the high-
est ERM value ever seen on the Atlantic coast, and the second-highest ERM value anywhere 
since 1948 (after Hurricane Harvey). Additionally, while this study has focused primarily 
on the single-cell storm maximum ERM, the forecast maps (Figs. 8a,b) show how the spatial 
extent of rainfall hazard could be communicated to the public using ERM. Areas of 19,700 
and 33,700 km2 have forecast ERMs greater than 3.0 on 12 and 14 September, respectively.

These forecast ERM values were validated using poststorm CPC-Unified rainfall 
observations. The single-cell storm maximum ERM based on CPC-Unified was found near 
Lumberton, North Carolina, where a 2-day rainfall total of 472 mm generated an ERM value 
of 5.8. Throughout the Carolinas, a region of 36,900 km2 experienced an ERM above 3.0. 
Verification of the original rainfall forecast from the National Weather Service (and the ERM 
values derived from it) for the 3-day period after the landfall of Hurricane Florence can be 
seen in Fig. 9. It should be noted, however, that the utility of any ERM forecast in this context 
is dependent on the accuracy of the rainfall forecast used to generate ERM values.

When compared to current forecast products and to recurrence interval estimates, ERM 
forecast values can contextualize extreme QPF values and potentially provide a more tangible 
meaning to the public. Forecast ERM values can be compared to past rainfall events to find 
similarly extreme historical analogs; doing so might allow communicators to develop appro-
priate “indexical images”—real-world depictions of possible damages. This type of imagery 
has been shown to lead to higher risk perception (Rickard et al. 2017) and highlight another 
way ERM could be used to identify and communicate potential rainfall hazard in the days 
before TC landfall. At least one existing rainfall hazard product utilized during TC events—the 
Excessive Rainfall Outlook (ERO) issued by the WPC—focuses on the probability of rainfall 
exceeding flash flood thresholds, emphasizing the likelihood rather than the magnitude of 

Fig. 8. Five-day ERM forecasts based on QPF estimates issued at (a) 1200 UTC 12 Sep 2018 and (b) 1200 UTC 
14 Sep 2018. Peak forecast ERM values are 4.2 in (a) and 5.0 in (b). White circles indicate National Hurri-
cane Center (NHC) forecast TC track positions on date of rainfall forecast. Characters inside white circles 
represent NHC forecast intensity of Florence (D: tropical depression; S: tropical storm; 1–5: hurricane, with 
Saffir–Simpson category).
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the rainfall threat. ERM could be 
used as a complement or alter-
native to these outlooks.

Summary and conclusions
We have demonstrated that 
the extreme rainfall multiplier 
(ERM) framework to quantify 
TC rainfall offers several useful 
properties. When applied retro-
spectively, it produces values 
that correspond with observed 
TC rainfall impacts for several 
high-impact events, confirm-
ing that it can depict hazard. 
ERM values reflect geographic 
differences in the climatology 
of rainfall extremes and can 
succinctly describe TC rainfall 
hazard of varying durations us-
ing a single scale. Furthermore, 
an ERM value has an intuitive 
interpretation that leverages in-
dividuals’ conceptions and prior 
experiences of rainfall magni-
tudes, lending itself to commu-
nicating TC rainfall hazard and 
contextualizing recent and im-
minent TC rainfall extremes for 
the public. The ERM framework 
could be applied to rainfall extremes produced by TCs in other basins (particularly eastern 
Pacific TCs, which can cause high impacts from extreme rainfall in the southwestern United 
States), to other types of rainfall-producing storm systems, and, in principle, to other types 
of natural hazards.

Despite observational evidence for increasing TC intensity (Emanuel et al. 2006) and 
decreases in translational speed (Kossin 2018), relatively less work has been done to assess 
changes in TC rainfall hazards (Emanuel et al. 2006; Langousis and Veneziano 2009; 
Kunkel et al. 2010). Challenges facing TC rainfall trend studies are the limited observations 
available at any particular location as well as the influences of geographically varying rainfall 
hydroclimate and storm lifetime. The relative invariance of ERM to geographic location is a 
potentially useful property for investigation of TC rainfall nonstationarity, allowing for the 
construction of time series using all TCs within an entire region, rather than only those at 
particular locations. However, we found no evidence of nonstationarity in either ERM or the 
underlying rainfall totals used to compute it (Fig. 7); more work is needed.

A number of issues must be resolved before ERM could be suitable as an operational 
forecast communication product. These include the differences in the resolution and coverage 
of gridded rainfall products and precipitation forecasts, how and whether to communicate a 
range of forecast lead times or durations, and what graphical and verbal techniques should be 
used to communicate it most effectively. Nonetheless, our Hurricane Florence ERM “hindcast” 
demonstration showed that the method is able to accurately characterize the rainfall hazard 

Fig. 9. (a) Three-day forecast rainfall based on QPF estimates issued at 
1200 UTC 14 Sep 2018 and (c) actual rainfall based on CPC-Unified data. 
(b) ERM forecasts derived from QPF estimates and (d) ERM based on 
poststorm CPC-Unified data.
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of a significant TC event several days before the impacts were realized, in a way that could 
be readily communicated to, and interpreted by, the public.
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Appendix: Detailed methods
Converting gridded data into precipitation objects. The CONNECT algorithm was used to 
convert NOAA’s gridded, gauge-based CPC-Unified precipitation data into precipitation objects 
(Sellars et al. 2015). The algorithm connects the precipitation data based on the underlying 
relationships within individual data observations in four dimensions: latitude, longitude, time, 
and rainfall intensity. To minimize spurious connectivity from the object generation process, 
observations of rainfall intensity less than 10 mm day−1 are not included in the connectivity 
analysis. Observations that are connected in at least one dimension of the analysis (i.e., that 
are connected spatially and/or temporally) are joined together to create a precipitation object, 
which depicts the evolution of precipitation over space and time (Sellars et al. 2013). Applying 
this algorithm to the CPC-Unified dataset created over 12,000 unique precipitation objects 
for the period 1948–2017, each representing a historical rainfall event.

Pairing precipitation objects with historical TC tracks. The complete precipitation object data-
base generated from the CPC-CONNECT database contains historical rainfall events of multiple 
types, throughout each year. To narrow this database, historical TC tracks were used to identify 
the objects associated with North Atlantic TCs that made landfall (or passed near) the conti-
nental United States. Hurricane storm track data were obtained via NOAA’s HURDAT-2 Atlantic 
hurricane database, which reports the 6-h position (latitude and longitude) of North Atlantic 
TCs, as well as maximum wind speed and central barometric pressure (Landsea and Franklin 
2013). TC tracks that made landfall or passed within 500 km of the continental United States 
were used in subsequent analyses. [Distances of 500 km have been used in previous studies to 
identify rainfall and flooding associated with TCs  (Hart and Evans 2001; Lonfat et al. 2004; 
Zhou and Matyas 2017).] Precipitation objects that pass concurrently within 500 km of one of 
these storm tracks were identified. A total of 385 storm tracks that were associated with one (or 
more) rainfall precipitation object(s) in the eastern United States from 1948 to 2017.

Extreme value modeling. The peaks-over-threshold (POT) generalized Pareto (GP) distribution 
extreme-value model (Fig. 6) was fitted using maximum likelihood estimation via the fevd 
function from the “extRemes” R package (Gilleland and Katz 2016). This GP model was then 
used to estimate ERM recurrence intervals. A threshold level of ERM = 3.0 was used, based 
on visual assessment of diagnostic plots provided by the extRemes package.

Generating ERM forecasts for Hurricane Florence. QPF data were obtained as shapefiles 
from the data archive of the National Weather Service’s Storm Prediction Center (SPC). The 
forecasts used were issued at 1200 UTC 12 and 14 September 2018, and contained days 1–3 
(3-day), days 1–5 (5-day), and days 1–7 (7-day) QPFs for the United States. Each shapefile 
saved the forecast precipitation data as contours; we transformed these contours to match 
the 0.25° grid resolution of the CPC-Unified precipitation data. For this analysis, each 0.25° 
grid cell was assigned the rainfall forecast value equal to the highest contour that was found 
within (or surrounding) it. These QPFs were then converted into ERM forecasts by dividing 
by the 2-yr rainfall (based on CPC-Unified) for the appropriate duration.
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