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The use of ensembles for numerical weather prediction has be-

come common during the last decade. For global models, the 

generation of initial condition perturbations has a number of 

well-tested methodologies. In ensembles that predict convec-

tive storms explicitly (i.e., Δx < 4 km), the generation of physi-

cally realistic perturbations is less well posed. This study intro-

duces a technique to generate physically-coherent and spatially-

correlated (PCSC) initial condition perturbations that are cali-

brated to the environment. Ensembles of idealized CM1 simula-

tions initialized either with PCSC perturbations (EXP_PCSC), 

spatially coherent random perturbations (EXP_3KM), or Gaus-

sian white noise random perturbations (EXP_WHITE) are run 

both for a linear convective-line of storms and a single “supercell” 

storm to demonstrate the utility of this new perturbation tech-

nique in diverse environments. PCSC perturbations are extracted 

from high-resolution simulations of boundary layer turbulence 

and the random perturbations are calibrated to be the same in 

magnitude as PCSC perturbations. 

EXP_PCSC simulations spawn turbulence fastest in this 

study. The simulated turbulence is more robust than other experi-

ments more than one hour into the simulation because horizontal 

convective rolls enhance power in the largest scales. Random 

Abbreviations: IC, initial condition; PCSC, physically-coherent and spatially-correlated; QLCS, quasi-linear convective system; CAPE, con-
vective available potential energy; RMSI, root mean square innovation; AGL, above ground level. 
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perturbations are slow to generate turbulence; this problem is ex-

acerbated when the base model state fow is non-turbulent. Due to 

robust turbulence, EXP_PCSC ensemble spread increases fastest 

during the frst simulation hour and remains largest throughout 

the remainder of the simulations. Although EXP_PCSC spread 

is largest, the sensitivity of convection to the initial perturbations 

varies at different times in the storm lifecycle. Storms appear 

more sensitive to perturbations added near the time of convective 

initiation. 

K E Y W O R D S 

Initial condition perturbations, ensemble spread, storm-scale forecasts, 

idealized simulations, turbulence 

1 1 | INTRODUCTION 

A challenge when creating an ensemble of storm-scale forecasts is to ensure initial condition (IC) perturbations accurately 

portray environmental variability that is typically not captured by observations. Creating optimal IC perturbations is especially 

important since small-scale errors can rapidly grow in amplitude and scale and impact the evolution of weather systems (Lorenz, 

1969). Many idealized and real case studies demonstrate explicit forecasts of convection are sensitive to initial condition errors 

leading to changes in precipitation coverage, updraft area, and morphology (e.g., Zhang et al., 2006; Hohenegger and Schär, 

2007; Zhang et al., 2016; Johnson and Wang, 2016; Potvin et al., 2017). Further, these errors can grow in scale and impact 

mesoscale and synoptic scale environments (e.g. Zhang et al., 2007). Aside from degrading forecast skill, incorrect estimates 

of IC uncertainty can cause convection-allowing forecast ensembles to become underdispersive (e.g., Clark et al., 2009, 2010; 

Romine et al., 2013; Flora et al., 2018; Loken et al., 2019) so that an observed event routinely occurs outside of the forecast 

probability density function. Given the sensitivity of convective forecasts to IC perturbations, extra attention is required to ensure 

the perturbations are optimal. 

One of the most common techniques to generate an ensemble is to randomly perturb the forecast ICs (e.g., Snyder and 

Zhang, 2003; Zhang et al., 2004; Caya et al., 2005; Tong and Xue, 2005; Aksoy et al., 2009; Dowell et al., 2011; Sobash and 

Wicker, 2015). While easy to implement, there are many tunable parameters to consider when generating the perturbations such 

as amplitude and length scale. Experiments can also add IC perturbations to targeted regions of the experiment domain (e.g., 

near-storm regions) or certain model state variables to limit spurious convection (e.g., Snyder and Zhang, 2003) or spin-up of 

convection more quickly (e.g., Jung et al., 2012). Many studies select perturbations that enhance ensemble spread and limit 

spurious convection; however, they are typically unable to validate analysis uncertainity. Selecting more optimal IC perturbations 

remains elusive because extensive parameter tuning is required and their effectiveness is sensitive to the environment. To rely 

upon a less arbitrary selection process, novel strategies are being developed to calibrate IC perturbations. 

Ideally, these new methods should attempt to calibrate ensemble perturbations to refect sources of initial condition and 

forecast uncertainty. For example, Dawson et al. (2012) compared nearby velocity-azimuth display (VAD) observations within 

a low-level jet to understand local variations in wind speed and determine appropriate wind profle perturbations. While this 

method makes wind perturbations more representative of the observed environmental variability, the boundary layer is constantly 

evolving (e.g., Stull, 1988), which limits how appropriate these perturbations may be for other cases. Cintineo and Stensrud 
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27 (2013) used rapid update cycle (RUC) (Benjamin et al., 2004) forecast errors for multiple supercell cases to determine appropriate 

IC perturbations. Using forecast errors to constrain the perturbations provided important insights into the practical predictability 

of supercell thunderstorms at different forecast lead times. Both efforts to objectively calibrate IC perturbations are effective; 

however, their effectiveness remains dependent upon static parameters (e.g., amplitude, length scale, location) that are diffcult to 

quantify and case sensitive. 

Instead of defning optimal IC perturbations, Markowski (2020) simulates the upscale growth of modest potential temperature 

(θ) perturbations, which form different realizations of a steady-state boundary layer that serve as perturbed initial states. The 

turbulent eddies within the boundary layer are unique from typical random IC perturbations because they are physically coherent 

(i.e., all model state variables adjust to the impact of a perturbation) and spatially-correlated. Adding boundary layer turbulence 

to the initial conditions can impact fne-scale features such as near-surface vortices (Bryan et al., 2017; Markowski, 2020) and, to 

a lesser extent, the parent storm (Markowski, 2020). Although different realizations of a turbulent boundary layer have been 

used to evaluate the intrinsic predictability of severe weather events, no study has quantifed the impact of these IC perturbations 

on ensemble spread. Due to the novelty of this approach, the beneft of physically-coherent and spatially-correlated (PCSC) 

perturbations over traditional ensemble perturbation methods (i.e., well-calibrated random perturbations) is unknown. 

Most studies, especially idealized simulations initialized with horizontally homogeneous environments, continue to employ 

random perturbations to generate initial ensemble spread in part because few options are available. The goal of this study is 

to compare different IC perturbation techniques to determine which strategy increases ensemble spread most. Simulations 

initialized with PCSC perturbations and well-calibrated random perturbations are compared for a variety of cases. The results of 

this study provide an improved framework to initialize high-resolution simulations of convection. 

The remainder of this study is as follows. Section 2 provides a brief description of two case studies used to test PCSC 

perturbations as well as the model settings and forecast evaluation metrics. A detailed description of how the IC perturbations are 

generated is presented in section 3 followed by experiment results in sections 4 and 5. The results are further discussed in section 

6 along with concluding remarks and future research goals. 
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50 2 | EXPERIMENT DESCRIPTION 

2.1 | Case Setup 

Two idealized case studies are run to investigate how the IC perturbations impact high-resolution forecasts of convection. The 

same procedure is used to create the ensembles for each case study: 

• Step 1: Use a sounding to initialize a single parent simulation. 

• Step 2: Run the parent simulation at 1 km grid spacing for several hours. 

• Step 3: Downscale the parent simulation to a 250 – m horizontal grid to produce a base model state (Fig. 2). 

• Step 4: Add the IC perturbations to the base model state to create the high-resolution ensemble of simulations. 

• Step 5: Run the high-resolution ensemble and evaluate the results. 

The procedure used to create the high-resolution simulations resembles many previous studies. Forecasts of convection are 

commonly initialized with downscaled initial conditions (e.g., Johnson et al., 2015; Schwartz et al., 2015; Snook et al., 2016), 

and the effects of interpolation are minor because missing scales are recovered within the frst 10-20 minutes of model integration 

(Potvin et al., 2017). The ensembles that are created are referenced by how they are initialized, either with PCSC perturbations 

(EXP_PCSC) or random perturbations (EXP_3KM, EXP_WHITE). A description of how the IC perturbations are created is 

detailed in section 3. The remainder of this subsection discusses how the parent simulation for each case is initialized. 
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F I G U R E 1 Soundings used to initialize the (a) QLCS and (b) supercell cases. In each sounding the solid red, green, and 
black lines correspond with the air temperature, dewpoint temperature, and temperature of an ascending surface-based parcel, 
respectively. Hodographs of wind speed (knots) are plotted in each upper right-hand corner. The hodograph color is based upon 
height above ground level (AGL) : 0 – 1 km is red, 1 – 3 km is green, 3 – 5 km is blue, 5 – 10 km is yellow. 

65 The frst case simulates the initiation and maintenance of a quasi-linear convective system (QLCS) that occurs in a strongly 

sheared (0 - 6 km bulk shear = 86.46 kts) and modestly unstable [convective available potential energy (CAPE) = 733 J kg−1] 

environment. The Sherburn and Parker (2019) high-shear low-CAPE base-state sounding [Fig. 1a; generated via MetPy software 

(May et al., 2008)] initializes the horizontally homogeneous environment, though small modifcations are made to lowest 100 

mb of the sounding (e.g., increased near-surface lapse rate) to maintain boundary layer turbulence in the simulation. Following 

Sherburn and Parker (2019), a -10 K θ perturbation is inserted along the western edge of the domain to simulate a frontal 

boundary that provides the low-level forcing necessary to initiate convection. The perturbation decreases as a cosine function 

of the height above ground level (AGL) and distance from western boundary edge, and extends 260 km east of the domain 

boundary and 6 km above the surface. Modest (± 0.25 K) pseudorandom θ perturbations are also inserted in the environment, 

which results in a turbulent infow region that is necessary to develop three-dimensional convective structures within the QLCS. 

These perturbations are distinct from the random or PCSC perturbations that generate the ensemble ICs, they grow in scale and 

cause the base model state environment to have weak turbulent motions (Fig. 2c). Downscaling (Step 3) occurs for the QLCS 

case when convection begins to initiate along the frontal boundary (Fig. 2a) 

The second case is initialized with a highly unstable (CAPE > 4272 J kg−1.) and strongly sheared (0 - 6 km bulk shear = 

52.56 kts) environment that is supportive of supercell thunderstorms. The initial sounding (Fig. 1b) is extracted from a 24 May 

2011 RUC analysis sampled near the supercell thunderstorm that produced an EF-5 tornado near El Reno, Oklahoma (Potvin 

and Flora, 2015). A 5 K warm-bubble that is 10 km wide and 1.5 km tall is inserted near the surface to initiate convection 

and form the supercell found in the case’s base model state (Fig. 2b). Unlike the QLCS case, which requires small random θ 

perturbations inserted throughout the domain to generate three-dimensional structures, no initial random perturbations are added 

to the supercell case. Consequently, the infow environment for this case is laminar (Fig. 2d), which is common for idealized 

experiments since many simulations of convection are initialized with horizontally homogeneous environments (Weisman and 

Klemp, 1982, 1984; Wicker and Wilhelmson, 1995; Adlerman et al., 1999; McCaul and Weisman, 2001). While running the 
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F I G U R E 2 Base model state (a, b) refectivity (Z) and (c, d) wind speed at the lowest model level for the (a, c) QLCS and (b, 
d) supercell cases when the ensembles are created. Blue squares mark the warm sector where one- and two-dimensional spectral 
densities are calculated (Fig. 4, 10) and black dashed lines mark where vertical cross-sections are sampled (Fig. 7, 13). 

87 coarse parent simulation (Step 2), a supercell thunderstorm initiates and matures. Downscaling (Step 3) occurs when the supercell 

88 is robust (Fig. 2 b, d) and about to grow into a bowing line of storms. 

89 2.2 | Prediction model settings 

90 A brief summary of the prediction model settings is provided in Table 1. For each case, an ensemble of 36 simulations is run 

91 using a recent release (20) of the Cloud Model Version 1 (Bryan and Fritsch, 2002). The experiment confguration for both 

92 cases largely follows that of Sherburn and Parker (2019). Simulations are run at 250-m horizontal grid spacing and can resolve 

93 large-scale turbulent motions (Bryan et al., 2003). Coordinates are stretched in the vertical dimension with the fnest vertical grid 

94 spacings located near the surface (Table 1). Both the vertical dimensions of the grid and the height at which Rayleigh damping is 

95 applied varies between cases to ensure the predicted convection remains within the domain. The supercell case assumes periodic 

96 lateral boundary conditions in all directions so that turbulent structures are maintained when crossing domain boundaries. The 

97 QLCS case assumes radiative east-west boundaries to maintain the cold temperature perturbation along the western boundary. 

98 Subgrid-scale turbulence is parameterized using a variant of the Deardorff (1980) turbulent kinetic energy scheme. Coriolis 

99 acceleration only acts on perturbation winds, which is equivalent to assuming the base state wind feld is in geostrophic balance 

100 (Roberts et al., 2016; Coffer et al., 2017; Sherburn and Parker, 2019). The National Severe Storms Laboratory (NSSL) double-

101 moment microphysics scheme (Mansell et al., 2010) parameterizes precipitation processes. The scheme predicts six different 

102 hydrometeor categories including rain, cloud ice, cloud water, snow, graupel, and hail; both rimed ice categories also include 
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TA B L E 1 Experiment settings for the evaluated case studies. 

Parameter QLCS Case Supercell Case 

Simulation duration 2 hours 2 hours 

Domain dimensions 200 km × 200 km × 15 km 250 km × 150 km × 20.16 km 

120 vertical levels 120 vertical levels 

Vertical grid spacing 10 m at heights below 250 m 15 m at heights below 30 m 

250 m at heights above 10 km 285 m at heights above 15.03 km 

Rayleigh damping Applied above 12 km Applied above 18 km 

Lateral boundary conditions 
East-West: Radiative 

North-South: Periodic 

East-West: Periodic 

North-South: Periodic 

Horizontal grid spacing 250 m 

Bottom boundary condition Free-Slip 

Microphysics NSSL 2-moment (Mansell et al., 2010) 

Pressure solver Klemp-Wilhelmson time-splitting, vertically implicit (Klemp and Wilhelmson, 1978) 

Subgrid turbulence Turbulent Kinetic Energy (Deardorff, 1980) 

103 prognostic equations to update hydrometeor density. 

Many of the modeling assumptions in this experiment are made for simplicity to focus on the impacts of the IC perturbations. 

Surface heat and moisture fuxes as well as radiative transfer are neglected, though it is noted that forecasts of convection are 

sensitive to radiative transfer (Markowski et al., 1998; Markowski and Harrington, 2005; Frame and Markowski, 2010, 2013; 

Nowotarski and Markowski, 2016). Like many previous idealized simulations of convective storms (e.g., Rotunno and Klemp, 

1985; Wicker and Wilhelmson, 1995; Adlerman et al., 1999; Dahl et al., 2014; Sherburn and Parker, 2019), these experiments 

assume the bottom boundary condition is free-slip. Although the near-surface environment is sensitive to friction (e.g. Schenkman 

et al., 2012, 2014; Markowski, 2016; Roberts et al., 2016), parameterizing the impacts of surface friction remains a substantial 

challenge and can degrade the simulated wind profles (Markowski and Bryan, 2016). 
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112 2.3 | Forecast evaluation 

The IC perturbations generated during this study alter the state of the lower troposphere and cause storms to evolve differently 

amongst ensemble members. To this end, the frst goal of this study is to identify how the simulated environment responds to IC 

perturbations. To isolate the perturbation impacts, the eastern portion of the experiment domain is evaluated (Fig. 2a - b). While 

this region of the domain is well ahead of the storm system at the time of analysis, it is representative of the larger environment 

that interacts with the storm system. This subdomain, which is referred to as the warm sector, was selected because it remains 

unaffected by convection until late in the simulation period. 

Energy spectral distributions are often used to evaluate high-resolution simulations and understand how power is distributed 

across scales (e.g., Bryan et al., 2003; Skamarock, 2004; Gibbs and Fedorovich, 2014). One- and two-dimensional spectral density 

functions (spectra) evaluate the scale structure of the velocity feld in the boundary layer (base model state + perturbations), which 

includes atmospheric structures both in the base model state feld and the initial condition perturbations. For the v-component of 

velocity, which is evaluated during this study, x is defned as the transverse direction with a corresponding wavenumber (k1) of 

2π/ λx and y is defned as the longitudinal direction with a corresponding wavenumber (k2) of 2π/λy . λx and λy are wavelengths 

in the respective x and y directions. One-dimensional spectra are calculated along each row of the warm sector region in the 

y-direction and averaged in the x-direction (Kaiser and Fedorovich, 1998). Two-dimensional spectral density plots are calculated 
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127 via a planar Fourier transform (Kelly and Wyngaard, 2006). 

Observation-space diagnostic statistics including the root-mean square innovation (RMSI) and ensemble spread evaluate 

how the IC perturbations impact convection. Given that these experiments are idealized, there are no real-case observations 

available. Instead, simulated observations for each case study are extracted from a simulation initialized from the unperturbed 

base model state. The simulation initialized from the unperturbed base model state is not the same as the ensemble mean because 

convection responds non-linearly to the turbulence. Thus, the mean of simulations diverges from the observations during the 

simulation. The RMSI is defned as q 
RMSI = hd 2 i, (1) 

where d (the innovation) is the difference between an observation (y 0) and the model state mapped to observational space via a 

forward operator [H( f x )]: 

d = y 0 − H (xf ), (2) 

hd i is the innovation averaged over all observations, and H (xf ) is the ensemble mean of the model state mapped to observation 

space. The ensemble spread (Dowell and Wicker, 2009) is defned as: vut ÕN 
1 

spr e  h [H (xf ad =    ) −
N − n  H (xf ) ]2 i, (3)

1 
n=1 

where N is the ensemble size. Given the idealized nature of this study the observation error variance is ignored. Statistics are only 

considered where the observed or the ensemble mean refectivity (Z) exceeds 15 dBZ. Radar refectivity is diagnosed from model 

output using the NSSL microphysical parameterization radar forward operator. This operator employs the Rayleigh scattering 

approximation to calculate the scattering amplitudes for precipitating hydrometeor types (rain, snow, graupel, hail, cloud ice). 

Another useful observation-space statistic evaluated during this study is the consistency ratio (Dowell et al., 2004; Dowell 

and Wicker, 2009; Aksoy et al., 2009; Yussouf et al., 2013; Potvin et al., 2013). This ratio is defned as: 

N 
1 Í f  2 h [H (x ) − H (xf ) ] iN −1 n 

n=1 
consi st ency r at i o = . (4)

hd 2 i 

Ensemble variance is considered to be a good approximation of the forecast error variance when the consistency ratio is 

approximately one, but the ensemble becomes overdispersive (underdispersive) when the ratio substantially increases (decreases) 

from one. 
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147 3 | DESCRIPTION OF PERTURBATION METHODOLOGY 

A fowchart (Fig. 3) is provided to detail how to the IC perturbations are created and initialize ensembles of high-resolution 

simulations. Following a similar methodology to Markowski (2020), 36 simulations of boundary layer turbulence are run for 

each case to generate the IC perturbations. Simulations of boundary layer turbulence are run with the same prediction model 

settings as the simulations they perturb (Table 1), except that all boundary layer turbulence simulations are run with doubly 

periodic lateral boundary conditions. Case soundings initialize the environment. For each ensemble member, a different set of 

pseudorandom θ perturbations (± 0.25 K) are inserted throughout the domain. These perturbations are uncorrelated between 
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Extract perts from mean profileCreate  boundary layer turbulence

Random Perts

Randomly select perts from distribution

PCSC Perts

Superimpose Perts onto Base Model State

Calibrate 2D perts to match distribution

Fit distribution to perts for each 
model variable and level

EXP_WHITE EXP_3KM EXP_PCSC

F I G U R E 3 A fowchart diagraming how white noise (left-most column), 3 km (center column), and PCSC (right-most 
column) perturbations are generated and initialize ensembles of high-resolution simulations. Vertical cross-sections are taken 
from within the warm sector of the QLCS case (Fig. 1a). 

154 adjoining grid points and are akin to white noise. The simulations are run for 12 hours, during which the initial perturbations 

grow in scale to form different realizations of a turbulent boundary layer. Although the simulated turbulence evolves differently 

with time, the domain average profle is identical between simulations for each case. 

155 

156 

157 The difference between model state variables and the domain average profle is calculated at each grid point to extract 

perturbations for dynamic state variables (i.e., u, v, w), water vapor mixing ratio (qv ), and θ. Hydrometeor felds are not perturbed 

during this study, thermodynamic and moisture perturbations cause precipitation felds to evolve differently as the simulations 

are integrated forward in time. The extracted perturbations average to 0 across the domain. Mean absolute perturbations are 

largest where boundary layer turbulence is prevalent (approximately 0 - 3 km AGL) and decrease further aloft. The complex 

nature of these extracted perturbations highlights the challenge of creating IC perturbations that match environmental variability. 

The remainder of this section describes how PCSC and random perturbations are created. 
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164 3.1 | PCSC perturbations 

To initialize an EXP_PCSC ensemble member, perturbations extracted from each boundary layer turbulence simulation is 

superimposed either onto the supercell or QLCS base model state. This process is repeated 36 times, creating the initial ensemble 

for either case. Since turbulence simulations are run for both the QLCS and supercell cases, the PCSC perturbations are tailored 

to the environment of each case. 

Vertical cross-sections taken within the QLCS warm sector demonstrate how PCSC perturbations impact the environment. 

The downscaled base model state (Fig. 3) contains relatively weak and smoothed vertical motions. Since boundary layer 

turbulence simulations are run for 12 hours at fner grid spacings, the PCSC v perturbations resolve smaller features and are often 

more intense than the base model state (Fig. 3 upper-right). Superimposing PCSC perturbations onto the base model state (Fig. 3 

bottom-right) causes new atmospheric structures to develop and increases ensemble diversity. 
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174 3.2 | Random perturbations 

Two types of random perturbations (EXP_3KM, EXP_WHITE) are generated during this study, both represent different types 

of perturbations employed by recent studies. Many data assimilation experiments apply smoothed random perturbations (e.g., 

Caya et al., 2005; Dowell and Wicker, 2009; Jung et al., 2012; Sobash and Stensrud, 2013) to the initial model feld to generate 

ensemble spread. To replicate these perturbations, this study creates random two-dimensional perturbations that are 3 km in scale 

using an analytical approach introduced in Bryan et al. (2007). To add vertical depth, the perturbations are repeated over each 

model level. The 3 km perturbations are tuned so that standard deviation of the 3 km perturbations matches that of the PCSC 

perturbations for each model level and model state variable (i.e., u, v, w, qv , θ). Similar strategies are employed in previous 

studies, which apply a Gaussian flter to two-dimensional perturbations to add vertical depth (e.g., Jung et al., 2012). Finally, the 

3 km perturbations are superimposed onto the base model state for each respective case to create EXP_3KM ensemble members. 

Modeling studies often insert random perturbations that are spatially small in either the horizontal or vertical direction (e.g. 

Dawson et al., 2012; Coffer and Parker, 2017; Sherburn and Parker, 2019; Flournoy et al., 2020) to account for observational error 

and sampling inconsistencies. This technique is performed under the assumption that small-scale errors grow rapidly in scale and 

impact the broad environment and storm evolution (e.g., Lorenz, 1969). To replicate these perturbations, this study randomly 

draws perturbations for each model state variable at each model level from the corresponding distribution of PCSC perturbations. 

Doing so causes the distribution of PCSC and white noise perturbations to become nearly identical. The perturbations, which 

initialized EXP_WHITE ensemble members, are Gaussian white noise and thus change substantially between adjacent grid 

points. Unlike PCSC perturbations which change the structure of the environment when superimposed onto the base model state, 

the EXP_WHITE perturbations increase initial condition variance at small scales (Fig. 3 bottom-left). 
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193 4 | QLCS RESULTS 

4.1 | Simulated Turbulence 

One-dimensional spectral density functions (1D Spectra) of the v-component of velocity (Pv ) are sampled at 0.5 km AGL in the 

warm sector (Fig. 4a) to assess how IC perturbations impact the scale-dependent properties of the environment. The EXP_PCSC 

spectrum at initialization (Fig. 4a) follows the -5/3 power law (Kolmogorov, 1941) at scales larger than the approximate effective 

resolution (approximately 6Δx or 1.5 km), which suggests the simulations resolve the cascade of energy from large to small 

turbulent eddies in the inertial subrange. This is consistent with Bryan et al. (2003), which showed simulations must be run at 

horizontal grid spacings of 250 m or less to resolve the inertial subrange. The corresponding EXP_3KM and EXP_WHITE 
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F I G U R E 4 (a) A one-dimensional spectral density plot of the v-component of velocity (base model state + perturbations) 
sampled 0.5 km AGL in the QLCS warm sector at initialization. Plotted spectra are averaged across ensemble members for 
EXP_PCSC (red), EXP_3KM (grey), and EXP_WHITE (blue). The dashed black line is the -5/3 power law, the vertical dashed 
purple line marks the approximate effective resolution, and the vertical dashed green lines are the wavelengths over which 
spectral density time series are evaluated (Fig. 6). (b - d) Two-dimensional spectral density plots averaged across ensemble 
members at initialization. Contours represent spectral density in powers of 10. 

201 spectra (Fig. 4a) are unable to replicate the energy cascade. This is because the analytic function used to create the 3 km 

perturbations acts as a low pass flter to remove small scale features and the white noise perturbations add equal power to 

all scales. Although random perturbation spectra slowly evolve to become more realistic with time, the initial model state is 

inconsistent with turbulence theory. 

PCSC perturbations represent coherent atmospheric structures that cause robust turbulence to quickly form in simulations. 

The EXP_PCSC 1D spectrum consequently has more power than EXP_WHITE at scales larger than the effective resolution 

(Fig. 4a) at initialization. In comparison, the EXP_3KM spectrum has enhanced power at 3 km, the initial horizontal scale of 

the random perturbations, but has limited power at all smaller scales. Spectra from all three experiments have increased power 

at larger scales (k1 < 100 km−1) because perturbations are superimposed on the QLCS base model state, which contains weak 

turbulent structures in the warm sector (Fig. 5). While the spectra appear similar at these scales because spectral density is 

plotted on a logarithmic scale, EXP_PCSC has considerably more power at scales exceeding 10 km in length because the PCSC 

perturbations contain horizontal convective rolls that span many kilometers (Fig. 5a). 

Two-dimensional spectral density functions (2D Spectra; Fig. 4b-d) also evaluate differences in scale dependencies between 

ensembles at initialization. The 2D spectra are plotted as a function of wavenumber both in the transverse (k1) and longitudinal 

directions (k2); large scales are plotted in the center and small scales are plotted on the outer periphery. The stark contrast 

between EXP_PCSC 2D spectrum (Fig. 4b) and the other ensembles (Fig. 4c-d) highlights the challenge of generating IC 

perturbations that are representative of atmospheric phenomena. The EXP_PCSC 2D spectral density contours (Fig. 4b) are 

compressed towards large scales and elongated in the transverse direction. This is consistent with turbulence theory because 

the ratio of transverse to longitudinal spectra in the inertial subrange should exceed one (Tennekes and Lumley, 1972). While 

the EXP_PCSC spectrum (Fig. 4b) is representative of boundary layer turbulence, the EXP_WHITE 2D spectrum (Fig. 4d) 
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F I G U R E 5 The deviation of v-component of velocity (base model state + perturbations) from the mean environment at 0.5 
km AGL in the QLCS warm sector (Fig. 2a). Plots highlight the weak turbulent eddies in the base model state and the 
superimposed initial condition perturbations. The frst ensemble member of (a) EXP_PCSC, (b) EXP_3KM, and (c) 
EXP_WHITE at initialization is plotted. 

221 is not. This is because the random perturbations add constant power in all directions and cause the spectral density to remain 

constant at most scales. The EXP_3KM spectrum (Fig. 4c) is also inconsistent because the spectral density is compressed in a 

narrow band approximately 3 km in wavelength and equally distributed in the longitudinal and transverse directions. Although 

EXP_WHITE and EXP_3KM spectral densities are initially different in structure, they slowly evolve to resemble EXP_PCSC 

because boundary layer turbulence builds in the simulations. 

Although each experiment is different at forecast initialization, the power spectra evolve to become more similar with time. 

To determine how long ensemble differences remain, a time series of 1D spectra sampled at wavelengths of 3 km, 9 km, and 18 

km (Fig. 6) tracks the evolution of the environment. The time series (Fig. 6) demonstrate that experiment differences are largest 

during the frst 10 – 20 minutes of the QLCS simulation period. During this time the EXP_PSCSC spectrum has enhanced power 

scales between 9 and 18 km (Fig. 6b, c). The EXP_3KM 1D spectrum initially has enhanced power at 3 km in scale (Fig. 6a), 

though this is short lived because the IC perturbations change in scale and structure. After a brief spin-up period, the spectra for 

all three experiments become relatively similar at scales between 3 and 9 km (Fig. 6a, b), though the EXP_PCSC 1D spectrum 

has more power at larger scales (Fig. 6c). These differences have the potential to impact evolution of the QLCS. 

Vertical cross-sections taken through the warm sector (Fig. 7) show the variance of v is confned to the boundary layer and 

rapidly decreases further aloft. The atmosphere above the boundary layer is typically more stable (Stull, 1988), which limits the 

vertical extent of turbulence and suppresses ensemble variance. EXP_3KM and EXP_WHITE capture this variance gradient 

(Fig. 7b, c) because the perturbations are calibrated using simulations of boundary layer turbulence; however, tuning random 

perturbations with no reference solution would pose a challenge. Ensemble variance is largest during the frst 30 minutes (Fig. 7a 

- c) when turbulence is strong because the simulations adjust to the new IC perturbations. As the simulated environment becomes 

more balanced and turbulence moderates, variance slowly decreases with time (Fig. 7d-f) 

PCSC perturbations cause simulations to develop robust turbulence fast, which enhances the variance of v in the boundary 

layer. Consequently, the variance of EXP_PCSC predicted v at 30 minutes (Fig. 7a) is considerably larger than EXP_WHITE 

(Fig. 7c) and, to a lesser extent, EXP_3KM (Fig. 7b). At this time the EXP_PCSC turbulence is more intense, which not only 

enhances velocity variance, but also increases spectral density at large scales (Fig. 6c). Ensemble differences diminish with time 

as the simulations adjust to the IC perturbations; however, the effects of the initial perturbations are long lasting and EXP_PCSC 

variance consistently remains the largest. 
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F I G U R E 6 A time series of the 1D ensemble average spectra sampled at horizontal scales of (a) 3 km, (b) 9 km, and (c) 18 
km during the frst 90-minutes of the QLCS simulation. Spectra are of the v-component of wind sampled at 0.5 km AGL. Red, 
grey, and blue lines correspond with EXP_PCSC, EXP_3KM, and EXP_WHITE, respectively. 

247 4.2 | Storm Spread 

The ensemble spread and RMSI of in-storm felds analyzes (Fig. 8) how IC perturbations impact the evolution of the QLCS. 

Ensemble spread and RMSI increase fastest during the frst hour of the simulation, when the variance of v is largest due to the 

presence of robust turbulence (Fig. 7a-c). Enhanced turbulence alters low-level moisture, temperature, and wind perturbations 

that impact convective evolution (e.g., Crook, 1996), and consequently accelerates growth of ensemble spread. Error growth 

slows after the frst hour (Fig. 8), coinciding with when the initial turbulence moderates and causes velocity variance to decrease. 

Although all ensembles exhibit similar trends in error growth, forecast RMSI and spread is typically largest for the 

EXP_PCSC simulations (Fig. 8). EXP_PCSC forecast error is enhanced because the IC perturbations quickly spawn robust 

turbulence that has enhanced power at larger scales (Fig. 6c). The turbulent eddies cause the QLCS to evolve differently amongst 

ensemble members because forecasts of convection are sensitive to modest changes in the environment (e.g., Zhang et al., 2006; 

Hohenegger and Schär, 2007; Potvin et al., 2017). EXP_3KM IC perturbations also increase the variance of v (Fig. 7b, e) 

and cause RMSI values to become nearly as large. EXP_WHITE velocity variance is weakest and consequently the ensemble 

innovations and spread are smallest. Despite RMSI differences, consistency ratios for all three ensembles are comparable in part 

because ensemble spread remains a good approximation of the forecast error variance (e.g., Dowell and Wicker, 2009). 

Supporting the results of domain average statistics (e.g., ensemble spread), the variance of EXP_PCSC predicted rainwater 

mixing ratio (qr ) at the lowest model level remains largest throughout the simulation (Fig. 9). The variance of EXP_PCSC qr 
is largest in magnitude early in the simulation (Fig. 9a) because the predicted convection interacts with robust turbulence that 

alters predicted rainfall intensity and location. Although the experiments appear more similar at later times (Fig. 9d-f), the areal 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 



13 LABRIOLA ET AL. 

0

1

2

3

4

5

30
 M

in
ut

es
He

ig
ht

 (k
m

)

var(v) = 1.49 m2 s 2(a)
EXP_PCSC

var(v) = 1.28 m2 s 2(b)
EXP_3KM

var(v) = 0.85 m2 s 2(c)
EXP_WHITE

150 160 170 180 190 200
Distance (km)

0

1

2

3

4

5

90
 M

in
ut

es
He

ig
ht

 (k
m

)

var(v) = 0.52 m2 s 2(d)

150 160 170 180 190 200
Distance (km)

var(v) = 0.44 m2 s 2(e)

150 160 170 180 190 200
Distance (km)

var(v) = 0.40 m2 s 2(f)

0.10

0.25

0.50

0.75
1.00

2.50

5.00

7.50
10.00

Va
ria

nc
e 

of
 v

 (m
2  s

2 )

F I G U R E 7 Vertical cross-sections showing the ensemble variance of the v-component of velocity in the QLCS warm sector 
(Fig. 2a) for (a, d) EXP_PCSC, (b, e) EXP_3KM, and (c, f) EXP_WHITE. The average variance of v sampled at 0.5 km AGL in 
the warm sector is listed in the upper right-hand corner of each plot. 

265 coverage of grid points exceeding a high variance threshold (var(qr ) > 1.00 g 2 kg−2) remains considerably larger for EXP_PCSC 

than EXP_WHITE. The areal coverage of enhanced rainfall variance increases in EXP_3KM (Fig. 9e) simulations but remains 

smaller than EXP_PCSC (Fig. 9d). PCSC perturbations enhance wind variance in the warm sector throughout the simulation 

(Fig. 7a, d), which given the sensitivity of convection to modest uncertainties (e.g., Zhang et al., 2015), increases precipitation 

variance (Fig. 9a, d). The rapid spin-up and maintenance of EXP_PCSC ensemble spread is attributed to the physically coherent 

IC perturbations. 
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271 5 | SUPERCELL RESULTS 

5.1 | Simulated Turbulence 

Turbulence differences between experiments are more prominent for the supercell case because, unlike the prior case, the base 

model state fow is laminar in regions unimpacted by convection (Fig. 2d). The EXP_WHITE 1D (Fig. 10a) and 2D (Fig. 10d) 

spectra at initialization are constant in power at all scales because the random perturbations act similar to white noise. Unlike the 

prior case, EXP_WHITE spectral density does not increase at larger scales because the base model state contains no turbulence 

and the perturbations are small in scale (Fig. 11c). Given the uniform size of 3 km perturbations (Fig. 11b), EXP_3KM 1D 

(Fig. 10a) and 2D (Fig. 10c) spectral densities are compressed at 3 km in scale and decrease with any change in scale. The 

EXP_PCSC 1D spectrum (Fig. 10a) has enhanced power at all scales exceeding the approximate effective resolution (i.e., 1.5 

km) because the PCSC perturbations contain horizontal convective rolls (Fig. 11a) that develop in strongly sheared and unstable 

environments (e.g., Brown, 1970). The spectrum also follows the -5/3 power law (Kolmogorov, 1941) at scales larger than the 

effective resolution (Fig. 10a), which suggests the simulations resolve the inertial subrange. Consistent with the QLCS case and 

turbulence theory (Tennekes and Lumley, 1972), EXP_PCSC 2D spectral densities (Fig. 10b) are compressed towards larger 

scales and elongated in the transverse direction. 

Time series of the spectral density functions sampled at various scales demonstrate that the EXP_PCSC 1D spectrum has 

increased power at large scales (e.g., 18 km) during most the simulation (Fig. 12c). This is because the IC perturbations spawn 
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F I G U R E 8 The RMSI (solid line) and ensemble spread (dashed lined) of (a) Z and (b) wind speed sampled at 0.5 km AGL 
for the QLCS case. Statistics are considered where observations or ensemble mean Z exceed 15 dBZ. Consistency ratios (dotted 
line) are plotted on the secondary (right-hand) axis. Red, grey, and blue lines correspond with EXP_PCSC, EXP_3KM, and 
EXP_WHITE, respectively. 

287 horizontal convective rolls (Fig. 11a) that span many kilometers and increase spectral density in the mesoscale. EXP_WHITE 

turbulence remains weak at the beginning of the simulation and consequently the corresponding 1D spectrum has less power than 

EXP_PCSC at all evaluated scales 30 minutes into the simulation (Fig. 12). Although missing scales can be generated shortly 

after forecast initialization (e.g. Potvin et al., 2017), additional time is required to generate turbulence when random incoherent 

perturbations are inserted in a laminar fow. EXP_3KM perturbations substantially increase spectral density at 3 km in scale (Fig. 

12a); however, much of this energy is lost as the perturbations evolve. EXP_3KM is also unable to simulate the growth of robust 

large-scale perturbations. Consequently, the ensemble has the least power at scales exceeding 9 km (Fig. 12b, c) throughout the 

simulation. Results suggest the smoothed 3 km perturbations grow in scale much slower when superimposed on a laminar fow 

environment. 

The variance of EXP_PCSC predicted v remains enhanced in the boundary layer throughout the simulation (Fig. 13). 

EXP_PCSC turbulence has more power than EXP_3KM and EXP_WHITE at most evaluated scales (Fig. 12), which increases 

wind variance (Fig. 13a). The variance of EXP_3KM v is initially large because the IC perturbations substantially increase power 

at small scales (Fig. 12a); however, variance decreases because the perturbations weaken. Although slow to generate turbulence, 

EXP_WHITE wind variance slowly increases with time (Fig. 13c, f) and exceeds EXP_3KM during the frst simulation hour. 

This is because large turbulent eddies simulated in the former ensemble become more robust and increase spectral density at all 
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F I G U R E 9 The ensemble variance of qr at the lowest model level above the surface for (a, d) EXP_PCSC, (b, e) 
EXP_3KM, and (e, f) EXP_WHITE for the QLCS case. Tables in the upper left-hand corner of each plot show areal coverage of 
grid points exceeding a high variance threshold (var(qr ) > 1.00 g2 kg−2) and maximum variance. Plots are centered upon the 
location of convection. 

302 evaluated scales (Fig. 12). 

5.2 | Storm Spread 

EXP_3KM has the largest RMSI values for both Z and wind speed (Fig. 14) during the simulation period in part because the 

initially robust small-scale perturbations temporarily enhance wind variance (Fig. 13b). Although EXP_3KM innovations are 

large, the ensemble spread increases at a much slower rate (Fig. 14) and causes the ensemble to become spread defcient (0.5 < 

consistency ratio < 0.7). This is consistent with previous studies, which note incorrect estimates of IC uncertainty can cause 

convection-allowing forecast ensembles to become underdispersive (e.g., Clark et al., 2009, 2010; Romine et al., 2013; Flora 

et al., 2018; Loken et al., 2019). EXP_PCSC and EXP_WHITE Z simulations are also spread defcient, though to a lesser extent 

(consistency ratio ≈ 0.75). Although the consistency ratio is often less than unity, EXP_PCSC ensemble spread is larger than any 

other experiment throughout the simulation, which causes the ensemble to have the largest consistency ratio values (Fig. 14). 

EXP_PCSC qr variance is larger than both EXP_3KM and EXP_WHITE throughout the simulation (Fig. 15) because 

robust turbulence alters precipitation intensity, location, and areal coverage. Unlike the previous case, EXP_3KM predicts the 

smallest areal coverage of high rainfall variance (i.e., qr > 1.0 g2 kg−2) because the IC perturbations are slow to grow in scale. 
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F I G U R E 1 0 (a) A one-dimensional spectral density plot of the v-component of velocity (base model state + perturbations) 
sampled 0.5 km AGL in the supercell warm sector at initialization. Plotted spectra are averaged across ensemble members for 
EXP_PCSC (red), EXP_3KM (grey), and EXP_WHITE (blue). The dashed black line is the -5/3 power law, the vertical dashed 
purple line marks the approximate effective resolution, and the vertical dashed green lines are the wavelengths over which 
spectral density time series are evaluated (Fig. 12). (b - d) Two-dimensional spectral density plots averaged across ensemble 
members at initialization. Contours represent spectral density in powers of 10. 

315 The areal coverage of high rainfall variance is modestly larger for EXP_WHITE because the perturbations become robust at 

larger scales and thus have a greater impact storm evolution. For lower q variance thresholds (i.e., > 0.01 g2 
r kg−2 , > 0.1 g2 

kg−2) , EXP_3KM and EXP_WHITE perform similarly early in the forecast period. EXP_3KM predicts the smallest areal 

coverage for all evaluated thresholds at later times. Although all three ensembles eventually predict a large swath of enhanced 

rainfall variance (Fig. 15 d-f), the maximum variance during the frst 30 minutes of the supercell case (Fig. 15a-c) is much lower 

than the QLCS case (Fig. 9a-c). Results highlight that storm response to turbulence is case dependent. 
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321 Forecast uncertainty is often impacted and potentially dominated by atmospheric interactions that occur near the time of 

convective initiation, including horizontal convective rolls converging upon air mass boundaries (e.g., Wilson et al., 1992; Martin 

and Xue, 2006; Weckwerth et al., 2008) and the initiation and subsequent merger of multiple storms (e.g., Wurman et al., 2007; 

Skinner et al., 2014; Tanamachi et al., 2015; Hastings and Richardson, 2016; Klees et al., 2016). Unlike the QLCS case, which is 

initialized during initiation (Fig. 2a), this case is initialized with a mature supercell thunderstorm (Fig. 2b), and consequently the 

turbulence does not necessarily have a proportionate impact on convection. However, once the supercell thunderstorm transitions 

into a bowing line of storms, the ensemble rainfall variance increases considerably. Interactions between convection and the 

turbulent environment are complex and the subsequent evolution of storms is highly non-linear. To ensure forecast uncertainty is 

optimally represented it appears important to generate realistic ensemble perturbations quickly so they are present throughout the 

duration of a convective system. 
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F I G U R E 1 1 The deviation of v-component of velocity from the mean environment at 0.5 km AGL in the supercell warm 
sector (Fig. 2b). The frst ensemble member of (a) EXP_PCSC, (b) EXP_3KM, and (c) EXP_WHITE at initialization is plotted. 

331 6 | CONCLUSIONS 

This study expands upon Markowski (2020) and introduces a novel technique to generate storm-scale perturbations that are both 

physically-coherent and spatially-correlated (PCSC) and require little calibration once generated. To create these perturbations, 

an ensemble of high-resolution simulations (Δx = 250 m) initialized with modest and random potential temperature perturbations 

is run for 12 hours to generate different realizations of a turbulent boundary layer. Each realization provides a unique set of 

initial condition (IC) perturbations used to generate an ensemble of high-resolution simulations of convection. 

Ensembles initialized either via PCSC perturbations (EXP_PCSC) or random perturbations (EXP_3KM, EXP_WHITE) are 

compared. To create the EXP_3KM ensemble, random perturbations that are 3 km in scale in the horizontal are superimposed 

onto the base model state. These perturbations are designed to resemble smoothed random perturbations employed in data 

assimilation experiments (e.g., Caya et al., 2005; Dowell and Wicker, 2009; Jung et al., 2012; Sobash and Stensrud, 2013) to 

increase ensemble spread. To create the EXP_WHITE ensemble, Gaussian white noise is superimposed onto the base model 

state. Many idealized modeling studies (e.g. Dawson et al., 2012; Coffer and Parker, 2017; Sherburn and Parker, 2019; Flournoy 

et al., 2020) rely upon small-scale perturbations to generate spread under the assumption that the perturbations quickly grow in 

scale and impact the evolution of convection. The random perturbations in both ensembles are calibrated so that the distribution 

of the perturbation magnitudes matches the PCSC perturbations for each model level and perturbed variable (i.e., u, v, w, qv , θ). 

Ensembles are run for two idealized cases to determine the feasibility of employing PCSC perturbations in diverse environmental 

conditions. The frst set of ensembles simulate a quasi-linear convective system (QLCS) that initiates along a frontal boundary in 

a highly-sheared and modestly-unstable environment. The second set of ensembles simulate a supercell thunderstorm that grows 

into a bowing line of storms in a highly-sheared and highly-unstable environment. These experiments are used to understand 

how the different types of IC perturbations impact ensemble spread and the predicted evolution of convection 

The warm sector environment ahead of the approaching convection is analyzed to understand how the simulated environment 

responds to the IC perturbations. Spectral density analyses reveal the Gaussian white noise perturbations add constant power 

to all scales, while the 3 km perturbations increase power most over a narrow band of wavelengths (i.e, 3 km). Both types of 

random perturbations are slow to generate robust turbulence, a problem that is exacerbated for the supercell case because the 

base model state contains no turbulent eddies in the warm sector. Simulations initialized with PCSC perturbations quickly spawn 

horizontal convective roles that enhance spectral density in the mesoscale. Due to the enhanced and mature turbulent structures, 

EXP_PCSC simulations generally have more power than EXP_3KM and EXP_WHITE at scales exceeding 10 km more than one 

hour into the simulation. This causes EXP_PCSC wind variance in the boundary layer to be larger than both EXP_3KM and 

EXP_WHITE throughout the simulation. 
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F I G U R E 1 2 A time series of the 1D ensemble average spectra sampled at horizontal scales of (a) 3 km, (b) 9 km, and (c) 18 
km during the frst 90-minutes of the supercell simulation. Spectra are of the v-component of wind sampled at 0.5 km AGL. Red, 
grey, and blue lines correspond with EXP_PCSC, EXP_3KM, and EXP_WHITE, respectively. 

360 EXP_PCSC storm spread is enhanced (i.e., convection is more diverse) in both cases because the predicted storms interact 

with robust boundary layer turbulence spawned by IC perturbations. The turbulent eddies in the EXP_PCSC simulations quickly 

create and maintain physically coherent perturbations that grow in scale and alter the evolution of convective storms. Results 

concur with previous studies that note high-resolution forecasts are initially sensitive to the upscale growth of small-scale 

initial perturbations (e.g., Zhang et al., 2006, 2016; Potvin et al., 2017). Since the random perturbations are initially slow to 

develop robust mesoscale structures, the ensemble storm spread increases at a slower rate initially. The more rapid spin-up 

of EXP_PCSC spread increases forecast uncertainty and potentially mitigates ensemble underdispersion, a well-documented 

problem for convection-allowing forecast ensembles (e.g. Clark et al., 2010; Romine et al., 2014; Loken et al., 2019). 

Storm sensitivity to boundary layer turbulence varies between the QLCS and Supercell cases. Although perturbations are 

generated using the same techniques for both storm events, the variance of qr for the supercell case is initially much smaller 

than the QLCS case. Rainfall variance is hypothesized to be initially larger for the QLCS case because the IC perturbations 

are added during convective initiation, rather than when the supercell is fully mature. However, once the supercell grows in 

scale and form a bowing line of storms, ensemble variance of of qr grows considerably faster. Forecast error is often impacted 

by atmospheric interactions that occur near the time of convective initiation (e.g., Wilson et al., 1992; Martin and Xue, 2006; 

Weckwerth et al., 2008), which can alter the impact of turbulence on predicted convection. Further, changes in storm mode and 

the environment alters forecast uncertainty (e.g., Lawson, 2019). Results highlight the importance of quickly generating realistic 

ensemble perturbations that are present throughout the lifecycle of a storm. While determining when convection is most sensitive 

to IC perturbations is beyond the scope of this study, the novel perturbation framework can be extended in future cases to better 
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F I G U R E 1 3 Vertical cross-sections showing the ensemble variance of the v-component of velocity in the supercell warm 
sector (Fig. 2b) for (a, d) EXP_PCSC, (b, e) EXP_3KM, and (c, f) EXP_WHITE. The average variance of v sampled at 0.5 km 
AGL in the warm sector is listed in the upper right-hand corner of each plot. 

378 understand forecast sensitivities. 

Many studies have evaluated storm forecast uncertainty arising from initially missing scales (e.g., Potvin et al., 2017) 

or imperceptibly small initial errors (e,g., Zhang et al., 2006, 2015; Markowski, 2020). Despite a focus on convective-scale 

uncertainties, modest large-scale errors can also severely limit forecast skill (e.g., Durran and Weyn, 2016) and should be 

represented in the initial conditions. While real-data cases initialized via ensemble data assimilation inherently include diverse 

meso- and synoptic-scale features, it remains a challenge to represent large scale uncertainties in idealized simulations which are 

typically initialized with a homogeneous environment. To address these uncertainties, studies often rely upon techniques such as 

displacing the source of convective initiation (e.g., Stratman et al., 2018; Markowski, 2020) or modifying the initial wind profle 

(e.g., Cintineo and Stensrud, 2013; Sherburn and Parker, 2019). Developing novel strategies to better represent IC uncertainties 

is expected to make ensemble spread more representative of the event uncertainty. 

While idealized experiments are the focus of this study, physically realistic IC perturbations have the potential to beneft 

real-world applications. A signifcant challenge will be to apply these methods to full NWP models where the background 

environment is heterogeneous. One way forward is to consider the PCSC perturbations as pattern generator like those discussed 

by Palmer et al. (2009) for stochastic forcing in the boundary layer. Another method could be to coarse grain the perturbations, 

with appropriate scaling based upon a local and regional shear and stability, and add these into the model. Currently, operational 

ensemble forecast prediction systems add some form of uncertainty during model integration; the High Resolution Rapid Refresh 

(HRRR) ensemble analysis system uses stochastic perturbations of physics tendencies (Buizza et al., 1999; Palmer et al., 2009) 

and parameters to increase ensemble spread (Jankov et al., 2019). The combination of a more consistent initial uncertainty 

combined with stochastic methodologies, should provide the opportunity to maintain ensemble spread during integration more 

than either methodology can alone. 
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