
1.  Introduction
The ocean comprises the largest active carbon reservoir on Earth, storing approximately 38,000 Pg C of nat-
ural CO2, nearly all of it as dissolved inorganic carbon (DIC). The ocean has also absorbed 20%–30% of an-
thropogenic CO2 emissions (152 Pg C through 2007) since the beginning of the industrial revolution (Gruber 
et  al., 2019; Sabine et  al., 2004)—and this sink will remain an important control on the airborne fraction of 
CO2 emissions (Jones et al., 2013). Given this fundamental importance, Earth system models (ESMs) include 
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data sets. The model simulates present-day air-sea CO2 flux and many aspects of the carbon cycle in good 
agreement with observations. However, the simulated integrated uptake of anthropogenic CO2 is weak, which 
we link to poor thermocline ventilation, a feature evident in simulated chlorofluorocarbon distributions. This 
also contributes to larger-than-observed oxygen minimum zones. Moreover, radiocarbon distributions show that 
the simulated circulation in the deep North Pacific is extremely sluggish, yielding extensive oxygen depletion 
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Plain Language Summary  Numerical models of the ocean carbon cycle and biogeochemistry 
play a key role in understanding the fate of human carbon dioxide emissions and the magnitude of expected 
climate change over the next several decades to a century. Models are needed to quantify changes in the 
carbon reservoirs of the ocean and atmosphere and to explore interactions between climate change and carbon 
reservoirs that could amplify or damp future warming. This paper presents the Marine Biogeochemistry Library 
(MARBL), which is an ocean biogeochemistry model coupled to the Community Earth System Model (CESM). 
MARBL was designed to be compatible with multiple ocean models, a design motivated by an interest in 
building a diverse community of researchers around the development of MARBL. This paper presents a 
technical description of MARBL and an evaluation of the ocean biogeochemical simulation in CESM version 
2. Overall, the model captures large-scale biogeochemical distributions, though several important biases are 
highlighted, including those dependent on the representation of circulation. MARBL provides a robust platform 
for researchers to address critical questions related to the impacts of climate variability and change on marine 
ecosystems.
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ocean biogeochemistry models (OBMs) that seek to represent the ocean carbon cycle mechanistically, enabling 
future projections inclusive of carbon-climate feedbacks (Friedlingstein et al., 2006). As these models have ma-
tured, there has been increasing recognition of their relevance to questions beyond biogeochemistry, and in par-
ticular related to ocean ecosystems in the context of climate variability and change (Bopp et al., 2013; Stock 
et al., 2011; Tommasi et al., 2017). This paper describes the Marine Biogeochemistry Library (MARBL), which 
is the ocean biogeochemistry component for the Community Earth System Model, version 2 (CESM2) (Dana-
basoglu et al., 2020). We document MARBL and evaluate the ocean biogeochemistry simulations in the fully 
coupled CESM2 integrations submitted to the Coupled Model Intercomparison Project Phase 6 (CMIP6) (Eyring 
et al., 2016).

In CESM2, MARBL was configured to invoke an updated version of what has previously been known as the Bi-
ogeochemistry Elemental Cycle (BEC) model (Moore et al., 2004; Moore, Doney, Kleypas, et al., 2002; Moore, 
Doney, Glover, & Fung, 2002; C. M. Moore et al., 2013; J. K. Moore et al., 2013). MARBL includes several new 
features not present in BEC as it was implemented in CESM1. In addition to changes in the nature of the coupling 
with the Earth system model, such as inclusion of riverine nutrient inputs and prognostic dust deposition fields 
(see below), updates in MARBL include subgrid-scale treatment of light, variable C:P nutrient uptake stoichi-
ometry, prognostic ammonia emissions, an explicit iron-binding ligand, addition of refractory dissolved organic 
matter pools, representations of benthic loss terms, and DIC and alkalinity tracers for preindustrial CO2. MARBL 
is also implemented as a modularized code base, consisting of a self-contained, independent Fortran library that 
interfaces with an ocean general circulation model (OGCM) through an explicit software driver layer. This ex-
plicit design decision enables interoperability between MARBL and different physical models (see Section 2.1). 
Moreover, MARBL has some flexibility with respect to the configuration of its ecosystem, supporting simulation 
of an arbitrary number of zooplankton and phytoplankton functional types (PFTs).

The BEC model has been under development for more than two decades, with initial roots in a one-dimensional 
configuration applied to represent the seasonal cycle of upper ocean primary production at the Joint Global Ocean 
Flux Study (JGOFS), Bermuda Atlantic Timeseries Study site (Doney et al., 1996). This formulation was extend-
ed by Moore, Doney, Kleypas, et al. (2002) to include three phytoplankton functional types, multiple nutrient 
co-limitation (N, P, Si, and Fe), nitrogen fixation, and calcification. It was run in the mixed-layer on a global grid, 
but there was no lateral exchange and nutrient concentrations below the mixed layer were specified from an ob-
servationally based climatology (Moore, Doney, Kleypas, et al., 2002). The Moore, Doney, Kleypas, et al. (2002) 
model was capable of reproducing the dominant patterns of primary production, nitrogen fixation, and export, 
including the observed high nitrate, low chlorophyll (HNLC) conditions in the Southern Ocean, Subarctic North-
east Pacific, and equatorial Pacific (Moore, Doney, Glover, & Fung, 2002). Moore et al. (2004) implemented 
the BEC model in a three-dimensional global OGCM for the first time, demonstrating skillful biogeochemical 
solutions under prognostic flow forced by meteorological fields from atmospheric reanalysis data. This imple-
mentation also enabled running the model in a “fully coupled” context, in which atmospheric and ocean general 
circulation models exchange information via a flux coupler. A series of studies examined BEC solutions in the 
Community Climate System Model, version 3 (CCSM3) (Collins et al., 2006; Yeager et al., 2006). These include 
examinations of the effect of atmospheric nutrient deposition (Doney et al., 2007; Han et al., 2008; Krishnamur-
thy et al., 2007, 2009, 2010; Mahowald et al., 2011; Moore & Doney, 2007; Moore et al., 2006), climate-change 
impacts on ecosystems (Marinov et al., 2010), carbon-climate feedbacks (Thornton et al., 2009), the mechanisms 
driving carbon fluxes (Doney et al., 2009; Lovenduski et al., 2008; S. Wang et al., 2012) and the impacts of 
volcanic forcing on ocean biogeochemistry (Rothenberg et al., 2012). The Community Climate System Model 
evolved into the Community Earth System Model, and the BEC model was released to the community in this 
context. C. M. Moore et al. (2013) and J. K. Moore et al. (2013) documented the marine ecosystem response to 
climate change in CESM1; Long et al. (2013) described the simulation of the present-day ocean carbon sink and 
Lindsay et al. (2014) examined the fully coupled carbon cycle in CESM1. In addition to projections out to 2100, 
CESM1 was used to conduct Extended Representative Concentration Pathway (RCP) scenario integrations out 
to the year 2300 (Moore et al., 2018; Randerson et al., 2015). A version of CESM1 was used to conduct a large 
ensemble (CESM-LE) experiment (Kay et al., 2015), which included ocean biogeochemistry simulated by BEC. 
The CESM-LE enabled a series of studies that explicitly separated natural variability from anthropogenic forced 
trends in ocean biogeochemistry (Eddebbar et al., 2019; Krumhardt et al., 2017; Long et al., 2016; Lovenduski 
et  al.,  2015,  2016; McKinley et  al.,  2016). BEC has also been used in Decadal Prediction experiments with 
CESM1 (Yeager et al., 2012), and a handful of studies have examined predictability of ocean biogeochemical 
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dynamics in this framework (e.g., Krumhardt, Long, et al., 2020; Krumhardt, Lovenduski, et al., 2020; Loven-
duski et al., 2019; Yeager et al., 2018).

Our objectives in this paper are to document MARBL and specifically its configuration in the CESM2 integra-
tions submitted to CMIP6. MARBL development has continued since the CMIP6 integrations were conducted, 
and there are a handful of MARBL features that were not enabled in the CMIP runs. We refer to the CMIP6 
configuration of MARBL, the default configuration in CESM2.1, as MARBL-CESM2.1 to explicitly note the 
associated model version and its configuration. That is, statements made about MARBL hold for all configura-
tions of MARBL, as it was released in CESM2.1, and statements about MARBL-CESM2.1 hold for the default 
configuration in that release.

2.  Model Description
2.1.  Flexible Implementation

MARBL is a stand-alone Fortran library designed to be implemented in multiple OGCMs. The MARBL frame-
work can be best understood by reference to the prognostic equation governing the evolution of an arbitrary 
passive tracer χ in an OGCM:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ ∇ ⋅ (𝐮𝐮𝜒𝜒) − ∇ ⋅ (𝐾𝐾 ∇𝜒𝜒) = 𝐽𝐽𝜒𝜒 (𝐱𝐱),� (1)

where the terms on the left hand side (LHS) are the time-tendency, resolved three-dimensional advection by the 
simulated velocity field, u, and diffusion determined by the diffusivity K. Jχ(x) is the sum of sources-minus-sinks 
for χ, computed as a function of the model state vector, x; air-sea, benthic, or riverine fluxes provide boundary 
conditions. MARBL computes the source/sink terms and interfaces with an OGCM through an explicit software 
driver layer, such that multiple OGCMs that have implemented the MARBL-driver can call the identical MARBL 
code. The OGCM computes the LHS of Equation 1 and handles time-integration. MARBL has been implement-
ed in the Parallel Ocean Program version 2 (POP2; the CESM2 ocean component) (Danabasoglu et al., 2012), 
the Model for Prediction Across Scales, Ocean (MPAS-O) (Burrows et al., 2020; Ringler et al., 2013), and the 
Modular Ocean Model, version 6 (MOM6) (Adcroft et al., 2019), which will be the ocean component in CESM3. 
MARBL is fully configurable at run-time, and is flexible enough to accommodate a variable number of plank-
ton functional types and ecosystem configurations. MARBL is developed via an open-development process on 
GitHub, including continuous integration and testing, as well as tools supporting appropriate configuration in 
CESM integrations. The repository can be found at https://github.com/marbl-ecosys/MARBL.

2.2.  Ocean Biogeochemistry Formulations

MARBL allows for easy addition of phytoplankton and zooplankton groups to the ecosystem. Both are treated as 
arrays, so to add a phytoplankton or zooplankton group simply requires specifying their parameter values in an 
input file. Key biogeochemical processes are built into MARBL, allowing the user to specify the biogeochem-
ical functions associated with each phytoplankton group (i.e., calcifier, silicifier, capable of N fixation, etc.). 
This facilitates supporting multiple ecosystem configurations spanning a range in complexity. Here we focus on 
the implementation in CESM2 CMIP6 integrations, which preserved the ecosystem configuration in CESM1: 
MARBL-CESM2.1 includes one zooplankton group, three explicit phytoplankton functional groups (diatoms, 
diazotrophs, “small” pico/nano phytoplankton), and one implicit group (calcifiers). MARBL-CESM2.1 simulates 
32 tracers, comprising 17 non-living constituents (dissolved inorganic carbon, alkalinity, nutrients, oxygen, and 
dissolved organic matter) and 15 tracers associated with living biomass (i.e., phytoplankton C, P, Si, Fe, CaCO3 
and zooplankton C). Carbonate chemistry is explicit and there are two parallel carbonate systems including DIC 
and alkalinity tracers; applying fixed-preindustrial and time-evolving atmospheric CO2 to these parallel systems 
enables cleanly computing anthropogenic CO2 concentrations (see Section 4.3).

2.2.1.  Phytoplankton Growth

The source/sink term of phytoplankton biomass concentration, Pi, for the PFT group i is

𝐽𝐽𝑃𝑃𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑃𝑃𝑖𝑖 − 𝐺𝐺(𝑃𝑃 ′
𝑖𝑖 ) − 𝑚𝑚𝑖𝑖𝑇𝑇𝑓𝑓𝑃𝑃 ′

𝑖𝑖 − 𝐴𝐴(𝑃𝑃 ′
𝑖𝑖 )� (2)

https://github.com/marbl-ecosys/MARBL
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where the terms on the right-hand side represent growth (i.e., net primary productivity), and sinks due to grazing 
(G), linear mortality (mi) and aggregation (A). Phytoplankton linear mortality is a density-dependent loss that 
depends linearly on phytoplankton biomass. Phytoplankton aggregation loss refers to the process by which dying 
phytoplankton form sticky flocculants, or aggregates, that sink rapidly through the water column and contribute 
significantly to particulate export. The loss terms are dependent on a 𝐴𝐴 𝐴𝐴 ′

𝑖𝑖  , which is the phytoplankton concentra-
tion in excess of a specified temperature- and depth-dependent threshold. The growth rate, μi, is parameterized as 
the product of the resource-unlimited growth rate (μref) at a reference temperature (30°C), and temperature (Tf), 
nutrient limitation (Vi) and light availability (Li) functions:

𝜇𝜇𝑖𝑖 = 𝜇𝜇𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇𝑓𝑓𝑉𝑉𝑖𝑖𝐿𝐿𝑖𝑖.� (3)

The temperature dependence formulation,

�� = 1.7
(

�−30◦C
10◦C

)

,� (4)

is based on results from Sherman et al. (2016).

Light-limitation is computed as a function of irradiance, I (W m−2), using a modified form of the Geider 
et al. (1998) and Geider et al. (1997) dynamic growth model,

�� = 1 − exp
(−��ℎ�

� ��� �
��������

)

,� (5)

where 𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶𝐶
𝑖𝑖  (g C m2 (g Chl W s)−1) is the initial slope of the chlorophyll-a (Chl) specific photosynthesis-irradiance 

(PI) curve and 𝐴𝐴 𝐴𝐴𝐶𝐶𝑖𝑖  is the chlorophyll to carbon ratio (g Chl:g C). This equation represents the growth rate as a 
function of the ratio between the supply of energy for photosynthesis in the form of instantaneous light harvesting 
capacity 𝐴𝐴 (𝛼𝛼𝐶𝐶𝐶𝐶𝐶

𝑖𝑖 ⋅ 𝜃𝜃𝐶𝐶𝑖𝑖 ⋅ 𝐼𝐼) , and the demand for growth in terms of the maximum photosynthetic rate constrained by 
temperature and nutrient limitation (μref ⋅ Tf ⋅ Vi). The chlorophyll to carbon ratio, 𝐴𝐴 𝐴𝐴𝐶𝐶𝑖𝑖  , evolves prognostically in the 
model, thereby providing a representation of photoadaptation. The source/sink term for chlorophyll is

��ℎ� = ��ℎ�

(

��

�C∶N��

)

� (6)

where rC:N is the carbon to nitrogen stoichiometry of phytoplankton (see below) and ρChl is the dimensionless 
chlorophyll synthesis term (Geider et al., 1998), computed as

𝜌𝜌𝐶𝐶𝐶𝐶𝐶 = 𝜃𝜃𝑁𝑁max,𝑖𝑖
𝜇𝜇𝑖𝑖

𝛼𝛼𝐶𝐶𝐶𝐶𝐶
𝑖𝑖 𝜃𝜃𝐶𝐶𝑖𝑖 𝐼𝐼

.� (7)

Photosynthetically available radiation (I) is assumed to be 45% of incoming shortwave radiation (Doney 
et al., 1996). CESM simulates a subgrid-scale sea-ice thickness distribution and computes shortwave penetration 
independently for each ice thickness category, yielding multiple sub-columns with different light levels. MARBL 
computes all light-dependent terms on each sub-column independently, and then computes the grid-cell mean 
terms by taking an area-weighted average across sub-columns (Long et  al.,  2015). Since the photosynthesis 
equations are non-linear, this order of operations reduces numerical artifacts that arise where light fields are het-
erogeneous. Long et al. (2015) showed that this approach reduces biases in the simulation of high-latitude spring 
blooms relative to photosynthesis computed on grid-cell mean light.

Phytoplankton nutrient requirements vary by taxa; diatoms (diat) require N, P, Si, and Fe, whereas small phyto-
plankton (sp) and diazotrophs (diaz) do not assimilate Si and diazotrophs are not limited by N. Nutrient limitation 
is computed using Leibig's law of the minimum, such that

����� = min (� N
����, �

P
����, �

Si
����, �

Fe
����),

��� = min (� N
�� , � P

��, � Fe
�� ), and

����� = min (� P
����, �

Fe
����).

� (8)
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Nutrient limitation is represented according to Michaelis-Menten kinetics, where

𝑉𝑉 Fe
𝑖𝑖 = Fe

Fe +𝐾𝐾Fe
𝑖𝑖

and 𝑉𝑉 Si
𝑖𝑖 = SiO3

SiO3 +𝐾𝐾SiO3
𝑖𝑖

.� (9)

However, phytoplankton can alternatively assimilate nitrate (NO3) and ammonium (NH4), following the substi-
tutable model of R. O’Neill et al. (1989), such that

� NO3
� =

NO3∕�NO3
�

1 + NO3∕�NO3
� + NH4∕�NH4

�

;

� NH4
� =

NH4∕�NH4
�

1 + NO3∕�NO3
� + NH4∕�NH4

�

; and

� �
� = � NO3

� + � NH4
� .

� (10)

All taxa are capable of assimilating both phosphate (PO4) and semi-labile (see below) dissolved organic phos-
phate (DOP); a similar approach is used to compute limitation terms for these constituents:

� PO4
� =

PO4∕�PO4
�

1 + PO4∕�PO4
� + DOP∕�DOP

�

;

� DOP
� =

DOP∕�DOP
�

1 + PO4∕�PO4
� + DOP∕�DOP

�

; and

� �
� = � PO4

� + � DOP
� .

� (11)

Nutrient assimilation ratios are fixed for C:N according to Anderson and Sarmiento (1994) (117:16), but permit-
ted to vary for P, Fe, and Si. P:C uptake for all PFTs is computed according to a modified version of the linear 
model of Galbraith and Martiny (2015). P:C uptake rates are linked to ambient phosphate concentrations, with 
P:C increasing linearly with increasing available phosphate, until a maximum P:C value is reached (W.-L. Wang 
et al., 2019). The dynamic Fe:C ratios follow a similar formulation, with Fe:C ranging between specified mini-
mum and maximum values as a function of ambient iron concentration (Moore et al., 2004). The Si:C uptake ratio 
for the diatoms is a function of both ambient iron and silicate concentrations, whereby low iron increases Si:C 
uptake and low silicate decreases the Si:C uptake ratio for new growth (Moore et al., 2004). As ambient nutrients 
concentrations change over time, phytoplankton nutrient assimilation ratios respond, leading to changes in the 
stoichiometry of phytoplankton biomass.

Loss of phytoplankton due to aggregation is parameterized as

𝐴𝐴(𝑃𝑃 ′
𝑖𝑖 ) = 𝑎𝑎𝑖𝑖𝑃𝑃 ′1.75

𝑖𝑖� (12)

but constrained to fall between imposed minimum, 𝐴𝐴 𝐴𝐴min
𝑖𝑖 ⋅ 𝑃𝑃 ′

𝑖𝑖  , and maximum, 𝐴𝐴 𝐴𝐴max
𝑖𝑖 ⋅ 𝑃𝑃 ′

𝑖𝑖  , rates.

MARBL includes a representation of phytoplankton calcification as well as opal production by diatoms; these 
materials play an important role in mediating particulate organic carbon export (see below). While MARBL in-
cludes the ability to simulate an explicit coccolithophore (see Section 2.2.9), calcification in MARBL-CESM2.1 is 
treated implicitly as a varying fraction of the small phytoplankton NPP, similar to the approach in CESM1 (Moore 
et al., 2004). Baseline calcification is 7% of small phytoplankton NPP, but is decreased as nutrient limitation in-
creases by multiplying calcification by the nutrient limitation term squared (𝐴𝐴 V𝑠𝑠𝑠𝑠

2 ). This decline in calcification under 
severe nutrient limitation aims to represent competition between calcifying coccolithophores and smaller pico-
plankton; calcification is thus reduced in the oligotrophic gyres where picoplankton have an advantage due to their 
larger cell surface-area-to-volume ratios (Moore, Doney, Kleypas, et al., 2002). Calcification is linearly reduced 
at temperatures below 4°C, reflecting the fact that coccolithophores are rare in polar waters (Holligan et al., 2010; 
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Iglesias-Rodríguez et al., 2002). When small phytoplankton biomass exceeds 2.5 mmol C m−3, calcification is scaled 
up to 40% of small phytoplankton production, providing a representation of enhanced calcification associated with 
blooms of the coccolithophore Emiliania huxleyi. Opal formation by diatoms is computed by multiplying diatom 
production by Si:C elemental ratio, which modified by Fe and Si ambient conditions, as described above.

2.2.2.  Zooplankton

MARBL-CESM2.1 has one zooplankton class that grazes on phytoplankton according to a Holling Type II 
relationship

�(� ′
� ) = �max

� ⋅ �� ⋅
( � ′

�

� ′
� +��

�

)

�� (13)

The values of half-saturation constants, 𝐴𝐴 𝐴𝐴𝑃𝑃
𝑖𝑖  , are identical for each phytoplankton taxa in MARBL-CESM2.1; 

the maximum grazing rates, 𝐴𝐴 𝐴𝐴max
𝑖𝑖  , vary, however, with diatoms experiencing the lowest grazing pressure. The 

temperature dependence of grazing, Tf, is the same as for phytoplankton growth and mortality. The source/sink 
equation for zooplankton is thus

𝐽𝐽𝑍𝑍 = 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺(𝑃𝑃 ′
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) + 𝛾𝛾𝑠𝑠𝑠𝑠𝐺𝐺(𝑃𝑃 ′

𝑠𝑠𝑠𝑠) + 𝛾𝛾𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐺𝐺(𝑃𝑃 ′
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) − 𝑚𝑚𝑍𝑍𝑇𝑇𝑓𝑓𝑍𝑍 ′ − 𝑎𝑎𝑍𝑍𝑇𝑇𝑓𝑓𝑍𝑍 ′1.5� (14)

where γi is a gross growth efficiency coefficient (Straile, 1997) and the last two terms on the right-hand side 
represent linear mortality and higher-trophic level predation, respectively (see Table 1). Z′ is the zooplankton 
concentration in excess of a depth-dependent threshold.

Biomass ingested by zooplankton is partitioned into three fractions: converted to zooplankton biomass (γi), lost to 
egestion, and lost to respiration. The fraction of egestion losses (roughly 30% of ingestion, 45% for diatom prey) 
partitioned to sinking detritus varies by phytoplankton prey type, such that 10% and 38% of ingested diazotrophs and 
diatoms goes to POC, respectively. The fraction of the grazed small phytoplankton material routed to sinking partic-
ulate material varies as a function biomass, with reductions in the fraction exported at low biomass. The remainder 
of the egestion losses are partitioned to DOC (6% of ingestion for all phytoplankton types) and DIC (the remainder). 
Zooplankton respiration losses are assumed to be primarily a function of ingestion (40% for small phytoplankton and 
diazotrophs, and 30% for diatoms). The differential routing of zooplankton grazing is aimed at simulating various 
types of zooplankton (microzooplankton, mesozooplankton) within a single, “adaptive zooplankton” class.

Following Doney et al. (1996), zooplankton losses include linear and “quadratic” loss terms. The linear losses 
represent a combination of metabolic and reproductive losses, as well as non-predatory mortality, while the “quad-
ratic” losses approximately represent predation by unresolved higher trophic level predators (Fasham, 1995). The 
loss coefficients mZ and aZ are tuned to be consistent with overall mortality rates used in previous versions of the 
model (Doney et al., 1996; Moore et al., 2004, C. M. Moore et al., 2013; J. K. Moore et al., 2013). The routing 
of zooplankton losses to DIC, DOC, and POC are computed similarly for both linear and “quadratic” mortality 
losses; though, to simulate the effect of various zooplankton types, there are differential losses to POC based on 
phytoplankton prey type. 12% of zooplankton losses originating from grazing on small phytoplankton and diaz-
otrophs, and 24% originating from grazing on diatoms, are routed to POC. Of the remainder, 6% is partitioned to 
DOC, which approximates the fraction of the semi-labile losses, and the remainder is routed to DIC.

2.2.3.  Detrital Organic Pools

There is no explicit sinking particulate organic matter (POM) tracer in MARBL; rather, sinking POM is simu-
lated implicitly following Armstrong et al. (2002). In this formulation, sinking POM is redistributed in the water 
column as it is produced in each numerical timestep, with no time lag between surface production and deep 
remineralization. The redistribution follows the analytical solution to a first-order differential equation express-
ing POM flux as a function of a sinking velocity and remineralization rate, which together can be described by 
a remineralization length scale (Sarmiento & Gruber, 2006). Sinking POM is subject to ballasting by mineral 
dust, biogenic CaCO3 and Si, which enhance the efficiency of export (Armstrong et al., 2002). Remineralization 
length-scales vary as a function of depth in MARBL, enabling a representation of the increasingly recalcitrant 
composition of sinking material at depth (Lima et al., 2014; Sarmiento & Gruber, 2006). In the CMIP6 integra-
tions, the remineralization length-scales were tuned by hand so as to best match observed nutrient and oxygen 
distributions; the resulting remineralization length-scales were 100 m for the upper 100 m, increasing by a factor 
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Parameter Value Units Description

μref 5.0 d−1 Maximum C-spec growth rate at Tref for small phytoplankton and 
diatoms

μref,diaz 2.5 d−1 Maximum C-spec growth rate at Tref for diazotrophs

Q10 1.7 Unitless Q10 temperature coefficient

Tref 30 °C Reference temperature

𝐴𝐴 𝐴𝐴𝑁𝑁max,sp 2.5 mg Chl/mmol Maximum θN (Chl/N) for small phytoplankton

𝐴𝐴 𝐴𝐴𝑁𝑁max,diat 4.0 mg Chl/mmol Maximum θN (Chl/N) for diatoms

𝐴𝐴 𝐴𝐴𝑁𝑁max,diaz 2.5 mg Chl/mmol Maximum θN (Chl/N) for diazotrophs

𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶𝐶
sp 0.39 mmol m2/(mg Chl W day) Chl-spec initial slope of P_I curve (GD98) for small phytoplankton

𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶𝐶
diat 0.28 mmol m2/(mg Chl W day) Chl-spec initial slope of P_I curve (GD98) for diatoms

𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶𝐶
diaz 0.39 mmol m2/(mg Chl W day) Chl-spec initial slope of P_I curve (GD98) for diazotrophs

𝐴𝐴 𝐴𝐴Fe
sp 3.0e-05 mmol/m3 Fe uptake half-sat constant for small phytoplankton

𝐴𝐴 𝐴𝐴Fe
diat 7.0e-05 mmol/m3 Fe uptake half-sat constant for diatoms

𝐴𝐴 𝐴𝐴Fe
diaz 4.5e-05 mmol/m3 Fe uptake half-sat constant for diazotrophs

𝐴𝐴 𝐴𝐴NO3
sp 0.25 mmol/m3 NO3 uptake half-sat constant for small phytoplankton

𝐴𝐴 𝐴𝐴NO3
diat

0.5 mmol/m3 NO3 uptake half-sat constant for diatoms

𝐴𝐴 𝐴𝐴NO3
diaz

2.0 mmol/m3 NO3 uptake half-sat constant for diazotrophs

𝐴𝐴 𝐴𝐴NH4
sp 0.01 mmol/m3 NH4 uptake half-sat constant for small phytoplankton

𝐴𝐴 𝐴𝐴NH4
diat

0.05 mmol/m3 NH4 uptake half-sat constant for diatoms

𝐴𝐴 𝐴𝐴NH4
diaz

0.2 mmol/m3 NH4 uptake half-sat constant for diazotrophs

𝐴𝐴 𝐴𝐴PO4
sp 0.01 mmol/m3 PO4 uptake half-sat constant for small phytoplankton

𝐴𝐴 𝐴𝐴PO4
diat

0.05 mmol/m3 PO4 uptake half-sat constant for diatoms

𝐴𝐴 𝐴𝐴PO4
diaz

0.015 mmol/m3 PO4 uptake half-sat constant for diazotrophs

𝐴𝐴 𝐴𝐴DOP
sp 0.3 mmol/m3 DOP uptake half-sat constant for small phytoplankton

𝐴𝐴 𝐴𝐴DOP
diat 0.5 mmol/m3 DOP uptake half-sat constant for diatoms

𝐴𝐴 𝐴𝐴DOP
diaz 0.075 mmol/m3 DOP uptake half-sat constant for diazotrophs

𝐴𝐴 𝐴𝐴SiO3
diat

0.7 mmol/m3 SiO3 uptake half-sat constant for diatoms

mi 0.1 d−1 Linear mortality rate for all phytoplankton

ai 0.01 (d−1)/(mmol/𝐴𝐴 m3)0.75 “Quadratic” mortality rate for all phytoplankton

𝐴𝐴 𝐴𝐴min
sp 0.01 d−1 Minimum agg rate for small phytoplankton

𝐴𝐴 𝐴𝐴min
diat 0.02 d−1 Minimum agg rate for diatoms

𝐴𝐴 𝐴𝐴min
diaz 0.01 d−1 Minimum agg rate for diazotrophs

𝐴𝐴 𝐴𝐴max
𝑖𝑖 0.5 d−1 Maximum agg rate for all phytoplankton

𝐴𝐴 𝐴𝐴max
sp 3.3 d−1 Maximum grazing rate at Tref for small phytoplankton

𝐴𝐴 𝐴𝐴max
diat 3.15 d−1 Maximum grazing rate at Tref for diatoms

𝐴𝐴 𝐴𝐴max
diaz 3.3 d−1 Maximum grazing rate at Tref for diazotrophs

𝐴𝐴 𝐴𝐴𝑃𝑃
𝑖𝑖 1.2 mmol/m3 Zooplankton grazing half saturation constant for all phytoplankton

γsp 0.3 Unitless Gross growth efficiency coefficient for grazing for small phytoplankton

γdiat 0.25 Unitless Gross growth efficiency coefficient for grazing for diatoms

γdiaz 0.3 Unitless Gross growth efficiency coefficient for grazing for diazotrophs

Table 1 
Model Parameters
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of 4.8 by 1,000 m (see Table 2 for the precise formulation). Remineralization length scales are also increased lin-
early in the presence of low oxygen (<45 mmol m−3). Remineralization rates have no dependence on temperature.

MARBL simulates 6 dissolved organic matter (DOM) pools, including semi-labile (SLDOM) and refracto-
ry dissolved organic (RDOM) carbon, nitrogen, and phosphorus (DOP) (Letscher & Moore,  2015; Letscher 
et al., 2015). MARBL does not include an explicit heterotrophic bacteria pool and thus does not capture the part 
of the “microbial loop” associated with assimilation of DOM by bacteria that are grazed by microzooplankton 
(Azam et al., 1983). Preferential remineralization of DOP leads to a DOM pool enriched in C and N relative to 
the composition of phytoplankton (Letscher & Moore, 2015). Both SLDOM and RDOM pools are produced 
from phytoplankton and zooplankton losses (mortality and aggregation; see above), as well as from grazing due 
to incomplete assimilation of grazed material. Six percent of both the phytoplankton losses and grazing fluxes is 
routed to DOM and the fractional allocation of this material that flows to semi-labile and refractory pools is con-
trolled via a fixed parameter. The refractory DOM pools also receive 6% of the POM remineralization flux. DOM 
remineralization has no explicit temperature dependence. DOM pools are remineralized at a rate determined by 
ambient light levels; remineralization rates for SLDOM are significantly higher in the dark (Letscher et al., 2015). 
The opposite is true for RDOM, where remineralization is enhanced in the presence of light due to photodegrada-
tion by ultraviolet light (UV). MARBL assumes that UV can be approximated as a constant fraction of PAR; since 
UV attenuates rapidly with depth in the water column, RDOM remineralization rates are enhanced in the model's 
surface layer, using a logarithmic dependence on incoming PAR. SLDOM pools cycle with rates on the order of 
years; the RDOM pools have remineralization timescales of years at the surface increasing to many millennia at 
depth. Semi-labile DOP has an additional sink in the upper ocean associated with its use as a P source sustaining 
phytoplankton nutrient requirements when phosphate concentrations are low (Letscher et al., 2015).

The parameters controlling DOM cycling were optimized in an offline tracer-transport framework constrained 
by DOM observations (Letscher et al., 2015). Unfortunately, however, this offline tuning used an earlier model 
version including a formulation for remineralization rate enhancement based on a constant factor in the surface 
layer. While effort was expended to tune the new explicit-PAR-based formulation so as to match the offline opti-
mization, the degree of sensitivity to changes in PAR was underappreciated. As a result, the PAR-based enhance-
ments in RDOM remineralization rates were too high in CESM2, leading to significant reductions in the size of 
the simulated RDOM pools relative to observations (see Section 4.10).

2.2.4.  Nitrogen Cycle

MARBL simulates the marine nitrogen cycle with inputs from rivers, atmospheric deposition, and prognostic N 
fixation; losses of N include water column and sedimentary denitrification as well as ammonia emissions from 

the sea surface. Nitrogen fixation is simulated based on a fixed ratio of 1.25 
between diazotroph N fixation and C fixation, which depends on adequate 
light and Fe availability. Diazotrophs are not limited by N, but do assimi-
late nitrate and ammonium when available—though given their much slower 
growth rates, they are at a competitive disadvantage relative to other taxa in 
regions where N is not limiting.

Nitrification (the oxidation of ammonium to nitrite) is simulated as a first-or-
der rate process dependent on the concentration of ammonium with a rate 
constant of 0.06 d−1. The model does not explicitly simulate nitrite or N2O: 
nitrification in the model thus represents both ammonium and nitrite oxidation 
and nitrate is the only product; there are no losses to N2 via nitrification—
therefore, nitrification does not result in losses of fixed N from the model 
ocean. Nitrification is light-inhibited and only occurs in MARBL where PAR 

Table 1 
Continued

Parameter Value Units Description

mZ 0.1 d−1 Zooplankton linear mortality rate at Tref

aZ 0.4 d−1/(mmol/𝐴𝐴 m3)0.5 Zooplankton mortality rate at Tref

Depth (m) POC SiO2 CaCO3

100 100 650 500

250 360 2,340 1,800

500 470 3,055 2,350

1,000 480 3,120 2,400

Note. The 100 m value is also used above that depth, and the 1,000 m value 
is also used at deeper depths; for all values in between, the length scale is 
linearly interpolated from the values in the table.

Table 2 
Remineralization Length Scales (in Meters) for Sinking Particulate Matter 
as a Function of Depth
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is below 1 W m−2. The subgrid-scale treatment of light (see above) is applied to the nitrification computation, such 
that nitrification is computed for each sub-column and the ultimate grid-cell mean is an area-weighted average 
across sub-columns. Since CESM simulates a diurnal light cycle, there is nitrification in the surface ocean at night.

Denitrification is the oxidation of organic matter via nitrate. Water column denitrification is simulated as a func-
tion of organic matter remineralization and local oxygen concentrations. Where oxygen declines below 10 mmol 
m−3, the fraction of organic matter oxidation accounted for by denitrification is linearly increased until oxygen 
reaches 5 mmol m−3, where denitrification is assumed to account for 100% of organic matter oxidation. MARBL 
also simulates sedimentary denitrification on the basis of an empirical relation depending on POC flux to the 
seafloor (Bohlen et al., 2012). Water column and sedimentary denitrification are reduced where nitrate concen-
trations approach zero. Denitrification does lead to fixed N loss from the model, which at steady-state can achieve 
a balance with N fixation, but the N2 product is not explicitly tracked. Oceanic emission of ammonia is simulated 
prognostically following Paulot et al. (2015).

2.2.5.  Iron Cycle

MARBL includes a representation of oceanic iron cycling that is an extension of the formulation described in 
Moore and Braucher (2008). Sources of dissolved iron to the ocean specified via forcing include dissolved iron 
inputs from sediments (∼20 Gmol yr−1), hydrothermal vents (∼5.0 Gmol yr−1), and rivers (0.37 Gmol yr−1). The 
sedimentary iron source is applied using subgrid-scale bathymetry; this results in a vertical distribution of iron 
input in the water column, relative to simply applying the source at the model bottom. The sedimentary iron 
source is a temporally static field; it is computed offline using a parameterization that depends on POC fluxes 
and bottom-current velocity simulated by CESM. The source of iron from oxic sediments is parameterized via a 
constant, low background value; this source is increased in regions of high bottom horizontal current speed (sed-
iment re-suspension) according to the current velocity squared by up to a factor of 100. The source of iron from 
reducing sediments is linearly related to the sinking POC flux where the POC flux exceeds 3 g C m−2 yr−1; below 
this threshold, the reducing sediment source is zero. This puts a source on the shelf, and along productive slope/
margins, but has little source in the deep ocean, where the sediments accumulate slowly and most of the reminer-
alization will occur near the sediment surface, likely under oxic conditions. Ongoing work seeks to optimize these 
distinct sources for future versions of CESM-MARBL. The two iron source types were combined into one Fe 
input field for CESM2. Atmospheric deposition of soluble iron is computed prognostically as a function of dust 
and black carbon deposition provided by the atmospheric model. Dust also contributes sources of phosphate and 
silicate, following Krishnamurthy et al. (2010). The iron cycle includes a representation of scavenging (Moore & 
Braucher, 2008) and complexation by an explicit ligand tracer. The ligand tracer has sources due to remineraliza-
tion and dissolved organic matter production; its sinks include loss terms associated with scavenging, photo-deg-
radation, implicit uptake by heterotrophic bacteria, and uptake of organically complexed Fe by phytoplankton.

2.2.6.  Riverine Forcing

Riverine nutrient (N, P, Si, and Fe), dissolved inorganic carbon, alkalinity, and DOM fluxes are supplied to the 
CESM2 ocean model from a data set, which includes nutrient loading estimates from GlobalNEWS (Mayorga 
et al., 2010) and the Integrated Model to Assess the Global Environment-Global Nutrient Model (IMAGE-GNM) 
(Beusen et al., 2015, 2016). Nutrient inputs are provided for dissolved inorganic nitrogen (DIN), phosphorus (DIP), 
Si and Fe, as well as dissolved organic nitrogen and phosphorus. Carbon inputs are provided in inorganic and organic 
forms. Organic riverine inputs are partitioned into MARBL's corresponding semi-labile and refractory organic mat-
ter tracers; the fractions routed into the refractory tracers are 0.2, 0.1, and 0.025 for carbon, nitrogen, and phospho-
rus, respectively. Riverine DIC inputs are assumed to be comprised of 100% bicarbonate, and thus alkalinity fluxes 
are equal to DIC fluxes. Particulate constituents are assumed to be removed in estuaries and therefore are not includ-
ed in the riverine forcing supplied to the model. GlobalNEWS does not include dissolved iron inputs to the oceans; 
therefore, for the riverine Fe source, we assumed a constant river concentration of 10 nM and compute Fe loads 
based on year 2000 discharge in the GlobalNEWS data set. Riverine nutrients and carbon fluxes are held constant 
using the GlobalNEWS data with the exception of DIN and DIP fluxes, which are taken from IMAGE-GNM and 
vary from 1900 through 2000; outside of this period, the fluxes are held constant using the closest temporal value.

In CESM2, the handling of riverine freshwater inputs was changed relative to previous versions of the model. 
In particular, rather than spreading riverine freshwater inputs out over a relatively large prescribed region of the 
ocean surface, CESM2 routes riverine freshwater input into the ocean column closest to location of the riverine 
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input. A box-model framework is used to parameterize vertical estuary exchange flow and associated mixing of 
river and seawater prior to applying the input to the ocean column (Sun et al., 2017). The implementation of the 
estuary box model used parameters specified individually for the 20 largest rivers globally and and default pa-
rameters for smaller rivers. Freshwater fluxes were distributed in the ocean column from the sea surface down to 
the shallower of the sea floor and 40 m. This estuary box-model framework is also used in CESM2 to distribute 
riverine biogeochemical inputs, ensuring consistent treatment of freshwater and biogeochemical riverine inputs, 
and also avoiding the unrealistic spreading of inputs over a large region of the surface ocean.

2.2.7.  Benthic Processes

Riverine nutrient and carbon fluxes in CESM2 introduce material into the coupled system without a direct com-
pensating sink from the land model. To avoid drift in ocean nutrient inventories and spurious accumulation of 
carbon in the atmosphere, ocean losses must balance riverine inputs. The marine nitrogen cycle in MARBL is 
open, capable of achieving a dynamic equilibrium as nitrogen fixation and denitrification come into balance with 
the other supply terms. Carbon, phosphorus, and silica inputs, by contrast, are balanced with the process of burial 
at the seafloor.

MARBL computes burial and denitrification losses of material at the seafloor according to empirical relation-
ships. Particulate organic carbon burial is computed using a relationship between burial efficiency and POC flux 
from Dunne et al. (2007), with an imposed maximum burial efficiency of 80%. Burial of SiO2 at the seafloor is 
based on observations in Ragueneau et al. (2000). In MARBL, 4% of Si incident on the seafloor is buried, except 
where the incident flux of Si to the seafloor exceeds 2 mmol m−2 d−1; then, 20% of Si is buried. As described 
above, sedimentary denitrification depends on the incident POC flux and is computed based on an empirical 
relationship from Bohlen et al. (2012). Burial of CaCO3 on the ocean floor occurs where Ω > Ωcrit in the model's 
bottom layer; where Ω < Ωcrit, all CaCO3 reaching the model's bottom layer is dissolved. All CaCO3 is assumed to 
be calcite, thus ignoring the distinction between the mineral forms calcite and aragonite, which may be important 
in modulating dissolution depths (Gangstø et al., 2008).

In order to achieve balanced global ocean tracer inventories, we impose global coefficients that scale burial of 
carbon, phosphorus, and silicon linearly following application of the initial empirical relationships. The burial 
scaling factor for particulate organic nitrogen is the same as for particulate organic carbon. These coefficients 
enable enforcing a match between globally integrated burial and global riverine inputs, thus enforcing equilib-
rium in the preindustrial climate. The global burial coefficients were tuned online in a spin-up configuration 
(see below), adjusting the coefficient to force burial to match inputs on a 10-year timescale. To enable this, we 
compute an exponentially weighted moving average of each term online in the model, thus filtering out temporal 
variability below the 10-year timescale, and adjusting the coefficients at each time step. Ωcrit was also tuned in 
the spin-up runs, to ensure a balanced alkalinity inventory.

2.2.8.  Dissolved Oxygen

During the ocean-tracer spin-up of the CESM2 model, we found that ventilation of the deep North Pacific was 
very sluggish in the coupled model, leading to severe oxygen depletion over a large portion of the interior water 
column. The problem is evidenced by simulated natural radiocarbon age in the deep North Pacific being twice 
that of observations (see Results). We were not able to alleviate the oxygen depletion by compensating for the 
circulation bias via tuning of MARBL parameters, and it was too late in the CMIP6-driven development cycle 
to explore changes in the coupled model configuration to improve the ventilation. While ventilation biases are 
common in coarse resolution OGCMs, the North Pacific oxygen depletion in the spin up was so intense and 
widespread that we were concerned about large-scale denitrification leading to extensive loss of fixed nitrogen, 
which would perturb other aspects of the ocean biogeochemical simulation. Therefore, we were forced to address 
the problem via ad hoc means: we implemented a scale factor to reduce oxygen consumption in the North Pacific; 
oxygen consumption is multiplied by this scale factor, which was set to 0.3 in the deep Pacific (below 1,500 m and 
north of 20°S) and 1.0 elsewhere; the scale factor changes linearly from 1.0 at 40°S to 0.3 at 20°S and similarly 
between 750 and 1,500 m depth. This ad hoc scaling of oxygen consumption breaks stoichiometric relationships 
between oxygen and other biogeochemical tracers, invalidating assumptions commonly made in the analysis of 
biogeochemical simulations (e.g., computing preformed nutrients). In order to avoid confusion from potential 
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users of CESM2 CMIP6 output, we opted to withhold publication of oxygen-related fields from CESM2 CMIP6 
experiments.

2.2.9.  MARBL Features Not Enabled in CMIP6

The CESM2-CMIP6 integrations include calcification simulated by the implicit calcification treatment described 
above. Recent developments have parameterized a prognostic phytoplankton calcifier in MARBL that is modeled 
on coccolithophore physiology (Krumhardt et al., 2019). The ratio of calcification to photosynthesis (𝐴𝐴 rCaCO3∶C ) 
by the coccolithophore functional type is responsive to environmental conditions, where 𝐴𝐴 rCaCO3∶C is a function of 
temperature, nutrients, and CO2. This enables a calcification response to ocean acidification, among other envi-
ronmental changes (for further details see Krumhardt et al., 2019).

MARBL includes a representation of carbon isotopes (13C and 14C), which follows on the implementation in POP 
by Jahn et al. (2015). The carbon isotope tracers in MARBL were not enabled for the CESM2 CMIP6 integra-
tions. An abiotic radiocarbon tracer implemented in POP was enabled for these runs, however (see below).

As mentioned above, the number and definition of plankton functional types in MARBL is flexible and can be 
configured at runtime via an input file; such input files containing MARBL settings are curated in the MARBL 
repository on GitHub. Ecosystem models with additional resolved plankton groups may be useful for coupling 
with models of higher trophic levels, providing a framework for understanding climate-driven variations in poten-
tial fisheries yield, for instance. One such configuration that has been developed is called the Size-based Plankton 
Ecological Traits (SPECTRA) version of MARBL. MARBL-SPECTRA employs allometric, i.e., size-based, 
scaling for various aspects of organismal physiology such as metabolic rates, resource acquisition, mortality, and 
predator-prey interactions, while maintaining important “trait-based” functions that are important for elemental 
cycles (e.g., opal production by diatom groups). The MARBL-SPECTRA configuration has nine phytoplankton 
and six zooplankton PFTs representing various planktonic taxa within the 0.5 μm to 20 mm size range, allowing 
explicit simulation of food resources for higher trophic levels. Efforts are underway to document and publish the 
MARBL-SPECTRA configuration.

2.2.10.  Ancillary Tracers

The simulated circulation of an ocean model plays a critical role in the ability of the ocean model to skillfully 
simulate biogeochemical tracers (Doney et al., 2004). In CESM2 experiments for CMIP6, the ocean model was 
run with several ocean diagnostic tracers: abiotic radiocarbon, chlorofluorocarbons (CFCs), and sulfur hexaflu-
oride (SF6). These tracers provide information about the ocean model's circulation that is relevant to the simula-
tion of biogeochemical tracers. In particular, the natural component of abiotic radiocarbon provides information 
about the ocean model's circulation on multi-centennial and longer timescales, due to its 5730-year half-life. 
This information is complemented on decadal time-scales by the bomb-spike component of abiotic radiocarbon 
and the CFC and SF6 tracers. While these CESM2 diagnostic tracers are not included in MARBL, we analyze 
some aspects of their simulated values to put the analysis of the MARBL tracers in the appropriate context of the 
simulated circulation. The implementation of these diagnostic tracers in CESM2 follows the protocols described 
in Orr et al. (2017). The abiotic radiocarbon implementation is largely based on the implementation described in 
Jahn et al. (2015).

Following Orr et al. (2017), the abiotic radiocarbon tracer is implemented as two abiotic tracers, DICabio and 14DI-
Cabio. Because these tracers are abiotic, they are not directly comparable to observations individually. We instead 
compare to Δ14C, the isotopic fractional abundance of 14C compared to 12C, corrected for biological fractionation 
and normalized by dividing 14C/12C by 14rstd, which is 14C/12C from a pre-bomb standard sample. Following Orr 
et al. (2017), the modeled tracer 14DICabio is normalized by dividing by 14rstd. Because it is abiotic and is not linked 
to biological carbon cycling, the modeled tracer 14DICabio does not require a fractionation correction; therefore, 
given this implementation, Δ14C for the model is computed as

Δ14C = 1000 ⋅
(14DICabio∕DICabio − 1

)

.� (15)
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2.3.  Numerical Experiments

As mentioned above, the experiments described here are from the CESM2 contribution to CMIP6 (Eyring 
et al., 2016). We analyze 3 types of experiments: a preindustrial control experiment, experiments spanning the re-
cent historical past, and future scenario experiments. In the preindustrial control experiment, referred to as piCon-
trol, prescribed forcings (i.e., atmospheric CO2, aerosols, etc.) used by the model repeatedly cycle through values 
representative of the year 1850; this run used prescribed atmospheric CO2 and was integrated for 2000 years. 
The initialization of the piControl experiment is described below. The experiments of the recent historical past, 
referred to as historical, were run using prescribed forcings for years 1850–2014. These experiments were initial-
ized from the piControl experiment, using the model's state at 1 January, taken from different years. We analyze 
11 ensemble members of this type of experiment. The only difference between these ensemble members is the 
year of the piControl experiment that their initial state came from. The future scenario experiments follow the 
protocols of Scenario Model Intercomparison Project (ScenarioMIP) (B. C. O’Neill et al., 2016). The scenari-
os, referred to as Shared Socioeconomic Pathways (SSPs), were generated using integrated assessment models, 
based on a combination of different assumptions about societal development and target radiative forcings. We 
analyze three ensemble members of 4 different SSPs that span a range of anthropogenic impacts on the climate 
system. These experiments were initialized from the end of different historical experiments and were run using 
prescribed forcings for years 2015–2100.

2.3.1.  Initialization of piControl

To initialize the piControl, we applied a spin-up methodology to equilibrate biogeochemical tracers, including 
abiotic carbon and ideal age, to the simulated circulation. The spin-up was conducted using forcing and physical 
state extracted from a 21 year segment of a previous fully coupled CESM2 experiment. The forcing was applied 
cyclically to the ocean and sea-ice component models for spin-up, which yields a much lower computational cost 
than the fully coupled system. The objective of the spin-up was to find a quasi-steady-state tracer distribution; this 
entails minimizing the difference in the tracer distributions between the beginning and end of the selected 21 year 
forcing period. The ocean physical state was reset at the beginning of each 21 year cycle, keeping it synchronized 
with the surface forcing and eliminating drift in temperature and salinity, for example. The spin-up was run for 
1029 years. In the spin-up, the Ωcrit value (the threshold for CaCO3 burial; see above) was manually adjusted at 
several points during the spin-up to ensure that loss of alkalinity from burial of CaCO3 balanced riverine input of 
alkalinity. The final threshold value was 0.89, which was the value used in all subsequent experiments. Scaling 
coefficients applied to the burial of POM and silica at the seafloor (see above) were automatically adjusted in 
order to balance burial of carbon, phosphorus, and silicon with corresponding riverine inputs. All subsequent ex-
periments used the values of the scaling factors determined in the spin-up. At several points during the spin-up, a 
Newton-Krylov (NK) based solver, based on (Lindsay, 2017), was used to more completely spin up a subset of the 
biogeochemical tracers. This NK based solver was applied to dissolved organic matter tracers (semi-labile and re-
fractory), DIC, alkalinity, abiotic carbon tracers, and ideal age. The solver was not applied to other biogeochemi-
cal tracers because the treatment of other tracers in the solver methodology had not been successfully established. 
For each of tracers where it is applied, the NK approach solved directly for tracer equilibrium, assuming a fixed 
cyclo-stationary productivity field. The tracers to which the NK solver was applied are more equilibrated than one 
would expect from the duration of the spin-up. The globally integrated air-sea CO2 flux at the end of the spin-up 
was ∼0.02 Pg C yr−1. The implication of this small air-sea CO2 flux is that riverine inputs of carbon are nearly 
completely balanced by sediment burial. Furthermore, the NK method yielded quasi-equilibrium distributions of 
ventilation tracers in the ocean interior. A typical brute-force spin up would be expected to have substantial drift 
in ideal age, for example, in water masses with ventilation ages older than the length of the integration. In the 
CESM2 spin up, by contrast, the NK equilibration effectively eliminated such trends. As a result, over the first 
1200 years of the piControl integration following the spin up, drift in globally averaged ideal age was about 0.2 yr 
decade−1, suggesting an exceptionally well-equilibrated tracer field. This capacity for accelerated tracer spin up 
has broad applicability to ocean biogeochemical modeling. Moreover, while the application of the technique 
requires deep understanding of model structure and numerics, it is a capacity that is extensible, in principle, to 
other models. Efforts are currently underway to build a Python package supporting the application of NK spin up 
to POP, MOM6 and the Community Land Model.



Journal of Advances in Modeling Earth Systems

LONG ET AL.

10.1029/2021MS002647

13 of 37

3.  Observational Data Sets
We used several observationally based data sets for model validation. Model fields were averaged over the period 
1990–2014, unless noted otherwise, and averaged across ensemble members to assess the simulated mean-state 
in comparison with observations. Model chlorophyll fields were compared to climatological seasonal chlorophyll 
means derived from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite over the period September 
1997 to December 2010, calculated using the GSM (Garver-Siegel-Maritorena model) algorithm (Maritorena & 
Siegel, 2005; Maritorena et al., 2002). We compared these to chlorophyll concentrations from the upper level of 
the ocean model (top 10 m). Modeled inorganic nutrient fields were compared to those from the World Ocean 
Atlas version 2018 (WOA; Garcia et al., 2018). Observationally based CFC and radiocarbon (Δ14C) distributions 
were taken from the Global Ocean Data Analysis Project, version 1 (GLODAPv1) database (Key et al., 2004). 
The data comprising GLODAPv1 were collected over approximately the 1990s; thus, when comparing model 
output to these data, we use 11-year, ensemble-mean averages centered on 1995. GLODAP reports constituent 
concentrations per mass of seawater. Since the CESM ocean component is volume conserving, we convert obser-
vation-based concentrations to per-volume units using a constant reference density, ρ = 1,026 kg m−3 (no volume 
correction is applied to the radiocarbon isotope ratio). The simulated oceanic anthropogenic CO2 (Cant) inventory 
at year 2007 was compared to values derived from GLODAPv1 representative of year 1994 (Key et al., 2004; 
Sabine et al., 2004), with an addition of carbon due to uptake between 1994 and 2007 from Gruber et al. (2019). 
We compare simulated fields to GLODAPv2 (Lauvset et al., 2016) for contemporary DIC, alkalinity, and car-
bonate saturation state. We compare 1990–2014 air-sea CO2 flux to the gridded flux product of Landschützer 
et  al.  (2017), which we refer to as SOM-FFN, reflecting the two-step method, a self organizing map (SOM) 
followed by a feed forward neural-network (FFN), described in Landschützer et al. (2016). To evaluate simulated 
dissolved iron (dFe) distributions, we make use of a data compilation extended from that in Moore and Brauch-
er  (2008) and including data from Tagliabue et  al.  (2012) and the GEOTRACES Intermediate Data Product 
compilation (Schlitzer et al., 2018). We compare simulated DOM distributions to a compilation of observations 
from Letscher and Moore (2015).

4.  Results and Discussion
In this section, we present and discuss several representative diagnostics of the CESM2 solutions submitted to 
CMIP6. Our objectives are not to provide a comprehensive analysis of these solutions, but rather we aim for a 
broad overview, illustrating key aspects of the ocean biogeochemical simulation and documenting important pat-
terns in the model biases. We include a brief treatment of future projections, noting that output from CESM2 is 
also included in several model intercomparison papers (e.g., Arora et al., 2020; Kwiatkowski et al., 2020; Séférian 
et al., 2020).

4.1.  Mixed Layer Depth

Surface mixed layer depths are a key control on the upper ocean habitat and important mediator of water mass 
ventilation affecting transient tracer uptake. The mixed layer depth simulation in CESM2 is therefore of interest 
in the context of understanding large-scale biogeochemical distributions and the strength of the biological pump. 
Notably, the mixed layer depth in the model manifests as a result of interactions between the vertical mixing 
scheme (Large et al., 1994) and both parameterized (e.g., Danabasoglu et al., 2010; Fox-Kemper et al., 2008; 
Gent & Mcwilliams, 1990) and resolved transport controlling stratification (Small et al., 2020). Figure 1 shows 
winter and summer distributions of mixed layer depth in CESM2 historical simulations compared with an ob-
servational estimate. To approximate the mixed layer depth, we use monthly mean salinity and temperature to 
compute potential density; the mixed layer depth is calculated as the depth at which potential density changes 
by 0.125 kg m−3 from its surface value. The same procedure is applied to the World Ocean Atlas observationally 
based product (Locarnini et al., 2019; Zweng et al., 2019). The model shows broad agreement with the observa-
tions in terms of the large-scale distribution of mixed layer depth (Figure 1 left two columns), but includes some 
important biases. Notably, high-latitude summertime mixed layers tend to be too deep in the model (Figure 1c), 
including regions with very deep biases in the North Atlantic and Southern Ocean. The wintertime mixed layer 
depth distributions are characterized by heterogeneous biases in the North Atlantic (Figure 1f), though these bi-
ases are improved relative to older model versions (i.e., CCSM3) that lacked a parameterization of density driven 
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overflows representing Denmark Strait and Faroe Bank Channel (Danabasoglu et al., 2012). Mixed layer depths 
are too shallow in the eastern Subpolar North Atlantic and Greenland, Iceland and Norwegian (GIN) Seas, but too 
deep in the Labrador Sea. Wintertime mixed layer depths are too shallow in critical deepwater formation regions 
along the Antarctic margin and in the Subantarctic along the northern flank of the Antarctic Circumpolar Current 
(ACC) (Figure 1f). These latter biases are likely attributable to the representation of horizontal advection and 
insufficient transport of warm, salty subtropical waters into the ACC region (Small et al., 2020). The biases in the 
Subantarctic likely restrict Southern Ocean uptake of transient tracers (next section) (e.g., Terhaar et al., 2021). 
Furthermore, the mixed layer depth simulation affects the seasonal evolution of NPP and air-sea CO2 fluxes. For 
example, since iron is a critical control on Southern Ocean phytoplankton blooms, substantial biases in the mixed 
layer depth may result in poor simulation of iron supply, which is thought to be mediated largely by seasonal 
entrainment (Tagliabue et al., 2014).

4.2.  Ventilation Tracers

We examined the simulated distribution of three tracers: CFC-11, total radiocarbon (i.e., natural plus the “bomb-
spike”; Δ14C), and anthropogenic CO2 (Cant). CFC-11 and Δ14C provide a means to assess the simulated cir-
culation and potential biases in ventilation; as noted above, these tracers are simulated in the CESM2 ocean 
component, not within MARBL. However, we include them here as circulation biases provide an important 
context for understanding biogeochemical distributions. Since CFC-11 uptake is concentrated in water masses 
with ventilation ages of up to several decades (e.g., Dutay et al., 2002), biases in CFC-11 uptake are predominate-
ly informative of ventilation in thermocline waters. In order to isolate the influence of ventilation processes on 
CFC-11, we examine the partial pressure of CFC-11 (pCFC-11), thereby removing the influence of temperature 
and salinity biases on the tracer distribution. Δ14C, by contrast, provides an indication of the fidelity of deep 
ocean overturning circulation on centennial timescales (e.g., Matsumoto, 2007). Rather than examine radiocar-
bon-derived estimates of circulation age, we simply present Δ14C distributions directly as a qualitative indication 
of ventilation biases.

pCFC-11 highlights significant biases in thermocline ventilation in CESM2, with deficits in thermocline waters 
in both the Pacific and Atlantic basins (Figure 2) and evidence of too much uptake in North Atlantic Deep Water 
(NADW; Figure 2c). These biases are largely similar to those found in CESM1 simulations (Long et al., 2013). 
Larger than observed values of Δ14C are evident in the North Atlantic (Figure 3c), confirming indications of 
vigorous NADW formation evident in pCFC-11. The most dramatic aspect of the 14C simulation, however, is the 
very large Δ14C deficit in the deep North Pacific (Figure 3f); this illustrates the sluggish circulation simulated by 
the coupled model in this region. As described above, the CESM2 simulation of 14C is abiotic, so does not rep-
resent the vertical transfer of 14C accomplished by sinking organic matter. The inclusion of biology would cause 

Figure 1.  (a and d) Climatological mixed layer depth simulated by CESM2 over 1990–2014 compared with (b and f) observationally based estimates of mixed 
layer depth from WOA2013. (c and f) The right column shows model biases. Mixed layer depth was computed using a 𝐴𝐴 Δ𝜎𝜎𝜃𝜃 = 0.125 kg m−3 criterion (Monterey & 
Levitus, 1997). (a–c) The top row shows summertime distributions, which correspond to June–August means in the Northern Hemisphere and December–February 
means in the Southern Hemisphere. (d–f) These seasons are reversed for each hemisphere in the bottom row, which shows winter.
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the simulated deep ocean Δ14C to be less depleted, reducing the magnitude of the apparent bias; however, this 
effect is expected to quite small (e.g., 25‰) relative to the magnitude of the bias (Jahn et al., 2015). These deep 
circulation biases are much worse than in previous versions of the model (i.e., CESM1). Ideal age distributions 
in the deep North Pacific in the piControl are in excess of 3000 years at 2,400 m and greater than 3800 years at 

Figure 2.  CESM simulated zonal-mean partial pressure of (a and d) CFC-11 (pCFC-11) for 1990–2000 compared with observations from (b and e) GLODAPv1 (Key 
et al., 2004). (c and f) The right column shows model biases. (a–c) The top row is the distributions for the Atlantic Ocean and (d–f) the bottom row is the Pacific Ocean 
distributions.

Figure 3.  (a and d) CESM simulated zonal-mean radiocarbon 𝐴𝐴 (14 C) distributions for 1990–2000 compared with observations from (b and e) GLODAPv1 (Key 
et al., 2004). (c and f) The right column shows model biases. (a–c) The top row is the distributions for the Atlantic Ocean and (d–f) the bottom row is the Pacific Ocean 
distributions.
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4,400 m. Notably, testing indicates that running the CESM2 ocean component with reanalysis forcing restores 
the deep ocean circulation. Since changes to the physical ocean component between CESM1 and CESM2 were 
quite minimal, we thus attribute this bias to changes in the atmosphere component, though the specific mech-
anism remains under investigation. We note that both CESM1 and CESM2 do not include geothermal heating, 
which has been shown to increase deep ocean overturning and decrease radiocarbon age in other models (Adcroft 
et al., 2001; Hofmann & Morales Maqueda, 2009). Heuzé (2021) determined that CESM2 was one of the best 
performing models in terms of AABW and NADW formation; this study, however, was based on metrics of deep 
convection and watermass properties—it did not include an examination of the meridional overturning stream-
function or transient tracers.

4.3.  Anthropogenic CO2 Inventory

Ventilation tracers are useful in the context of understanding biases in the uptake of Cant, since Cant uptake is 
largely mediated by overturning circulation. To compute Cant, we make use of the two parallel carbonate systems 
simulated by MARBL. In the CESM2 CMIP6 integrations, these tracer systems are subject to identical trans-
port and source/sink terms; they differ only in their atmospheric CO2 boundary conditions: the primary DIC 
tracer is exposed to increasing CO2 according to historical or scenario forcing, while the secondary DIC tracer, 
“DIC_ALT_CO2”, is forced with a constant preindustrial (1850) value for atmospheric CO2 (284.7 ppm). We 
thus define anthropogenic CO2 as

C𝑎𝑎𝑎𝑎𝑎𝑎 = DIC − DIC_ALT_CO2�

Note that this definition differs subtly from subtracting a DIC field obtained from an 1850-control integration: 
changes in climate impact both DIC and DIC_ALT_CO2, so the resulting Cant does not include the impact of 
climate on natural CO2 as it would if the baseline DIC field were taken from an 1850-control integration. While 
climate impacts on natural CO2 are significant under future scenarios with strong radiative forcing, this feedback 
is modest over the historical period (e.g., Frölicher et al., 2015).

CESM2 simulates weaker Cant uptake than suggested by observational estimates (Figure 4). The model has Cant 
deficiencies of order 10 mmol m−3 evident broadly in thermocline waters. The total GLODAP-based observational 

Figure 4.  (a and d) CESM simulated zonal-mean anthropogenic carbon inventory (Cant) for 2007 compared with observations from (b and e) GLODAPv1 (Key 
et al., 2004) and adjusted for uptake between 1994 and 2007 (Gruber et al., 2019). (c and f) The right column shows model biases. (a–c) The top row is the distributions 
for the Atlantic Ocean and (d–f) the bottom row is the Pacific Ocean distributions.
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estimate for the Cant inventory at year 2007 is 152 ± 19 Pg C (Gruber et  al., 2019; Sabine et  al., 2004); the 
CESM2-simulated inventory at this time is 114 Pg C, or roughly 75% of the observations. Note that the GLODAP 
based observations to which we are comparing omit coverage in some oceanic regions (i.e., the Gulf of Mexico, 
the Arctic Ocean). The CESM2 simulated inventory for the portion of the ocean included in the gridded observa-
tional product is 106 Pg C at year 2007, compared with ∼137 Pg C for the observationally based Cant estimates. 
A caveat with this comparison is that the model Cant field only includes carbon uptake since 1850. As noted in 
Lindsay et al. (2014), Figure 3 of Khatiwala et al. (2009) indicates pre-1850 anthropogenic ocean uptake to be 
about 12 ± 3 Pg C. Taking this into account reduces, but does not eliminate the model's low-uptake bias.

4.4.  Macronutrients

A primary objective of MARBL is to represent the structure and function of the biological pump. The biological 
pump is fueled by nutrients; export of these constituents from the surface ocean via sinking and dissolved organic 
matter plays a dominant role in structuring nutrient distributions. Macronutrients are reasonably well-observed in 
the ocean and thus provide a good constraint on model performance. Figure 5 presents a comparison of surface 
NO3, PO4, and SiO3 distributions from CESM2 with WOA observations. The overall geographical patterns of 
these macronutrients are well represented in CESM2, with increased surface nutrients at the high latitudes and 
equatorial regions and low nutrient concentrations in subtropical gyre regions. However, the simulated surface 
nutrient concentrations are too high in the subtropical oligotrophic gyres and too low in the Subarctic North Pa-
cific; furthermore, there are substantial biases in the Southern Ocean. Simulated surface NO3 and PO4 are both 
too low in the Southern Ocean, by ∼4–8 mmol m−3 and ∼0.25–0.55 mmol m−3, respectively. Conversely, SiO3 
concentrations are too low in the Antarctic zone and too high in the Subantarctic. Surface nutrients reflect the 
balance of net community production (NCP) and physical supply, which together determine the extent of nutrient 
utilization. Thus, biases in surface nutrients in the Southern Ocean suggest that the model may over estimate 
NCP and the simulated algal community composition includes an insufficient contribution from diatoms (see 
Section 4.8)—or the Si to N stoichiometric ratio of diatom production, which is higher under extensive Fe limi-
tation (Moore et al., 2004), may be too low. Alternatively, the nutrient content of water masses upwelling in the 
Southern Ocean may already be too low—indicative of a large-scale bias in the nutrient simulation that may be 
related to excessive trapping of nutrient in the North Pacific.

Figure 5.  CESM simulated annual mean surface (a) nitrate, (d) phosphate, and (g) silicate concentrations for 1990–2014 compared with observations from (b, e, and h) 
the World Ocean Atlas, 2018 (Garcia et al., 2018). Note non-linear color scales. (c, f and, i) The right column shows model biases.
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A latitude-depth view of nutrient distributions lends credence to this latter hypothesis. Figures 6–8 show zon-
al-mean, depth-latitude plots of macronutrients in the Atlantic and Pacific Ocean basins. While the simulated nu-
trient distributions show overall structure that is similar to the observations, several key biases indicate deficiencies 
in the CESM2 solutions. Most notably, these include NO3 depletion in the tropical thermocline (Figures 6c and 6f),  

Figure 6.  CESM simulated annual mean of zonal-mean nitrate (NO3) distributions for 1990–2014 compared with (b and e) the World Ocean Atlas, 2018 (Garcia 
et al., 2018). (c and f) The right column shows model biases. (a–c) The top row is the distributions for the Atlantic Ocean and (d–f) the bottom row is the Pacific Ocean 
distributions.

Figure 7.  CESM simulated annual mean of zonal-mean phosphate (PO4) for 1990–2014 compared with (b and e) World Ocean Atlas, 2018 (Garcia et al., 2018). (c and 
f) The right column shows model biases. (a–c) The top row is the distributions for the Atlantic Ocean and (d–f) the bottom row is the Pacific Ocean distributions.
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which is driven by denitrification in overly extensive oxygen deficient zones, and excessive accumulation of ma-
cronutrients in the deep North Pacific, attributable to sluggish deep circulation in this region.

The vertical structure of PO4 provides an indication of the functioning of the biological pump without the com-
plications of denitrification; the zonal means of simulated PO4 indicate excessive nutrient concentrations in the 
tropical thermocline, particularly in the Atlantic, and nutrient trapping the deep North Pacific (Figure 7). The 
negative bias in nitrate and phosphate in the Southern Ocean surface waters (Figure 5) is also evident in the ocean 
interior over much of the Southern Hemisphere water column (Figures 7c and 7f). This pattern demonstrates that 
the whole Southern Ocean nutrient inventory is too low in the model, suggesting that too weak supply of nutri-
ents to the surface ocean via upwelling in this region is partially responsible for negative surface nutrient biases.

The situation is subtly different for silicate, which displays a positive surface bias over much of the Southern 
Ocean (Figure 5i)—but a dipole bias pattern in the zonal-mean column view (Figures 8c and 8f). This pattern is 
characterized by negative biases in the region associated with AABW and the deep overturning cell, but positive 
biases in upper, equatorward portion of the column associated with the upper cell and where Antarctic Intermedi-
ate Water and Subantarctic Mode water are formed. These patterns indicate that while SiO3 supply via upwelling 
to Southern Ocean surface waters may be too weak, opal production is also too weak, resulting in excessive 
leakage of SiO3 from the Southern Ocean (sensu Sarmiento, Gruber, et al., 2004; Sarmiento, Slater, et al., 2004). 
Sarmiento et al. (2007) demonstrated that the Southern Ocean effectively traps silica (see also Moore et al., 2018; 
Primeau et al., 2013), a phenomena we have also demonstrated operates in POP for CaCO3 and alkalinity (Krum-
hardt, Long, et al., 2020; Krumhardt, Lovenduski, et al., 2020). In this vein, excessive silica leakage from the 
Southern Ocean in CESM2 may help explain why upper-ocean SiO3 concentrations are too high at the surface 
over much of the rest of the global ocean, with the exception of the North Pacific (Figure 8).

4.5.  Dissolved Inorganic Carbon and Alkalinity

DIC and alkalinity distributions provide additional metrics of the biological pump and are key quantities to sim-
ulate correctly from the perspective of understanding manipulations to the global carbon cycle. Figure 9 presents 
maps showing surface distributions of salinity normalized DIC (sDIC), alkalinity (sAlk) and the carbonate satu-
ration state of aragonite (Ωarag) compared to observations from GLODAPv2 (Lauvset et al., 2016). We compare 

Figure 8.  CESM simulated annual mean, zonal-mean silicate for 1990–2014 compared with observations from the (b and e) World Ocean Atlas, 2018 (Garcia 
et al., 2018). (c and f) The right column shows model biases. (a–c) The top row is the distributions for the Atlantic Ocean and (d–f) the bottom row is the Pacific Ocean 
distributions.



Journal of Advances in Modeling Earth Systems

LONG ET AL.

10.1029/2021MS002647

20 of 37

salinity normalized concentrations to remove the influence of freshwater variations on the tracer distributions. 
These plots indicate that CESM2 captures the large-scale structure in surface sDIC and sAlk reasonably well, 
though regional biases are apparent, with concentrations that are generally too low in the North Atlantic, too high 
in the North Pacific and—particularly for sAlk—to low in the Southern Ocean. The large-scale structure in Ωarag 
is also well simulated in a broad sense, though the model tends to have a widespread low bias with the exception 
of the Tropical and North Atlantic and parts of the equatorial upwelling region in the Pacific. The surface biases 
are indicative of the balance between biologically mediated export and re-supply via circulation and mixing. Fig-
ures 10 and 11 show zonal-mean, depth-latitude plots of sDIC and sAlk in the Atlantic and Pacific Ocean basins. 
These plots illustrate phenomena very similar to those described for macronutrients above. The dominant feature, 
with regard to model bias, of the CESM2 sDIC and sAlk simulation is the trapping of tracers in the deep North 
Pacific, with largely negative biases outside this region.

4.6.  Nutrient Limitation

Nutrients and temperature play important roles in structuring phytoplankton productivity throughout the global 
ocean. The most limiting nutrients for each phytoplankton functional type are shown in Figure 12; these fields 
are computed as phytoplankton-biomass-weighted means of the upper-ocean limitation terms, thereby providing 
a picture of resource limitation relevant to understanding vertically integrated production. Small phytoplankton in 
CESM2 are limited by N in much of the low to mid-latitudes, except in the South Pacific, where Fe is primarily 
limiting growth. Indeed Fe limits production of small phytoplankton and diatoms in most oceanic regions south 
of 15°S. These major patterns of phytoplankton N and Fe limitation are generally supported by observations (e.g., 
C. M. Moore et al., 2013; J. K. Moore et al., 2013). Diatoms are limited by SiO3 in regions bordering the con-
tinents in the Southern Hemisphere, as well as in the North Pacific and North Atlantic in CESM2. Diazotrophs 
fix N and are therefore not limited by N availability; they are limited by Fe and P in the tropics and subtropics 
(Sañudo-Wilhelmy et al., 2001; Letscher & Moore, 2015); temperature limits the geographic distribution of diaz-
otrophs to warmer waters (>15°C; Figure 12c). P limitation is mainly evident in the low latitude North Atlantic 
for all three phytoplankton functional types; here increased Fe deposition from Saharan aeolian fluxes stimulate 
N fixation by diazotrophs making P the limiting nutrient (Sañudo-Wilhelmy et al., 2001; Wu et al., 2000).

Figure 9.  CESM simulated surface, annual-mean (a) salinity normalized dissolved inorganic carbon (sDIC), (d) salinity normalized alkalinity (sALK) and (g) 
carbonate saturation state for aragonite (Ωarag) compared with (b and e) observations from the GLODAPv2 (Lauvset et al., 2016). (c, f, and i) The right column shows 
model biases.
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4.7.  Surface Chlorophyll

Satellite-derived observations of chlorophyll provide a proxy for phytoplankton distribution and biomass. Here, 
we compare seasonal (DJF and JJA) mean chlorophyll concentrations from SeaWiFS to CESM2 chlorophyll 

Figure 10.  CESM simulated annual mean, zonal-mean salinity normalized dissolved inorganic carbon (sDIC) compared with observations from GLODAPv2 (Lauvset 
et al., 2016) (b and e). (c and f) The right column shows model biases. (a–c) The top row is the distributions for the Atlantic Ocean and (d–f) the bottom row is the 
Pacific Ocean distributions.

Figure 11.  CESM simulated annual mean, zonal-mean salinity normalized alkalinity (sAlk) compared with observations from (b and e) GLODAPv2 (Lauvset 
et al., 2016). (c and f) The right column shows model biases. (a–c) The top row is the distributions for the Atlantic Ocean and (d–f) the bottom row is the Pacific Ocean 
distributions.
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concentrations in the surface ocean (Figure  13). While CESM2 simulates the overall patterns of chlorophyll 
distribution during the Southern Hemisphere growing season, it is markedly too high for certain regions (Fig-
ures 13a–13c). Strong positive biases are evident in the Subantarctic region of the Southern Ocean, especially in 
the Atlantic sector and south of Australia. Chlorophyll concentrations in the eastern equatorial Pacific are also 
overestimated by CESM2. Despite a geographic pattern that is similar to the observations, Northern Hemisphere 
summer chlorophyll concentrations are also too high in the model for the North Pacific and North Atlantic, ac-
cording to the SeaWiFS observations (Figures 13d–13f). Another prevalent bias apparent in the model is in the 
coastal regions (Figure  13). Coastal phytoplankton production and chlorophyll concentrations are commonly 
underestimated in nominal 1-degree (or lower) resolution GCMs (Laufkötter et al., 2015)—though it is also the 
case that the satellite observations may overestimates chlorophyll in the coastal zone (e.g., Gregg & Casey, 2004).

4.8.  Net Primary Productivity and Export

Primary production by marine phytoplankton is the ultimate constraint on the strength of the biological pump 
and also forms the ecological base of the ocean food web. Satellite observation-based estimates of globally 
integrated net primary production (NPP) typically fall within the range of 43–67 Pg C year−1 (Behrenfeld & 
Falkowski, 1997; Behrenfeld et al., 2005). Globally integrated NPP in CESM2 is 48.9 Pg C yr−1 over the period 
1990–2014 (Table 3, Figure 14), within the range of satellite-based estimates. The distribution of NPP in CESM2 
follows a familiar pattern, with the highest rates of NPP in equatorial upwelling regions (Figure 14a); however, 
the NPP difference between the subtropics and extra-tropic appears less pronounced than that evident in satel-
lite-based estimates (e.g., Behrenfeld et  al.,  2005). Simulated globally integrated particulate export at 100 m 
for the same period is 7.1 Pg C yr−1 (Table 3, Figure 14), which is also broadly consistent with observationally 
based estimates, considering uncertainty (e.g., Boyd & Trull, 2007; Henson et al., 2011; Siegel et al., 2014). The 

Figure 12.  The spatial distribution the factor most limiting annual growth means in each phytoplankton functional group over the period 1990–2014. The dominant 
limiting growth factor for small phytoplankton are on the (a) left, factors limiting diatoms are in the (b) center and factors limiting diazotroph growth are on the (c) 
right. Limitation terms (with the exception of temperature) are computed as biomass-weighted vertical averages. The temperature term for diazotrophs is approximated 
by applying the temperature threshold for growth (15°C) to annual-mean sea surface temperature.

Figure 13.  (a and d) CESM simulated surface chlorophyll (top 10 m) distributions for 1990–2014 compared with (b and e) SeaWiFS satellite derived chlorophyll 
concentration distributions for 1997 to 2010. (a–c) The top row is the distributions for December-January-February (DJF) means and (d–f) the bottom row is the June-
July-August (JJA) mean distributions. (c and f) The right column shows model biases.
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distribution of particulate export at 100 m has greater spatial variability than NPP (Figure 14b), as it reflects a 
combination of NPP and controls on export mediated by phytoplankton community composition (Figure 15). 
Indeed, the global mean particulate export ratio (pe-ratio = sinking export/NPP) in CESM2 is about 0.15, but 

Flux or concentration
Preindustrial 

(CESM1)
1990–2014 
(CESM1)

RCP 8.5 2090s 
(CESM1)

Preindustrial 
(CESM2)

1990–2014 
(CESM2)

SSP5-8.5 2090s 
(CESM2)

Net primary production, full depth (PgC/yr) 55.9a 56.1a 54.0a 48.2 48.8 49.8

Sinking POC at 100 m (PgC/yr) 8.07 7.98 7.20 6.98 7.05 6.69

Sinking CaCO3 at 100 m (PgC/yr) 0.757 0.748 0.723 0.767 0.767 0.808

Sinking SiO2 at 100 m (Tmol/yr) – – – 77.6 78.3 69.9

Rain ratio (CaCO3/POC) at 100 m 0.094 0.094 0.100 0.110 0.109 0.121

Nitrogen fixation (TgN/yr) 175.3 169.4 143.7 240.6 243.1 285.0

Nitrogen deposition (TgN/yr) 6.6 29.6 30.0 13.3 37.2 38.3

Water column denitrification (TgN/yr) 190.0 193.7 187.5 184.8 191.6 255.8

Sediment denitrification (TgN/yr) – – – 67 71 68

Nitrogen burial to sediment (TgN/yr) – – – 24 27 22

Nitrogen surface emissions (TgN/yr) – – – 6 5 3

Nitrogen river flux (TgN/yr) – – – 13 25 25

N cycle imbalance (TgN/yr) −8.0 5.2 −13.8 −14.1 10.3 −0.8

Air-sea CO2 flux (PgC/yr) −0.02 2.03 4.71 −0.04 2.04 5.33

Diatom primary production, top 100 m (%) 34 34 32 35 37 31

Diatom primary production, full depth (%) 35a 35a 32a 36 37 31
aNPP was only reported to 150 m depth in CESM1.

Table 3 
Global Mean Fluxes

Figure 14.  Net primary production (NPP) and organic matter export simulated in CESM2 over the period 1990–2014. (a) NPP and (b) particulate organic matter 
(POC) export at 100 m in mol m−2 yr−1, with globally integrated values indicated in the title of each panel. (c) The export ratio (i.e., pe-ratio = sinking export/NPP) and 
(d) the N:P ratio of exported biomass, with global mean values indicated in title of each panel.
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varies by more than a factor of 3 (Figure 14c). Mineral ballasting by CaCO3 and opal contributes to high pe-ratios 
(Armstrong et al., 2002; Lima et al., 2014), with the regions of high opal export, indicative of diatom-dominated 
assemblages, corresponding to the locations of high pe-ratio (Figure 16). Notably, the elemental composition of 
exported organic matter varies in MARBL. N:P concentrations are elevated below the subtropical oligotrophic 
gyres, which is broadly consistent with observations (e.g., Martiny et al., 2013) and inverse model results (W.-L. 
Wang et al., 2019). These patterns are enabled by the variable P:C uptake ratios.

4.9.  Air-Sea CO2 Fluxes

Figure 17 shows a comparison of CESM2 simulated air-sea CO2 (1990–2014), as well as an observationally 
based flux estimate (Landschützer et al., 2017). In general, the simulated flux field compares quite well with the 
observations (Figures 17a and 17b). The globally integrated flux is larger in magnitude (−2.0 Pg C yr−1) than in 
the observational product (−1.4 Pg C yr−1), though this discrepancy is not significant if riverine carbon inputs 
are properly accounted for in the comparison. In nature, riverine carbon fluxes to the ocean induce net outgassing 
due to an imbalance between inputs and burial at the seafloor (Gruber et al., 2009); recent estimates suggest this 
flux is about 0.45–0.78 Pg C yr−1 (Resplandy et al., 2018). Recall from above, however, that the CESM2 spin-up 
methodology aimed to achieve a balance between riverine inputs and burial of carbon at the seafloor and near-ze-
ro net air-sea flux in the preindustrial state. Considering this methodology, a correction for riverine fluxes would 
suggest that the model's simulated globally integrated air-sea CO2 flux is indistinguishable from that implied 
by the observations. The model simulates outgassing in the tropics, most notably in the equatorial Pacific, and 
CO2 uptake at mid- and high-latitudes (Figures 17a and 17b). The seasonal cycle of zonal-mean CO2 flux is also 
well simulated—though notable differences in the seasonal evolution of the fluxes are evident in the Southern 

Figure 15.  Net primary production (NPP) and phytoplankton organic carbon integrated over the upper 100 m simulated in CESM2 over the period 1990–2014. The 
left column shows NPP and the right column shows phytoplankton carbon; the top row shows these quantities for diatoms, the middle row shows them for small 
phytoplankton and the bottom rows shows them for diazotrophs.
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Ocean poleward of 45°S (Figures 17c and 17d). This region is both poorly 
observed, particularly in winter, and challenging to model, in part because 
the net air-sea CO2 flux manifests as the residual between opposing thermal 
and biologically driven tendencies (e.g., Mongwe et al., 2018).

4.10.  Dissolved Organic Matter

A fraction of plankton loss terms are routed to the DOM pool, which is subse-
quently transported by circulation, and degraded by microbial activity. DOM 
thus provides a transport pathway for the export of biogeochemical constit-
uents to the deep ocean. In particular, it is thought to account for ∼20% of 
total carbon export (Hansell, 2013). Indeed, in CESM2 DOC export across 
100 m is 1.91 Pg C yr−1 during 1990–2014, which accounts for 21% of the 
total organic carbon flux across 100  m (particulate flux is 7.1 Pg C yr−1, 
Figure 14b). Figure 18 shows upper 100 m total DOM (i.e., semi-labile plus 
refractory) concentrations simulated by CESM2 as well as observations of 
these constituents compiled by Letscher and Moore (2015). The distribution 
of DOM partially reflects surface water residence times, with high concen-
trations accumulating within the permanently stratified oligotrophic ocean 
and lower surface concentrations found within the equatorial and Southern 
Ocean upwelling regions. The simulated global maxima in surface DOC 
(76–96 μM) and DON (5.5–6.5 μM) concentrations are found in the tropical 
to subtropical Atlantic and Indian Ocean basins, in agreement with the ob-
servations. Simulated global maxima in surface DOP concentrations (0.23–
0.28  μM) are found in the subtropical Pacific Ocean and northern Indian 
basin, while the global minimum is found in the subtropical North Atlantic 

Figure 16.  Mineral fluxes in CESM2 over the period 1990–2014. (a) CaCO3 
export at 100 m; (b) opal export at 100 m. Globally integrated fluxes are 
indicated in the title above each panel.

Figure 17.  Air-sea CO2 flux. (a) Simulated annual-mean air-sea CO2 flux from CESM2 over the period 1990–2014. (b) Observationally based estimate of air-sea CO2 
(Landschützer et al., 2017) based on the method of Landschützer et al. (2016). The latitudinal monthly mean in the annual-mean air-sea CO2 flux simulated from the 
from CESM2 are shown in panel (c), and the observationally based estimate of air-sea CO2 is shown in panel (d). Panel (e) shows the latitudinal mean over the period 
1990–2014 for the CESM2 simulated air-sea CO2 flux in blue and the observationally based estimate air-sea CO2 flux in red.
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Ocean (<0.08  μM), also in agreement with the observations. Important to capturing the global minimum in 
surface DOP within the subtropical North Atlantic is the ability for phytoplankton to use semi-labile DOP as a 
P source for growth when inorganic phosphate is scarce—as is the case for the North Atlantic subtropical gyre 
(Figure 5).

Figure  19 presents two-dimensional histograms, showing the relationship between simulated and observed 
DOM—as in Figure 18, the simulated values comprise the sum of refractory and semi-labile components. Very 
high observed DOM concentrations are likely to come from regions with significant riverine influence that may 
not be adequately captured by the model and the supplied riverine DOM forcing. Notably, while the model cap-
tures the upper-range of DOC concentrations reasonably well, it has much lower concentrations of DOC at the 
lower end of the range than indicated by the observations. This feature of the simulation is a result of RDOM 
remineralization rates that are too high (see Section 2.2.3), yielding a globally averaged refractory DOC (RDOC) 
pool that is about half of what it should be. The low biases in RDOC are mostly in deeper waters, where the total 
DOC pool is dominated by the refractory component. The biases evident in DOC are less apparent in the other 
elemental pools (Figures 19b and 19c), in part because refractory DON (RDON) and refractory DOP (RDOP) 
comprise smaller fractions of the respective elemental DOM pools than does RDOC. The lifetimes of RDON 
(∼9000 yr) and RDOP (∼4000 yr) are far shorter than that of RDOC (∼16,000 yr) and RDON is 30%–40% of 
total DON, RDOP is 5%–10% of total DOP in the upper ocean, while RDOC is closer to 50% of total DOC. The 
global-mean elemental composition of total DOM in CESM2 is 385:29:1 (C:N:P) in the upper 100 m, sampled 

Figure 18.  (left: a, c, and, e) CESM2 simulated and (right: b, d, and f) observed concentrations of dissolved organic matter (μM) in the upper 100 m. (a and b) The top 
row of plots shows dissolved organic carbon, (c and d) the middle row of plots shows dissolved organic nitrogen, and (e and f) the bottom row of plots shows dissolved 
organic phosphorus. The observations are from Letscher and Moore (2015).
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at the same locations as the DOM observations, which have a mean elemental ratio of 735:60:1 (Letscher & 
Moore, 2015). This indicates that the MARBL DOM stoichiometry is P-enriched relative to the observations, 
while the simulated C:N stoichiometry is relative close to the observed values (MARBL C:N = 13.3; observed 
C:N = 12.3).

4.11.  Nitrogen Cycle

Globally integrated nitrogen fixation over the 1990–2014 period averaged 243 Tg N yr−1 (Table 3, Figure 20a); 
this number is larger than observationally based estimates, which range from about 100–230 Tg N yr−1 (e.g., W.-
L. Wang et al., 2019; Zehr & Capone, 2021). Simulated water column and sedimentary denitrification over this 
period were 192 and 71 Tg N yr−1, respectively. Burial of N at the sea floor and surface emissions of ammonia 
account for additional losses from the model, while atmospheric deposition and riverine inputs provide additional 
sources. Collectively, these terms lead to an N cycle imbalance of about 10 Tg N yr−1 (Table 3). Unfortunately, the 
CESM2 simulation of dissolved oxygen is inadequate (see above) strongly influencing simulated water-column 

denitrification; therefore, CESM2 cannot be reliably used to study changes to 
N cycle processes with climate.

4.12.  Iron Cycle

Figure 21 illustrates the spatial distribution of the dominant terms in the glob-
al ocean iron budget as simulated in CESM2. Iron is supplied to the ocean 
via prognostic atmospheric deposition (Figure 21a), with a pattern reflecting 
proximity to continental dust sources. The dominant source of iron to the 
ocean is from marine sediments (Figure 21b) with additional contributions 
from hydrothermal vents (Figure 21c). Riverine input of iron is small, ac-
counting for only 0.37 Gmol yr−1. Iron is removed from the ocean via bur-
ial at the seafloor (Figure 21d). The sources and sinks of dissolved iron in 
the ocean are highly uncertain and model intercomparison activities have 
demonstrated that it is possible to produce realistic dissolved iron concentra-
tion fields with very different inputs and loss terms (Tagliabue et al., 2016). 
Despite this caveat, there is useful information in a comparison of simulated 
dissolved iron concentrations to observations (Figures 22 and 23).

CESM2 captures the dominant structure of dissolved iron reasonably well, 
with elevated surface concentrations in the tropical Atlantic and much lower 
concentrations in the Pacific. Surface concentration of dissolved iron in the 
North Pacific appear to be too high in the model, which might be attributa-
ble to overly diffusive flow and unrealistic transport of sedimentary sources 

Figure 19.  Comparison of simulated dissolved organic matter concentrations with observations over the upper 1,000 m of the water column. Two-dimensional 
histograms of simulated versus observed concentrations (μM) are shown for (a) dissolved organic carbon, (b) dissolved organic nitrogen, and (c) dissolved organic 
phosphorus. Colors show the number of model-observation pairs in each bin; the black diagonal line shows a 1:1 relationship; inset text indicates mean bias, correlation, 
and root mean squared error (RMSE). The observations are from Letscher and Moore (2015).

Figure 20.  Annual mean (a) nitrogen fixation and (b) water column 
denitrification simulated by CESM2 for the period 1990–2014. Global 
integrals are reported in the figure titles.
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offshore. Indeed, we have found that iron supply in the North Pacific changes dramatically when integrating the 
model at high resolution (Harrison et al., 2018). Figure 23 shows global histograms of the model and observa-
tions; these plots indicate that CESM2 does a good job simulating the range of iron concentrations observed in 
the ocean, though does not have sufficient representation of waters with very low concentrations in the upper 
ocean. This bias is exacerbated at depth; below 500 m, the observations indicate that iron concentrations should 
be approximately normally distributed with a median concentration of about 0.6 nM—but CESM2 simulates 
something closer to a uniform distribution (Figure 23c), which is likely tied to scavenging rates and ligand 
dynamics.

4.13.  Transient Simulations

Here we include a brief discussion of future scenario integrations conducted with CESM2. Space limitations 
preclude a comprehensive analysis, so we present only a few key metrics. Figure 24a shows the prescribed atmos-
pheric CO2 forcing for each of the future scenario integrations and Figure 24b illustrates the associated change in 
sea surface temperature (SST). The scenarios range from SSP1-2.6—under which CESM2 projects about 1.7°C 
of SST warming at 2100 relative to preindustrial—to SSP5-8.5, under which CESM2 projects SST warming of 
about 4.6°C. CESM2 has an equilibrium climate sensitivity (ECS, the change in surface temperature for a dou-
bling of atmospheric CO2 above preindustrial at equilibrium) of 5.2°C and—more relevant to the simulations at 
hand—a transient climate response (TCR, the surface temperature warming around the time of CO2 doubling in 
a 1% per year CO2 increase simulation) of 2.0°C. The CMIP6 multi-model mean for these quantities is 3.7 ± 1.1 
(standard deviation) for ECS and 2.0 ± 0.4 for TCR (Meehl et al., 2020) and, indeed, CESM2 simulates transient 
warming close to the multi-model mean (Brunner et  al., 2020). The transient behavior of globally integrated 
air-sea CO2 flux is shown in Figure 24c as a function of time and Figure 24d as a function of atmospheric CO2. 
Importantly, for the two high-CO2 scenarios (SSP3-7.0 and SSP5-8.5), the ocean CO2 uptake saturates (and under 
SSP5-8.5 even begins to decline), in spite of continually increasing atmospheric CO2. This behavior is indicative 
of feedback; in particular, as the ocean carbon inventory increases, so does the Revelle Factor, limiting additional 
uptake (e.g., Schwinger et  al.,  2014). Furthermore, climate warming increases buoyancy stratification in the 
upper ocean, thereby reducing vertical exchange and the transfer of excess carbon into the ocean interior. Air-sea 

Figure 21.  Spatial distribution of dominant terms in the CESM2 simulated global iron budget. (a) Atmospheric deposition, (b) total sedimentary input, include 
oxic and reducing sedimentary sources, (c) geothermal input, and (d) losses to sediments via burial. Global integrals are reported in each figure title. Note that the 
atmospheric deposition term includes a subsurface contribution from iron released when sinking dust is remineralized. This contribution accounts for 5.5 Gmol yr−1. 
Riverine inputs are not shown; these account for 0.37 Gmol yr−1.
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CO2 flux in the two lower CO2 scenarios (SSP1-2.6 and SSP2-4.5) shows somewhat distinct behavior, as these 
scenarios both include a reduction in the atmospheric CO2 growth rate—in SSP1-2.6, there is actually a negative 
trend in atmospheric CO2 beyond year 2070 (Figure 24a). As the atmospheric CO2 forcing is relaxed, ocean CO2 
uptake declines (Figure 24d).

The CESM2 transient integrations indicate contrasting projections for globally integrated NPP and export (Fig-
ure 25). NPP is simulated to increase over the historical period and continue increasing in the future, particularly 
under the high emission scenario SSP5-8.5. However, CESM2 projects a reduction in globally integrated POC 
flux at 100 m for all future scenarios (Figure 25b). These global changes reflect spatially heterogeneous pat-
terns. The North Atlantic is projected to undergo strong reductions in NPP and export production, while NPP 
is projected to increase over much of the rest of the ocean (except in the western tropical Pacific and Indian 
basins) (Figure 26). Critically, shifts in algal community composition are a significant driver of changes in the 
pe-ratio. Globally, there is a decline in the pe-ratio under all warming scenarios, as well as a shift in algal com-
munity composition leading to diminished diatom prevalence relative to small phytoplankton. These changes 
are also spatially heterogeneous, however, as diatoms decline over most of the ocean except, most notably, in 
the Southern Ocean, where their relative prevalence increases dramatically (diatom fractions also increase in 
the equatorial Pacific) (Figures 26c and 26d). These patterns are broadly consistent with results from CMIP5, in 
which models capable of transitioning production from large phytoplankton (diatoms) to small phytoplankton 
projected only weak reductions in NPP, but significant changes in export (Bopp et al., 2013; Fu et al., 2016). 

Figure 22.  (a, c, and e) CESM simulated dissolved iron concentration distributions for 1990–2014 compared with (b, d, and f) observations observations from Schlitzer 
et al. (2018) with additional observations compiled by Tagliabue et al. (2012) and Moore and Braucher (2008). The rows show different depth ranges: (a and b) above 
100 m, (c and d) between 500 and 100 m, and (e and f) below 500 m.
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Model differences in NPP reflect different choices in treatment of temper-
ature sensitivity and model nutrient dynamics, linked to the sensitivity of 
nutrient supply to stratification (e.g., Laufkötter et  al.,  2015; Sarmiento, 
Gruber, et al., 2004; Sarmiento, Slater, et al., 2004; Steinacher et al., 2010). 
Most CMIP5 models projected decreasing globally integrated NPP ranging 
from −1% to −15% under RCP8.5 (Bopp et al., 2013); CMIP6 models do 
not show as much of a decline in NPP as did CMIP5 models (Kwiatkowski 
et al., 2020).

5.  Conclusion
We have presented a technical description of MARBL, which is the ocean 
biogeochemistry component for the CESM2. MARBL is a state-of-the-art 
global ocean biogeochemistry model, with a prognostic representation of the 
coupled cycles of nitrogen, phosphorus, silicon, iron, carbon and oxygen. 
The model is built on a plankton functional type paradigm, and supports 
flexible ecosystem configuration. In addition to documenting MARBL, 
we have presented and discussed diagnostics to evaluate the ocean biogeo-
chemistry simulations in the fully coupled CESM2 integrations submitted to 
CMIP6. Notably, these simulations leveraged an emerging capability to ac-
celerate the spin up of ocean biogeochemical tracers using a Newton-Krylov 
based solver (Section 2.3.1). Development of this capability is ongoing and 
we are optimistic that it will open new possibilities for numerical modeling 
to address research questions dependent on the long equilibration timescales 
of the deep ocean. Our analysis highlights challenges associated with the 
development and application of ocean biogeochemical models in the con-
text of coarse resolution OGCMs. The CESM2 solutions suffer from weak 
thermocline ventilation, which produces overly extensive oxygen minimum 
zones and weakens uptake of transient tracers. Deep ocean circulation in 
CESM2 is also sluggish—so much so, in fact, that we had to artificially re-
duce oxygen consumption in the North Pacific to prevent widespread anoxia 

in the model. These features of the model solutions present challenges to developing satisfactory simulations of 
the ocean carbon cycle; the biases in simulated distributions of DIC, alkalinity, and carbonate saturation state, 
for example, must be acknowledged in the context of studies applying CESM2 to important questions related to 
ocean acidification, ocean carbon uptake, and carbon dioxide removal. Unfortunately, the severity of the deep 
ocean circulation bias required several hundred years of integration to become clear, making it a challenging 
issue to address in the context of model development. While biases in circulation impose limits on the fidelity 
of model solutions, in general MARBL captures large-scale biogeochemical distributions reasonably well, and 
provides a platform for researching interactions between climate, nutrient and carbon cycling in the ocean.

MARBL has been explicitly designed to facilitate coupling with multiple OGCMs, an effort motivated in part by 
interest in engaging a broad research community. This capacity is being exercised currently: we presented solu-
tions from MARBL integrated in POP2, and we have implemented MARBL in MOM6, the ocean component for 
CESM version three; the Department of Energy has implemented MARBL in MPAS-O, the ocean component 
for the Energy Exascale Earth System Model (E3SM) (Burrows et al., 2020); efforts are underway to imple-
ment MARBL in the Regional Oceanographic Model (ROMS) (Shchepetkin & McWilliams, 2005), enabling 
high-resolution regional configurations; and finally, MARBL has been coupled to the Ocean Circulation Inverse 
Model (OCIM) (DeVries, 2014; DeVries & Primeau, 2011) leveraging an interface layer suitable for Matlab and 
Python applications. Future goals include establishing a one-dimensional test-bed framework, enabling more 
comprehensive parameter exploration and an educational resource. Our goals explicitly include building a di-
verse, inclusive community of researchers involved in the development and application of MARBL across a range 
of use-cases. Managing such a development process imposes some challenges, but also has the potential to yield 
significant benefits derived from synergies across diverse applications.

Figure 23.  Histograms of dissolved iron concentrations in CESM2 
simulations over 1990–2014 (orange) compared with observations (blue). The 
model results have been sampled at the locations of the observations. The rows 
show different depth ranges: (a) above 100 m, (b) between 500 and 100 m, and 
(c) below 500 m.
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As mentioned above, the ecosystem configuration in MARBL is flexible, and improvements in the simulated 
phytoplankton and zooplankton diversity is currently an area of active development. Part of the motivation for 
this work is to improve the capacity for CESM to address critical questions related to the impacts of climate 
variability and change on marine ecosystems. Another area of interest involves climate intervention strategies, 
including the efficacy and potential impacts associated with ocean carbon dioxide removal (CDR) strategies.

In summary, we aim to continue to develop MARBL as a community resource and cutting-edge research tool. 
Work continues to improve MARBL, building toward a comprehensive treatment of ocean biogeochemical cy-
cles, capable of robust assessments of climate impacts and the effect of human manipulations.

Figure 24.  The time series of the ensemble-mean for the CESM2 simulated historical run (1850–2014; black) and the projections under each climate change scenario 
are plotted for the following variables (various colors); (a) prescribed atmospheric CO2, (b) CESM2 simulated global mean sea surface temperature, (c) globally 
integrated air-sea flux. (d) Globally integrated air-sea CO2 flux as a function of atmospheric CO2.
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Figure 25.  The globally integrated time series of the CESM2 simulated historical run (1850–2014; black) and the projections under each climate change scenario 
are plotted for the following variables (various colors): (a) net primary productivity, (b) particulate organic carbon (POC) export at 100 m, (c) particulate export ratio 
(export/NPP), and (d) the fraction of NPP accomplished by diatoms.
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Data Availability Statement
Data from the CESM simulations performed for this study are available via the Climate Data Gateway (https://
doi.org/10.5065/mgb4-cd43) in native output format as well as in CMIP standard format via the Earth System 
Grid Federation (https://esgf.llnl.gov).
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